JPH11133914A - Drive circuit for gas discharge type display device - Google Patents

Drive circuit for gas discharge type display device

Info

Publication number
JPH11133914A
JPH11133914A JP9296764A JP29676497A JPH11133914A JP H11133914 A JPH11133914 A JP H11133914A JP 9296764 A JP9296764 A JP 9296764A JP 29676497 A JP29676497 A JP 29676497A JP H11133914 A JPH11133914 A JP H11133914A
Authority
JP
Japan
Prior art keywords
circuit
pull
electrode
gas discharge
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9296764A
Other languages
Japanese (ja)
Inventor
Koji Ito
幸治 伊藤
Koichi Itsuda
浩一 五田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9296764A priority Critical patent/JPH11133914A/en
Publication of JPH11133914A publication Critical patent/JPH11133914A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • G09G3/2942Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge with special waveforms to increase luminous efficiency
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes

Abstract

PROBLEM TO BE SOLVED: To reduce the change in the gradient of a gentle gradient waveform outputted from a drive circuit, to stabilize the discharge action of the gas discharge type display device, to shorten the application time of the gentle gradient waveform outputted from the drive circuit, and to enlarge the freedom degree of the timing design of a drive circuit, even if there are changes in loads such as change in the discharge current and dispersion of electrode floating capacity. SOLUTION: A scanning electrode drive circuit 15 is constituted of an initialization pulse generation circuit S2 having scanning/maintenance pulse generation circuits P1 -PN and a gentle gradient waveform generation circuit U2a . The gentle gradient waveform generation circuit U2a is constituted of a pull-up FETQ connecting the drain to a constant potential point +Vr(V), and a Miller integrator circuit composed of a resistance RG2a whose one end is connected to the gate of the pull-up FETQ and a capacitor CF2a connected between the gate and the drain of the pull-up FETQ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、テレビジョン受
像機および広告表示板等の画像表示に用いる気体放電型
表示装置の駆動回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving circuit for a gas discharge type display device used for displaying images on a television receiver, an advertisement display board, and the like.

【0002】[0002]

【従来の技術】気体放電型表示装置の1つであるAC型
プラズマディスプレイパネル(以後、PDPという)と
しては、2電極対向放電型や3電極面放電型などが考案
されている。図12に示すように、従来の3電極面放電
型PDP11の電極配列はマトリクスを構成しており、
列方向にはM列のデータ電極DATA1〜DATAMが配
列され、行方向にはN行の走査電極SCN1〜SCNN
よびN行の維持電極SUS1〜SUSNが配列されてい
る。これらマトリクスの各交点にM×N個のセルが形成
されている。PDP11のデータ電極DATA1〜DA
TAMにはデータ電極駆動回路12が接続され、走査電
極SCN1〜SCNNには走査電極駆動回路13が接続さ
れ、維持電極SUS1〜SUSNには維持電極駆動回路1
4が接続されている。
2. Description of the Related Art As an AC plasma display panel (hereinafter referred to as a PDP), which is one of the gas discharge type display devices, a two-electrode opposed discharge type, a three-electrode surface discharge type, and the like have been devised. As shown in FIG. 12, the electrode arrangement of the conventional three-electrode surface discharge type PDP 11 constitutes a matrix,
In a column direction are arranged data electrodes DATA 1 to Data M of M rows, the row direction sustain electrodes SUS 1 ~SUS N scan electrodes SCN 1 ~SCN N and N rows of N rows are arranged. M × N cells are formed at each intersection of these matrices. Data electrodes DATA 1 to DA of PDP 11
The TA M is connected to the data electrode driving circuit 12, the scan electrodes in the SCN 1 ~SCN N is connected scan electrode driving circuit 13, sustain electrodes SUS 1 ~SUS maintain the N-electrode driving circuit 1
4 are connected.

【0003】このようなPDPの駆動タイミング図の一
例を図13に示す。まず初期化期間ですべての走査電極
SCN1〜SCNNに電圧が+Vr(V)で立ち上がりが
緩勾配波形である初期化パルスを印加して、ひとつ前の
サブフィールドで書き込み放電を起こしたセルにおいて
走査電極からデータ電極の方向に放電電流が流れる初期
化放電を起こす。
FIG. 13 shows an example of a driving timing chart of such a PDP. By first rise in all the scanning electrodes SCN 1 ~SCN N voltage is + Vr In the initialization period (V) is applied to initialization pulse is gradually varying waveform, in cells having generated the address discharge one in the preceding sub-field An initialization discharge in which a discharge current flows from the scan electrode to the data electrode is generated.

【0004】次に、書き込み期間に、所定のデータ電極
DATA1〜DATAMに電圧が+Vw(V)である書き
込みパルス、1番目の走査電極SCN1に電圧が−Vs
(V)である走査パルスを印加して、所定のデータ電極
DATA1〜DATAMと走査電極SCN1との交点部の
セルにおいて書き込み放電を起こす。引き続き走査電極
SCN2〜SCNNにおいても同様な動作が行われ、表示
画面全体にわたってデータの書き込みが行われる。
Next, during a write period, a write pulse having a voltage of + Vw (V) on predetermined data electrodes DATA 1 to DATA M and a voltage of −Vs on the first scan electrode SCN 1.
By applying a scanning pulse is (V), causing the writing discharge in the cell of the intersection regions between the specified data electrodes DATA 1 to Data M and the scanning electrode SCN 1. Continue similar operations in the scan electrode SCN 2 ~SCN N is performed, the writing of data is performed over the entire display screen.

【0005】続く維持期間において、すべての維持電極
SUS1〜SUSNとすべての走査電極SCN1〜SCNN
とに交互に電圧が−Vs(V)である維持パルスを印加
して、書き込み放電が起こったセルで維持放電を開始
し、その後維持パルスの印加を続けている間、維持放電
を継続する。
In the following sustain period, all sustain electrodes SUS 1 to SUS N and all scan electrodes SCN 1 to SC N N
, A sustain pulse having a voltage of -Vs (V) is applied alternately to start the sustain discharge in the cell where the write discharge has occurred, and thereafter, the sustain discharge is continued while the sustain pulse is continuously applied.

【0006】続く消去期間において、すべての維持電極
SUS1〜SUSNに電圧が−Vs(V)で立ち下がりが
緩勾配波形である消去パルスを印加して、維持放電の起
こっていたセルで消去放電を起こし維持放電を停止させ
る。
[0006] In the subsequent erase period, a voltage to all the sustain electrodes SUS 1 ~SUS N is applied to the erase pulse falls at -Vs (V) is gradually varying waveform, erase the cell was happening the sustain discharge Discharge is caused to stop the sustain discharge.

【0007】以上の書き込み期間、維持期間、消去期間
からなるサブフィールドを、維持パルス数を変えること
で重み付けをして複数個組み合わせてサブフィールド列
を作り、これを1フィールド(16.7ms)として、
画像表示を行う。
A plurality of subfields consisting of the above writing period, sustaining period and erasing period are weighted by changing the number of sustaining pulses, and a plurality of subfields are combined to form a subfield train, which is defined as one field (16.7 ms). ,
Perform image display.

【0008】以上に説明した従来のPDPの駆動回路に
おいて、初期化パルスと消去パルスの発生に緩勾配波形
発生回路が使われている。以下に従来の走査電極駆動回
路と従来の維持電極駆動回路について説明し、その中で
従来の緩勾配波形発生回路について説明する。
In the conventional PDP drive circuit described above, a gentle gradient waveform generation circuit is used to generate an initialization pulse and an erase pulse. Hereinafter, a conventional scan electrode driving circuit and a conventional sustain electrode driving circuit will be described, and among them, a conventional gentle gradient waveform generating circuit will be described.

【0009】図14は、従来の走査電極駆動回路13の
出力部分を示したものであり、走査/維持パルス発生回
路P1〜PNおよび初期化パルス発生回路S1から構成さ
れている。走査/維持パルス発生回路P1〜PNは、ドレ
インを初期化パルス発生回路S1の出力に接続したプル
アップFETQH1〜QHNと、ソースが−Vs(V)の定
電位点に接続されたプルダウンFETQL1〜QLNと、プ
ルアップFETQH1〜QHNに並列接続されたダイオード
H1〜DHN(通常、ダイオードDH1〜DHNはプルアップ
FETQH1〜QHNの寄生ダイオードを利用する)とから
なるプッシュプル回路で、それらの出力はPDPの走査
電極SCN1〜SCNNにそれぞれ接続されている。初期
化パルス発生回路S1は、ドレインが抵抗R1aを介して
+Vr(V)の定電位点に接続されたプルアップFET
1aと、ソースが接地されたプルダウンFETQ
LS1と、プルダウンFETQLS1に並列接続されたダイオ
ードDLS 1(通常、ダイオードDLS1はプルダウンFET
LS1の寄生ダイオードを利用する)とからなるプッシ
ュプル回路である。この初期化パルス発生回路S1にお
いて、U1aが従来の緩勾配波形発生回路であり、プルア
ップFETQ1aと抵抗R1aとからなる。
[0009] Figure 14 is shows the output portion of the conventional scanning electrode driving circuit 13, and a scanning / sustain pulse generating circuit P 1 to P N and reset pulse generating circuit S 1. The scan / sustain pulse generation circuits P 1 to P N are connected to pull-up FETs Q H1 to Q HN whose drains are connected to the output of the initialization pulse generation circuit S 1 and the source is connected to a constant potential point of −Vs (V). and pull-down FETs Q L1 to Q LN were, pulled up FETs Q H1 to Q HN parallel connected diodes D H1 to D HN (typically, a diode D H1 to D HN utilizes the parasitic diode of the pull-up FETs Q H1 to Q HN in the push-pull circuit consisting of) and their outputs are connected to the PDP of the scanning electrodes SCN 1 ~SCN N. The initialization pulse generation circuit S 1 has a pull-up FET whose drain is connected to a constant potential point of + Vr (V) via a resistor R 1a.
Q 1a and a pull-down FET Q whose source is grounded
And LS1, pulldown FETs Q LS1 parallel connected diodes D LS 1 (usually, diode D LS1 pulldown FET
(Using a parasitic diode of Q LS1 ). In this reset pulse generating circuit S 1, U 1 a is a conventional gradually varying waveform generation circuit, and a pull-up FETs Q 1 a and the resistance R 1 a.

【0010】従来の走査電極駆動回路の動作を説明す
る。まず図12の初期化期間の始まりにおいて、プルア
ップFETQH1〜QHNはオン、プルダウンFETQL1
LNはオフ、プルアップFETQ1aはオフ、プルダウン
FETQLS1はオンになっている。したがって、走査電
極SCN1〜SCNNにはプルダウンFETQLS1,ダイ
オードDLS1,プルアップFETQH1〜QHN,ダイオー
ドDH1〜DHNを介して0(V)が印加されている。そし
てプルダウンFETQLS1がオフになりプルアップFE
TQ1aがオンに変化すると、+Vr(V)の定電位点→
抵抗R1a→プルアップFETQ1a→プルアップFETQ
H1〜QHN→走査電極SCN1〜SCNNの経路で電流が流
れ、走査電極SCN1〜SCNNに初期化パルスが印加さ
れる。このとき初期化パルスの立ち上がりは、走査電極
SCN1〜SCNNがそれぞれ持つ電極浮遊容量CSCi(i
=1〜N)の合計CSC=CSC1+・・・+CSCNと抵抗R1a
とによるCR時定数回路で決まる緩勾配波形になる。画
面サイズが20インチ程度の気体放電型表示装置の場
合、抵抗R1aの値は数百オームから数キロオームという
比較的高い値となる。この初期化パルスの緩勾配波形
は、PDPの放電動作の安定性を決めるので、抵抗R1a
の値を調整して勾配を最適化する。そして次にプルアッ
プFETQ1aがオフ、プルダウンFETQLS1がオンに
変化すると、走査電極SCN1〜SCNN→ダイオードD
H1〜DHN→プルダウンFETQLS1の経路で電流が流
れ、初期化パルスが終了する。
The operation of the conventional scan electrode drive circuit will be described. First, at the beginning of the initialization period in FIG. 12, the pull-up FETs Q H1 to Q HN are turned on, and the pull-down FETs Q L1 to
Q LN is off, pull-up FET Q 1a is off, and pull-down FET Q LS1 is on. Accordingly, the scanning electrodes SCN 1 ~SCN N pull-down FETs Q LS1 to, diode D LS1, the pull-up FETs Q H1 to Q HN, 0 through the diode D H1 ~D HN (V) is applied. And pull up FE pull-down FETQ LS1 is turned off
When TQ 1a changes to ON, the constant potential point of + Vr (V) →
Resistance R 1a → Pull-up FET Q 1a → Pull-up FET Q
H1 to Q HN → current flows through a path of the scanning electrodes SCN 1 ~SCN N, the initialization pulse is applied to the scanning electrodes SCN 1 ~SCN N. The rise of this time initialization pulse, the scanning electrodes SCN 1 ~SCN N electrodes stray capacitance C SCi each having (i
= 1 to N) total C SC = C SC1 + ... + C SCN and resistance R 1a
And a gentle gradient waveform determined by the CR time constant circuit. If the screen size is a gas discharge display device of about 20 inches, the value of the resistor R 1a is relatively high value of several kilo-ohms several hundred ohms. Gradually varying waveform of the reset pulse, so it determines the stability of the PDP discharge operation, the resistance R 1a
Adjust the value of to optimize the gradient. And then pulled up FETs Q 1a is turned off, the pull-down FETs Q LS1 enters the ON state, the scan electrodes SCN 1 ~SCN N → diode D
H1 to D HN → current flows through a path of the pull-down FETs Q LS1, the initialization pulse ends.

【0011】引き続く書き込み期間において、プルアッ
プFETQ1aがオフ、プルダウンFETQLS1がオンの
ままで、走査/維持パルス発生回路P1〜PNが順次プッ
シュプル動作して、走査電極SCN1〜SCNNに走査パ
ルスが印加される。引き続く維持期間において、プルア
ップFETQ1aがオフ、プルダウンFETQLS1がオン
のままで、走査/維持パルス発生回路P1〜PNすべてが
同時にプッシュプル動作して、走査電極SCN1〜SC
Nに維持パルスが印加される。引き続く消去期間にお
いて、プルアップFETQ1aがオフ、プルダウンFET
LS1がオンでプルアップFETQH1〜QHNがオン、プ
ルダウンFETQL1〜QLNがオフになって、走査電極S
CN1〜SCNNにはプルダウンFETQLS1、ダイオー
ドDLS1、プルアップFETQH1〜QHN、ダイオードD
H1〜DHNを介して0(V)が印加される。
In the subsequent writing period, the scan / sustain pulse generation circuits P 1 to P N sequentially perform the push-pull operation while the pull-up FET Q 1a is off and the pull-down FET Q LS1 is on, so that the scan electrodes SCN 1 to SCN N. Is applied with a scanning pulse. In subsequent sustain period, the pull-up FETs Q 1a is turned off, while the pull-down FETs Q LS1 is on, the scan / sustain pulse generating circuit P 1 to P N all by push-pull operation at the same time, the scanning electrodes SCN 1 to SC
A sustain pulse is applied to N N. In subsequent erase period, the pull-up FETs Q 1a is turned off, pull-down FET
When Q LS1 is on, the pull-up FETs Q H1 to Q HN are on, and the pull-down FETs Q L1 to Q LN are off, and the scan electrode S
CN 1 ~SCN N The pull-down FETs Q LS1, diode D LS1, the pull-up FETs Q H1 to Q HN, diodes D
Via H1 ~D HN 0 (V) is applied.

【0012】また図15は、従来の維持電極駆動回路1
4の出力部分を示したものであり、維持パルス発生回路
1および消去パルス発生回路として動作する緩勾配波
形発生回路U1bから構成されている。維持パルス発生回
路W1はドレインが接地されたプルアップFETQ
HW1と、プルアップFETQHW1に並列接続されたダイオ
ードDHW1(通常、ダイオードDHW1はプルアップFET
HW1の寄生ダイオードを利用する)と、ソースが−V
s(V)の定電位点に接続されたプルダウンFETQ
LW1とからなるプッシュプル回路で、その出力はPDP
の維持電極SUS1〜SUSNに接続されている。緩勾配
波形発生回路U1bは、ソースが−Vs(V)の定電位点
に接続されたプルダウンFETQ1bと、プルダウンFE
TQ1bのドレインに接続された抵抗R1bとからなり、プ
ルダウンFETQ1bは抵抗R1bを介して維持電極SUS
1〜SUSNに接続されている。
FIG. 15 shows a conventional sustain electrode driving circuit 1.
And shows the output portion 4, and a gradually varying waveform generation circuit U 1b that operate as sustain pulse generating circuit W 1 and the erase pulse generation circuit. Pull up FETQ sustain pulse generating circuit W 1 is the drain of which is grounded
And HW1, connected in parallel to the pull-up FETs Q HW1 diode D HW1 (usually diode D HW1 pullup FET
Q HW1 uses a parasitic diode) and the source is -V
Pull-down FET Q connected to the constant potential point of s (V)
Push-pull circuit consisting of LW1 and its output is PDP
It is connected to the sustain electrodes SUS 1 ~SUS N. The gentle gradient waveform generation circuit U 1b includes a pull-down FET Q 1b whose source is connected to a constant potential point of −Vs (V), and a pull-down FE.
Consists of a resistor R 1b connected to the drain of TQ 1b, pull-down FETs Q 1b is maintained via a resistor R 1b electrodes SUS
1 to SUS N are connected.

【0013】次に、従来の維持電極駆動回路の動作を説
明する。まず図12の初期化期間および書き込み期間に
おいて、プルアップFETQHW1はオン、プルダウンF
ETQLW1はオフ、プルダウンFETQ1bはオフになっ
ている。したがって、維持電極SUS1〜SUSNにはプ
ルアップFETQHW1,ダイオードDHW1を介して0
(V)が印加されている。そして維持期間において維持
パルス発生回路W1がプッシュプル動作して、維持電極
SUS1〜SUSNに維持パルスが印加される。引き続く
消去期間の始まりにおいて、プルアップFETQHW1
オン、プルダウンFETQLW1がオフ、プルダウンFE
TQ1bがオフの状態から、プルアップFETQHW1がオ
フ、プルダウンFETQ1bがオンに変化すると、維持電
極SUS1〜SUSN→抵抗R1b→プルダウンFETQ1b
→−Vs(V)の定電位点の経路で電流が流れ、維持電
極SUS1〜SUSNに消去パルスが印加される。このと
き消去パルスの立ち下がりは、維持電極SUS1〜SU
Nがそれぞれ持つ電極浮遊容量CSUi(i=1〜N)の合計
SU=CSU1+・・・+CSUNと抵抗R1bとによるCR時
定数回路で決まる緩勾配波形になる。画面サイズが20
インチ程度の気体放電型表示装置の場合、抵抗R1bの値
は数百オームから数キロオームという比較的高い値とな
る。この消去パルスの緩勾配波形は、PDPの放電動作
の安定性を決めるので、抵抗R1bの値を調整して勾配を
最適化する。そして次にプルダウンFETQ1bがオフ、
プルアップFETQHW1がオンに変化すると、0(V)
の定電位点→プルアップFETQHW1→維持電極SUS1
〜SUSNの経路で電流が流れ、消去パルスが終了す
る。
Next, the operation of the conventional sustain electrode driving circuit will be described. First, in the initialization period and the write period of FIG. 12, the pull-up FETs Q HW1 is turned on, pull-down F
ETQ LW1 is off, and pull-down FET Q 1b is off. Therefore, the sustain electrodes SUS 1 to SUS N are connected to 0 through the pull-up FET Q HW1 and the diode D HW1.
(V) is applied. The sustain pulse generating circuit W 1 is in push-pull operation in the sustain period, sustain pulses are applied to the sustain electrodes SUS 1 ~SUS N. At the beginning of the subsequent erase period, the pull-up FET Q HW1 is on, the pull-down FET Q LW1 is off, and the pull-down FE
When the pull-up FET Q HW1 is turned off and the pull-down FET Q 1b is turned on from the state where TQ 1b is off, the sustain electrodes SUS 1 to SUS N → the resistance R 1b → the pull-down FET Q 1b
→ -Vs current flows through a path of constant potential point (V), the erase pulse is applied to the sustain electrodes SUS 1 ~SUS N. At this time, the falling of the erase pulse is caused by the sustain electrodes SUS 1 to SU
S N is the electrode stray capacitance C SUi (i = 1~N) Total C SU = C SU1 + ··· + C SUN gradually varying waveform determined by the CR time constant circuit according to the resistance R 1b of each having. Screen size is 20
In the case of a gas discharge type display device of about inches, the value of the resistor R 1b is a relatively high value of several hundred ohms to several kilo ohms. Since the gentle gradient waveform of the erase pulse determines the stability of the discharge operation of the PDP, the gradient is optimized by adjusting the value of the resistor R1b . Then, the pull-down FET Q 1b is turned off,
When the pull-up FET Q HW1 changes to ON, 0 (V)
Constant potential point → pull-up FET Q HW1 → sustain electrode SUS 1
Current flows through a path of ~SUS N, erase pulse ends.

【0014】[0014]

【発明が解決しようとする課題】しかし、初期化パルス
や消去パルスなどの緩勾配波形印加時においては、書き
込み放電や維持放電を行った点灯セル数の変化に応じて
放電するセル数が変化し、緩勾配波形印加時の電流は変
動するが、前記のように、出力インピーダンスが比較的
高いCR時定数回路で緩勾配波形発生回路が構成されて
いると、この電流変動により緩勾配波形の勾配が変化し
ていた。したがって、ある点灯セル数において放電動作
範囲が最大になるよう緩勾配波形の勾配を設定しても、
点灯セル数が変化すると緩勾配波形の勾配が変化して書
き込み不良や消去不良のセルが発生しやすくなり、PD
Pの放電動作範囲を狭いものにしていた。
However, when a gentle gradient waveform such as an initialization pulse or an erase pulse is applied, the number of cells to be discharged changes in accordance with the change in the number of lighting cells that have undergone write discharge or sustain discharge. Although the current at the time of application of the gentle gradient waveform fluctuates, as described above, if the gentle gradient waveform generating circuit is constituted by the CR time constant circuit having a relatively high output impedance, the gradient of the gentle gradient waveform is caused by this current variation. Was changing. Therefore, even if the gradient of the gentle gradient waveform is set so that the discharge operation range is maximized at a certain number of lighting cells,
When the number of illuminated cells changes, the gradient of the gentle gradient waveform changes, which makes it easy to generate defective cells for writing or erasing.
The discharge operation range of P was narrowed.

【0015】また、このような従来のPDPの駆動回路
では、緩勾配波形発生回路がPDPの電極浮遊容量を利
用したCR時定数回路で構成されているため、PDPご
とに電極浮遊容量にばらつきがあると、緩勾配波形の勾
配もばらつくことになり、PDPの放電動作範囲を狭い
ものにしていた。
Further, in such a conventional PDP drive circuit, since the gentle gradient waveform generating circuit is constituted by a CR time constant circuit using the electrode floating capacitance of the PDP, the electrode floating capacitance varies from one PDP to another. In such a case, the gradient of the gentle waveform also varies, thus narrowing the discharge operation range of the PDP.

【0016】本発明の第1の目的は、放電電流の変化や
電極浮遊容量のばらつきなど緩勾配波形発生回路の負荷
に変動があっても緩勾配波形の勾配の変化を少なくし
て、放電動作範囲が広いPDPの駆動回路を提供するこ
とである。
A first object of the present invention is to reduce the change in the gradient of the gentle gradient waveform even if there is a variation in the load of the gentle gradient waveform generation circuit, such as a change in the discharge current or a variation in the stray capacitance of the electrode, thereby reducing the discharge operation. An object of the present invention is to provide a PDP driving circuit having a wide range.

【0017】また、このような従来のPDPの駆動回路
では、緩勾配波形発生回路がCR時定数回路で構成され
ており、緩勾配波形は飽和電圧に近づくほど緩やかにな
るカーブを描いていた。このため、緩勾配波形の印加開
始直後の最も勾配が急となるところにも必要とする勾配
をもたせ、かつ波形の先端をほぼ飽和電圧まで到達させ
ようとすると、長い印加時間が必要であった。このよう
に印加時間が長いことが、より高画質を得るため1フィ
ールドあたりのサブフィールド数を増す場合などにおい
て妨げになっていた。
In such a conventional PDP drive circuit, the gentle gradient waveform generating circuit is composed of a CR time constant circuit, and the gentle gradient waveform draws a curve that becomes gentler as it approaches the saturation voltage. For this reason, a long application time is required to provide the required gradient even at the steepest point immediately after the start of the application of the gentle gradient waveform and to try to reach the saturation voltage at the leading end of the waveform. . Such a long application time hinders, for example, increasing the number of subfields per field in order to obtain higher image quality.

【0018】本発明の第2の目的は、緩勾配波形の先端
を短時間に完全に飽和電圧まで到達させ、印加時間を抑
えることで、タイミングの設計自由度が大きい駆動回路
を提供することである。
A second object of the present invention is to provide a drive circuit having a large degree of freedom in timing design by causing the tip of a gentle gradient waveform to completely reach the saturation voltage in a short time and suppressing the application time. is there.

【0019】[0019]

【課題を解決するための手段】この課題を解決するため
に本発明の気体放電型表示装置の駆動回路は、放電空間
を挟んで対向配置した第1基板と第2基板とを有し、前
記第1基板上に第1電極が配列され、前記第1電極と直
交対向して第2電極が前記第2基板上に配列された気体
放電型表示装置を駆動する駆動回路であって、前記第1
電極または前記第2電極に接続されたミラー積分回路か
らなる緩勾配波形発生回路を備えたものである。
In order to solve this problem, a driving circuit of a gas discharge type display device according to the present invention has a first substrate and a second substrate which are arranged opposite to each other with a discharge space interposed therebetween. A driving circuit for driving a gas discharge display device in which a first electrode is arranged on a first substrate, and a second electrode is orthogonally opposed to the first electrode and arranged on the second substrate. 1
The apparatus is provided with a gentle gradient waveform generation circuit including a mirror integration circuit connected to the electrode or the second electrode.

【0020】その具体的構成である第1の駆動回路は、
第1電極または第2電極に共通端子が接続されるととも
に定電位点に出力端子が接続された反転増幅素子と、前
記反転増幅素子の入力端子に接続された電流制限素子
と、前記入力端子と前記出力端子との間に接続されたコ
ンデンサとを有するミラー積分回路を備えたものであ
る。
A first driving circuit having a specific configuration is as follows.
An inverting amplifier element having a common terminal connected to the first electrode or the second electrode and an output terminal connected to a constant potential point; a current limiting element connected to an input terminal of the inverting amplifier element; A mirror integration circuit having a capacitor connected between the output terminal and the output terminal.

【0021】また、別の具体的構成である第2の駆動回
路は、第1電極または第2電極に出力端子が接続される
とともに定電位点に共通端子が接続された反転増幅素子
と、前記反転増幅素子の入力端子に接続された電流制限
素子と、前記入力端子と前記出力端子との間に接続され
たコンデンサとを有するミラー積分回路を備えたもので
ある。
A second driving circuit having another specific configuration includes an inverting amplifier element having an output terminal connected to the first electrode or the second electrode and a common terminal connected to a constant potential point. A mirror integration circuit having a current limiting element connected to an input terminal of the inverting amplification element and a capacitor connected between the input terminal and the output terminal.

【0022】さらに別の具体的構成である第3の駆動回
路は、第1電極または第2電極に共通端子が接続される
とともに定電位点に出力端子が接続された反転増幅素子
と、前記反転増幅素子の入力端子に接続された電流制限
素子と、前記定電位点とは別の定電位点と前記入力端子
との間に接続されたコンデンサとを有するミラー積分回
路を備えたものである。
A third driving circuit, which is still another specific configuration, comprises: an inverting amplifier element having a common terminal connected to the first electrode or the second electrode and having an output terminal connected to a constant potential point; A mirror integration circuit having a current limiting element connected to an input terminal of the amplifying element and a capacitor connected between the input terminal and a constant potential point different from the constant potential point.

【0023】この構成により、緩勾配波形発生回路の出
力インピーダンスが低くなるとともに緩勾配波形発生回
路の部品定数で緩勾配波形の勾配が決定されるため、放
電電流の変化や電極浮遊容量のばらつきなど負荷の変動
を受け難くなって、緩勾配波形の勾配の変化が少なくな
る。さらに、緩勾配波形の先端が短時間で完全に飽和電
圧まで到達するので、印加時間を抑えることができる。
According to this configuration, the output impedance of the gentle gradient waveform generating circuit is reduced, and the gradient of the gentle gradient waveform is determined by the component constants of the gentle gradient waveform generating circuit. It becomes less susceptible to load fluctuation, and the change in the gradient of the gentle gradient waveform is reduced. Further, since the leading end of the gentle gradient waveform completely reaches the saturation voltage in a short time, the application time can be reduced.

【0024】[0024]

【発明の実施の形態】以下、本発明の気体放電型表示装
置の駆動回路の実施形態について、図面を参照しながら
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a driving circuit for a gas discharge type display device according to the present invention will be described below with reference to the drawings.

【0025】図9は本発明で用いる3電極面放電型PD
Pの部分破断斜視図である。図9に示すように、第1の
ガラス基板1上に走査電極2群と維持電極3群とが設け
られ、これらの電極群は第1の誘電体層4で覆われ、第
1の誘電体層は保護膜5で覆われている。そして、隔壁
6を挟んで第1のガラス基板1と対向して第2のガラス
基板7が設けられ、第1のガラス基板1と第2のガラス
基板7との間に放電用ガスが満たされた放電空間が形成
される。第2のガラス基板7上にデータ電極8群が、走
査電極2群と維持電極3群とに直交対向して設けられて
いる。データ電極8群は第2の誘電体層9で覆われてお
り、第2の誘電体層9の表面には蛍光体10が付設され
ている。
FIG. 9 shows a three-electrode surface discharge type PD used in the present invention.
It is a partially broken perspective view of P. As shown in FIG. 9, a scan electrode 2 group and a sustain electrode 3 group are provided on a first glass substrate 1, and these electrode groups are covered with a first dielectric layer 4, The layer is covered with a protective film 5. Then, a second glass substrate 7 is provided facing the first glass substrate 1 with the partition wall 6 interposed therebetween, and a discharge gas is filled between the first glass substrate 1 and the second glass substrate 7. A discharge space is formed. A group of data electrodes 8 is provided on a second glass substrate 7 so as to be orthogonally opposed to a group of scan electrodes 2 and a group of sustain electrodes 3. The data electrode group 8 is covered with a second dielectric layer 9, and a phosphor 10 is provided on the surface of the second dielectric layer 9.

【0026】図10に示すように、3電極面放電型PD
P11の電極配列はマトリクスを構成しており、列方向
にはM列のデータ電極DATA1〜DATAMが配列さ
れ、行方向にはN行の走査電極SCN1〜SCNNおよび
N行の維持電極SUS1〜SUSNが配列されている。こ
れらマトリクスの各交点にM×N個のセルが形成されて
いる。PDP11のデータ電極DATA1〜DATAM
はデータ電極駆動回路12が接続されている。また、走
査電極SCN1〜SCNNには走査電極駆動回路15が接
続され、維持電極SUS1〜SUSNには維持電極駆動回
路16が接続されている。
As shown in FIG. 10, a three-electrode surface discharge type PD
P11 electrode arrangement constitutes a matrix in a column direction are arranged data electrodes DATA 1 to Data M of M columns, sustain electrodes of the scan electrodes SCN 1 ~SCN N and N rows of N rows is the row direction SUS 1 to SUS N are arranged. M × N cells are formed at each intersection of these matrices. A data electrode driving circuit 12 is connected to the data electrodes DATA 1 to DATA M of the PDP 11. Further, the scanning electrodes SCN 1 ~SCN N is connected scan electrode driving circuit 15, sustain electrode driving circuit 16 is connected to the sustain electrodes SUS 1 ~SUS N.

【0027】図11は本発明の気体放電型表示装置の駆
動回路における駆動タイミング図の一例である。まず初
期化期間ですべての走査電極SCN1〜SCNNに電圧が
+Vr(V)で立ち上がりが直線的な緩勾配波形である
初期化パルスを印加して、ひとつ前のサブフィールドで
書き込み放電を起こしたセルにおいて走査電極からデー
タ電極の方向に放電電流が流れる初期化放電を起こす。
FIG. 11 is an example of a drive timing chart in the drive circuit of the gas discharge type display device of the present invention. First is applied rise in all the scanning electrodes SCN 1 ~SCN N voltage is + Vr In the initialization period (V) is an initialization pulse is linear gradually varying waveform, cause an address discharge one in the preceding sub-field An initialization discharge in which a discharge current flows in the direction from the scan electrode to the data electrode in the closed cell is caused.

【0028】次に、書き込み期間において、所定のデー
タ電極DATA1〜DATAMに電圧が+Vw(V)であ
る書き込みパルス、第1番目の走査電極SCN1に電圧
が−Vs(V)である走査パルスを印加して、選択され
た所定のデータ電極DATA 1〜DATAMと第1番目の
走査電極SCN1との交点部のセルにおいて書き込み放
電を起こす。引き続き走査電極SCN2〜SCNNにおい
ても同様な動作が行われ、表示画面全体にわたって書き
込みが行われる。
Next, in the writing period, a predetermined data
Data electrode DATA1~ DATAMIs + Vw (V)
Write pulse, first scan electrode SCN1To voltage
Is applied with a scanning pulse of -Vs (V),
Predetermined data electrode DATA 1~ DATAMAnd the first
Scan electrode SCN1Write at the cell at the intersection with
Raise electricity. Continue scanning electrode SCNTwo~ SCNNsmell
The same operation is performed even when writing over the entire display screen.
Is performed.

【0029】続く維持期間において、すべての維持電極
SUS1〜SUSNとすべての走査電極SCN1〜SCNN
とに交互に電圧が−Vs(V)である維持パルスを印加
して、書き込み放電が起こった箇所のセルで維持放電を
開始し、その後維持パルスの印加を続けている間、維持
放電を維持する。
In the subsequent sustain period, all sustain electrodes SUS 1 to SUS N and all scan electrodes SCN 1 to SC N N
, A sustain pulse having a voltage of -Vs (V) is applied alternately to start the sustain discharge in the cell where the write discharge has occurred, and then maintain the sustain discharge while continuing to apply the sustain pulse. I do.

【0030】続く消去期間において、すべての維持電極
SUS1〜SUSNに、電圧が−Vs(V)で立ち下がり
が直線的な緩勾配波形である消去パルスを印加して、維
持放電の起こっていたセルで消去放電を起こし維持放電
を停止させる。
[0030] In the subsequent erase period, all the sustain electrodes SUS 1 ~SUS N, falls the voltage at -Vs (V) by applying the erase pulse is a linear gradually varying waveform, happening of sustain discharge Erase discharge is caused in the erased cell to stop the sustain discharge.

【0031】以上の書き込み期間、維持期間、消去期間
から成るサブフィールドを、維持パルス数を変えること
で重み付けをして複数個組み合わせてサブフィールド列
を作り、これを1フィールド(16.7ms)として、
画像表示を行う。
A plurality of subfields consisting of the above writing period, sustaining period and erasing period are weighted by changing the number of sustaining pulses, and a plurality of subfields are combined to form a subfield train, which is defined as one field (16.7 ms). ,
Perform image display.

【0032】以上の駆動タイミングが図12に示した従
来例と異なるところは、初期化パルスおよび消去パルス
の緩勾配波形が直線的に変化して短時間で飽和している
ことと、それによって初期化パルスおよび消去パルスの
時間幅が小さくなっていることである。実験によれば、
初期化パルスおよび消去パルスの時間幅は、従来ではそ
れぞれ200μs必要であったものが、本実施の形態で
はそれぞれ100μsとすることができ、1フィールド
を8サブフィールドで構成した場合は1.6msの余裕
時間が得られ、その分をサブフィールド数を増やしたり
書き込みパルス幅を広くする等、画質を改善する時間に
費やすことができる。
The above drive timing is different from the conventional example shown in FIG. 12 in that the gentle gradient waveforms of the initializing pulse and the erasing pulse linearly change and are saturated in a short time. That is, the time widths of the activation pulse and the erase pulse are reduced. According to experiments,
The time width of the initializing pulse and the erasing pulse each required 200 μs in the related art, but can be set to 100 μs in the present embodiment. When one field is composed of 8 subfields, the time width is 1.6 ms. The extra time can be obtained, and the extra time can be spent for improving the image quality, for example, by increasing the number of subfields or widening the write pulse width.

【0033】以下、具体的な回路構成について図を用い
て説明する。 (実施の形態1)図1は、本発明によるPDPの駆動回
路の実施の形態1における走査電極駆動回路15の出力
部分を示すブロック図であり、走査/維持パルス発生回
路P1〜PNおよび初期化パルス発生回路S2から構成さ
れている。気体放電型表示装置11のデータ電極DAT
1〜DATAMおよび維持電極SUS1〜SUSN等は省
略している。走査/維持パルス発生回路P1〜PNはそれ
ぞれ、初期化パルス発生回路S2の出力にドレインを接
続したプルアップFETQH1〜QHNと、プルアップFE
TQH1〜QHNのソースにドレインを接続するとともにソ
ースを−Vs(V)の定電位点に接続したプルダウンF
ETQL1〜QLNと、プルアップFETQH1〜QHNのソー
スとドレインとの間に接続されたダイオードDH1〜DHN
(通常、ダイオードDH1〜DHNはプルアップFETQH1
〜QHNの寄生ダイオードを利用する)とからなるプッシ
ュプル回路であり、走査/維持パルス発生回路P1〜PN
の出力はPDP11の走査電極SCN1〜SCNNにそれ
ぞれ接続されている。
Hereinafter, a specific circuit configuration will be described with reference to the drawings. (Embodiment 1) FIG. 1 is a block diagram showing an output portion of scan electrode drive circuit 15 in a PDP drive circuit according to Embodiment 1 of the present invention. Scan / sustain pulse generation circuits P 1 to PN and and a reset pulse generating circuit S 2. Data electrode DAT of gas discharge type display device 11
A 1 to DATA M and sustain electrodes SUS 1 to SUS N are omitted. Scan / sustain pulse generating circuit P 1 to P N, respectively, a pull-up FETs Q H1 to Q HN with a drain connected to the output of the reset pulse generating circuit S 2, the pull-up FE
A pull-down F having a drain connected to the sources of TQ H1 to Q HN and a source connected to a constant potential point of −Vs (V).
ETQ L1 to Q LN and the pull-up FETs Q H1 to Q connected diode D between the source and the drain of the HN H1 to D HN
(Usually, the diode D H1 to D HN pullup FETs Q H1
To Q HN (using a parasitic diode), and scan / sustain pulse generation circuits P 1 to P N
The output of which is connected to a scanning electrode SCN 1 ~SCN N of PDP 11.

【0034】初期化パルス発生回路S2は、ドレイン
(出力端子)を+Vr(V)の定電位点に接続したプル
アップFET(反転増幅素子)Qと、プルアップFET
Qのゲート(入力端子)に一端を接続された抵抗(電流
制限素子)RG2aと、プルアップFETQのゲートとド
レインとの間に接続されたコンデンサCF2aと、ソース
を接地するとともにプルアップFETQのソース(共通
端子)にドレインを接続したプルダウンFETQ
LS2と、プルダウンFETQLS2のソースとドレインとの
間に接続されたダイオードDLS2(通常、ダイオードD
LS2はプルダウンFETQ LS2の寄生ダイオードを利用す
る)とからなるプッシュプル回路である。この初期化パ
ルス発生回路S2において、本発明に係る緩勾配波形発
生回路U2aはミラー積分回路から構成されており、この
点が図14に示した従来の走査電極駆動回路13と異な
るところである。
Initialization pulse generation circuit STwoThe drain
(Output terminal) connected to a constant potential point of + Vr (V)
Up FET (inverting amplification element) Q and pull-up FET
A resistor (current) with one end connected to the gate (input terminal) of Q
Limiting element) RG2aAnd the gate and gate of the pull-up FET Q.
Capacitor C connected to the rainF2aAnd the source
And the source of the pull-up FET Q (common
Pull-down FET Q with drain connected to
LS2And pull-down FET QLS2With source and drain
Diode D connected betweenLS2(Usually diode D
LS2Is the pull-down FET Q LS2Use the parasitic diode of
). This initialization path
Loose generator STwoIn the method of the present invention,
Raw circuit U2aConsists of a Miller integrating circuit.
This is different from the conventional scan electrode driving circuit 13 shown in FIG.
Where it is.

【0035】なお上記の構成では、プルアップFETQ
にN型のFETを使用しているが、電圧の印加方向を反
転すればP型のFETも同様に使用できる。さらに、プ
ルアップFETQはバイポーラトランジスタなどFET
以外の素子であってもよい。
In the above configuration, the pull-up FET Q
Although an N-type FET is used, a P-type FET can also be used if the direction of voltage application is reversed. Furthermore, the pull-up FET Q is a FET such as a bipolar transistor.
Other elements may be used.

【0036】また上記の構成では、電流制限素子に抵抗
G2aを使用しているが、定電流素子など抵抗以外の電
流制限素子であってもよい。
In the above configuration, the resistor RG2a is used as the current limiting element, but a current limiting element other than the resistor, such as a constant current element, may be used.

【0037】次に、図1に示した走査電極駆動回路の動
作を説明する。まず図11の初期化期間の始まりにおい
て、プルアップFETQH1〜QHNはオン、プルダウンF
ETQL1〜QLNはオフ、プルアップFETQはオフ、プ
ルダウンFETQLS2はオンになっている。したがっ
て、走査電極SCN1〜SCNNにはそれぞれ、プルダウ
ンFETQLS2、ダイオードDLS2、プルアップFETQ
H1〜QHN、ダイオードD H1〜DHNを介して0(V)が印
加されている。そしてプルダウンFETQLS2がオフに
なりプルアップFETQがオンに変化すると、+Vr
(V)の定電位点→プルアップFETQ→プルアップF
ETQH1〜QHN→走査電極SCN1〜SCNNの経路で電
流が流れ、走査電極SCN1〜SCNNに初期化パルスが
印加される。このとき初期化パルスの立ち上がり時間t
は、入力電圧をVIN、プルアップFETQのゲートしき
い値電圧をVTとすると、t=(CF2a×Vr)/{(V
IN−V T)/RG2a}で決まる直線的な緩勾配波形にな
る。また、緩勾配波形発生回路U 2aの出力インピーダン
スは、プルアップFETQの出力インピーダンスで決ま
る低い値(数オーム)になる。したがって、初期化パル
スの波形が立ち上がる途中で起きる放電に起因する放電
電流の変化や電極浮遊容量CSC1〜CSCNのばらつきがあ
っても緩勾配波形の勾配はほとんど変化しないので、放
電動作を安定化することができる。なお、この初期化パ
ルスの緩勾配波形は、PDP11の放電動作の安定性を
決めるので、抵抗RG2aの値を調整して勾配を最適化す
る。
Next, the operation of the scan electrode driving circuit shown in FIG.
Explain the work. First, at the beginning of the initialization period in FIG.
And pull-up FET QH1~ QHNIs on, pulldown F
ETQL1~ QLNIs off, pull-up FET Q is off,
DOWN FET QLS2Is on. Accordingly
And scan electrode SCN1~ SCNNEach has a pulldown
FET QLS2, Diode DLS2, Pull-up FET Q
H1~ QHN, Diode D H1~ DHN0 (V) is marked through
Has been added. And pull down FETQLS2Turned off
When the pull-up FET Q changes to ON, + Vr
(V) constant potential point → pull-up FET Q → pull-up F
ETQH1~ QHN→ Scan electrode SCN1~ SCNNIn the path of
The current flows and the scanning electrode SCN1~ SCNNInitialization pulse
Applied. At this time, the rise time t of the initialization pulse
Changes the input voltage to VIN, Gate threshold of pull-up FET Q
Value voltage to VTThen, t = (CF2a× Vr) / {(V
IN-V T) / RG2a
You. Also, the gentle gradient waveform generation circuit U 2aThe output impedance of
Is determined by the output impedance of the pull-up FET Q.
Low value (several ohms). Therefore, initialization pal
Discharge caused by the discharge that occurs during the rise of the power waveform
Changes in current and electrode stray capacitance CSC1~ CSCNIs uneven
The slope of the gentle slope waveform hardly changes even if
The electric operation can be stabilized. Note that this initialization
The gentle slope waveform of Luz indicates the stability of the discharge operation of PDP11.
Because it decides, resistance RG2aAdjust the value of to optimize the gradient
You.

【0038】そして次にプルアップFETQがオフ、プ
ルダウンFETQLS2がオンに変化すると、走査電極S
CN1〜SCNN→ダイオードDH1〜DHN→プルダウンF
ETQLS2の経路で電流が流れ、初期化パルスが終了す
る。
Then, when the pull-up FET Q turns off and the pull-down FET Q LS2 turns on, the scan electrode S
CN 1 ~SCN N → diode D H1 to D HN → pulldown F
Current flows through the path of ETQ LS2 , and the initialization pulse ends.

【0039】引き続く書き込み期間において、プルアッ
プFETQがオフ、プルダウンFETQLS2がオンのま
まで、走査/維持パルス発生回路P1〜PNが順次プッシ
ュプル動作して、走査電極SCN1〜SCNNに走査パル
スが印加される。引き続く維持期間において、プルアッ
プFETQがオフ、プルダウンFETQLS2がオンのま
まで、走査/維持パルス発生回路P1〜PNが同時にプッ
シュプル動作して、走査電極SCN1〜SCNNに維持パ
ルスが印加される。引き続く消去期間において、プルア
ップFETQがオフ、プルダウンFETQLS2がオン
で、プルアップFETQH1〜QHNがオン、プルダウンF
ETQL1〜QLNがオフになって、走査電極SCN1〜S
CNNにはプルダウンFETQLS2、ダイオードDLS2
プルアップFETQH1〜QHN、ダイオードDH1〜DHN
介して0(V)が印加される。
In the subsequent writing period, the scan / sustain pulse generation circuits P 1 to P N sequentially perform a push-pull operation while the pull-up FET Q is off and the pull-down FET Q LS2 is on, so that the scan electrodes SC N 1 to SC N N are applied. A scanning pulse is applied. In subsequent sustain period, the pull-up FETQ is turned off, while the pull-down FETQ LS2 is turned on, the scan / sustain pulse generating circuit P 1 to P N are push-pull operation at the same time, the sustain pulse to the scan electrodes SCN 1 ~SCN N Applied. In the subsequent erasing period, the pull-up FET Q is off, the pull-down FET Q LS2 is on, the pull-up FETs Q H1 to Q HN are on, and the pull-down FET Q HN is on.
ETQ L1 to Q LN is off, the scanning electrodes SCN 1 to S
Pulldown The CN N FETs Q LS2, diode D LS2,
0 (V) is applied via the pull-up FETs Q H1 to Q HN and the diodes D H1 to D HN .

【0040】次に図2は、本発明によるPDPの駆動回
路の実施の形態1における維持電極駆動回路の出力部分
を示すブロック図であり、維持パルス発生回路W1およ
び消去パルス発生回路として動作する緩勾配波形発生回
路U2bから構成されている。気体放電型表示装置11の
データ電極DATA1〜DATAMおよび走査電極SCN
1〜SCNN等は省略している。維持パルス発生回路W1
は、ドレインが接地されたプルアップFETQHW1と、
プルアップFETQHW1に並列接続されたダイオードD
HW1(通常、ダイオードDHW1はプルアップFETQHW1
の寄生ダイオードを利用する)と、−Vs(V)の定電
位点にソースを接続するとともにプルアップFETQ
HW1のソースにドレインを接続したプルダウンFETQ
LW1とからなるプッシュプル回路であり、その出力はP
DP11の維持電極SUS1〜SUSNに接続されてい
る。
[0040] Next Fig. 2 is a block diagram showing an output portion of the sustain electrode driving circuit in the first embodiment of the PDP driving circuit according to the present invention operates as sustain pulse generating circuit W 1 and the erase pulse generating circuit and a gradually varying waveform generation circuit U 2b. Data electrodes DATA 1 to DATA M and scan electrodes SCN of the gas discharge display device 11
1 ~SCN N, etc. are omitted. Sustain pulse generation circuit W 1
Is a pull-up FET Q HW1 whose drain is grounded,
Diode D connected in parallel to pull-up FET Q HW1
HW1 (Usually, diode D HW1 is a pull-up FET Q HW1
And the source is connected to a constant potential point of -Vs (V), and the pull-up FET Q
Pulldown FET Q with drain connected to source of HW1
It is a push-pull circuit consisting of LW1 and its output is P
Is connected to the sustain electrodes SUS 1 ~SUS N of DP11.

【0041】消去パルス発生回路として動作する緩勾配
波形発生回路U2bは、−Vs(V)の定電位点にソース
(共通端子)を接続するとともに維持電極SUS1〜S
USNにドレイン(出力端子)を接続したプルダウンF
ET(反転増幅素子)Qdと、プルダウンFETQdのゲ
ート(入力端子)に一端を接続された抵抗RG2bと、プ
ルダウンFETQdのゲートとドレインとの間に接続さ
れたコンデンサCF2bとから構成されている。このよう
に緩勾配波形発生回路U2bはミラー積分回路から構成さ
れており、図15に示した従来の維持電極駆動回路14
と異なるところである。
The gradually varying waveform generation circuit U 2b which operates as an erase pulse generator circuit, together with the sustain electrodes SUS 1 to S connects the source (common terminal) to a constant potential point of -Vs (V)
Pulldown F connected to the US N drain (output terminal)
Consists ET (inverting amplifying element) and Q d, and the resistance R G2b having one end connected to the gate (input terminal) of the pull-down FETs Q d, and a capacitor connected C F2b between the gate and the drain of the pull-down FETs Q d Have been. As described above, the gentle gradient waveform generating circuit U 2b is constituted by a Miller integrating circuit, and the conventional sustain electrode driving circuit 14 shown in FIG.
Is different.

【0042】なお上記の構成では、プルダウンFETQ
dにN型のFETを使用しているが、電圧の印加方向を
反転すればP型のFETも同様に使用できる。さらに、
プルダウンFETQdはバイポーラトランジスタなどF
ET以外の素子であってもよい。
In the above configuration, the pull-down FET Q
Although an N-type FET is used for d , a P-type FET can be used similarly if the direction of voltage application is reversed. further,
Pull-down FETQ d such as bipolar transistor F
Elements other than ET may be used.

【0043】また上記の構成では、電流制限素子として
抵抗RG2bを使用しているが、定電流素子など抵抗以外
の電流制限素子であってもよい。
In the above configuration, the resistor RG2b is used as the current limiting element. However, a current limiting element other than the resistor, such as a constant current element, may be used.

【0044】次に、本発明の維持電極駆動回路の動作を
説明する。まず図11の維持期間が終了する時点では、
プルアップFETQHW1はオン、プルダウンFETQLW1
はオフ、プルダウンFETQdはオフになっている。し
たがって維持電極SUS1〜SUSNはプルアップFET
HW1、ダイオードDHW1を介して0(V)が印加されて
いる。そして維持期間において維持パルス発生回路W1
がプッシュプル動作して、維持電極SUS1〜SUSN
維持パルスが印加される。引き続く図11の消去期間の
始まりにおいて、プルアップFETQHW1がオン、プル
ダウンFETQL W1がオフ、プルダウンFETQdがオフ
の状態から、プルアップFETQHW1がオフ、プルダウ
ンFETQdがオンに変化すると、維持電極SUS1〜S
USN→プルダウンFETQd→−Vs(V)の定電位点
の経路で電流が流れ、維持電極SUS1〜SUSNに消去
パルスが印加される。このとき消去パルスの立ち下がり
時間tは、入力電圧をVIN、プルダウンFETQdのゲ
ートしきい値電圧をVTとすると、t=(CF2b×Vs)
/{(VIN−VT)/RG2b}で決まる直線的な緩勾配波
形になる。また、緩勾配波形発生回路U2bの出力インピ
ーダンスは、プルダウンFETQdの出力インピーダン
スで決まる低い値になる。したがって消去パルスの波形
が立ち下がる途中で起きる放電に起因する放電電流の変
化や電極浮遊容量CSU1〜CSUNのばらつきがあっても緩
勾配波形の勾配はほとんど変化しないので、放電動作を
安定化することができる。なお、抵抗RG2bの値を調整
して消去パルスの立ち下がりの勾配を最適化することに
よって、PDP11の放電動作を安定化することができ
る。そして次にプルダウンFETQdがオフ、プルアッ
プFETQHW1がオンに変化すると、0(V)の定電位
点→プルアップFETQH W1→維持電極SUS1〜SUS
Nの経路で電流が流れ、消去パルスが終了する。
Next, the operation of the sustain electrode driving circuit of the present invention will be described. First, at the end of the maintenance period in FIG.
Pull-up FET Q HW1 is ON, pull-down FET Q LW1
Is off, the pull-down FETQ d is turned off. Thus sustain electrodes SUS 1 ~SUS N pull-up FET
0 (V) is applied through Q HW1 and the diode D HW1 . In the sustain period, sustain pulse generating circuit W 1
There was a push-pull operation, sustain pulses are applied to the sustain electrodes SUS 1 ~SUS N. At the beginning of the subsequent erasing period of FIG. 11, when the pull-up FET Q HW1 is turned on, the pull-down FET Q L W1 is turned off, and the pull-down FET Q d is turned off, the pull-up FET Q HW1 is turned off and the pull-down FET Q d is turned on. Electrodes SUS 1 to S
A current flows through the path of the constant potential point of US N → pull-down FET Q d → −Vs (V), and an erase pulse is applied to sustain electrodes SUS 1 to SUS N. Fall time t erase pulse this time, the input voltage V IN, the gate threshold voltage of the pull-down FETs Q d and V T, t = (C F2b × Vs)
/ {(V IN −V T ) / R G2b } becomes a linear gentle gradient waveform. Further, the output impedance of the gradually varying waveform generation circuit U 2b becomes a low value determined by the output impedance of the pull-down FETs Q d. Therefore, even if there is a change in the discharge current due to the discharge that occurs during the fall of the waveform of the erase pulse or a variation in the electrode stray capacitances C SU1 to C SUN , the gradient of the gentle gradient waveform hardly changes, thus stabilizing the discharge operation. can do. The discharge operation of the PDP 11 can be stabilized by adjusting the value of the resistor RG2b and optimizing the slope of the falling edge of the erase pulse. And then the pull-down FETs Q d is turned off, the pull-up FETs Q HW1 is in ON state, 0 constant potential point of (V) → pullup FETs Q H W1 → sustain electrodes SUS 1 ~SUS
The current flows in the path of N , and the erase pulse ends.

【0045】本実施の形態の気体放電型表示装置の駆動
回路は、以上説明した緩勾配波形発生回路を備えたこと
により、緩勾配波形発生回路の出力インピーダンスが低
くなるとともに、緩勾配波形発生回路の部品定数で緩勾
配波形の勾配が決定される。それによって、放電電流の
変化や電極浮遊容量のばらつきなどの負荷の変動があっ
ても、緩勾配波形の勾配の変化が少なくなり、PDPの
放電動作範囲を広くすることができる。また、緩勾配波
形の勾配が単位時間当たりほぼ一定の電圧変化量になり
直線的になって、かつ波形の先端が短時間で完全に飽和
電圧まで到達するので、印加時間を抑えることができ、
その分をサブフィールド数を増やしたり書き込みパルス
幅を広くする等、画質を改善する時間に費やすことがで
きる。したがって、駆動回路のタイミングの設計自由度
を大きくすることができる。
The drive circuit of the gas discharge type display device of the present embodiment has the above-described gentle gradient waveform generating circuit, so that the output impedance of the gentle gradient waveform generating circuit is reduced and the gentle gradient waveform generating circuit is provided. The gradient of the gentle gradient waveform is determined by the component constants. Thus, even if there is a load change such as a change in the discharge current or a variation in the electrode stray capacitance, the change in the gradient of the gentle waveform is reduced, and the discharge operation range of the PDP can be widened. In addition, since the gradient of the gentle gradient waveform becomes a substantially constant voltage change amount per unit time and becomes linear, and the leading end of the waveform reaches the saturation voltage completely in a short time, the application time can be suppressed,
That time can be spent on improving the image quality, such as by increasing the number of subfields or widening the write pulse width. Therefore, the degree of freedom in designing the timing of the drive circuit can be increased.

【0046】(実施の形態2)次に図3は、本発明によ
るPDPの駆動回路の実施の形態2における走査電極駆
動回路の緩勾配波形発生回路部分のみを示した回路図で
あり、その他の構成は、実施の形態1と同じである。図
3の緩勾配波形発生回路U3は、PDP11の電極に共
通端子(ソース)が接続されるとともに、定電位点VB1
(V)に出力端子(ドレイン)が接続されたプルアップ
FET(反転増幅素子)Q3と、プルアップFETQ3
入力端子(ゲート)に一端が接続された抵抗(電流制限
素子)RG3と、プルアップFETQ3の入力端子(ゲー
ト)に一端が接続されるとともに定電位点VB1(V)と
は異なる定電位点VB2(V)に他端が接続されたコンデ
ンサCF3とからなるミラー積分回路である。ここで、プ
ルアップFETQ3はN型であり、VB1(V)に+Vr
(V)、VB2(V)に0(V)を印加している。この構
成により、図11の初期化パルスを発生することができ
る。
(Embodiment 2) Next, FIG. 3 is a circuit diagram showing only a gentle gradient waveform generation circuit portion of a scan electrode drive circuit in a PDP drive circuit according to Embodiment 2 of the present invention. The configuration is the same as in the first embodiment. 3 has a common terminal (source) connected to the electrode of the PDP 11 and a constant potential point V B1.
A pull-up FET (inverting amplifying element) Q 3 to (V) to the output terminal (drain) is connected, the resistance of which one end to the input terminal of the pull-up FETs Q 3 (gate) is connected (current limiting element) and R G3 And a capacitor C F3 having one end connected to the input terminal (gate) of the pull-up FET Q 3 and the other end connected to a constant potential point V B2 (V) different from the constant potential point V B1 (V). This is a Miller integrating circuit. Here, the pull-up FETs Q 3 is N-type, + Vr to V B1 (V)
0 (V) is applied to (V) and V B2 (V). With this configuration, the initialization pulse shown in FIG. 11 can be generated.

【0047】また、緩勾配波形発生回路U3におけるプ
ルアップFETQ3をP型のFETにするとともに、V
B1(V)に−Vs(V)、VB2(V)に0(V)を印加
することにより、維持電極駆動回路に用いる緩勾配波形
発生回路を構成することができ、図11の消去パルスを
発生することができる。
Further, the pull-up FET Q 3 in the gentle gradient waveform generating circuit U 3 is replaced with a P-type FET,
By applying -Vs (V) to B1 (V) and 0 (V) to VB2 (V), a gentle gradient waveform generation circuit used for the sustain electrode driving circuit can be formed. Can occur.

【0048】以上の構成により、実施の形態1と同様の
効果を得ることができる。なお、実施の形態1では、N
型およびP型のどちらのFETを使用しても立ち上がり
波形および立ち下がり波形を発生する緩勾配波形発生回
路を構成できたのに対し、本実施の形態では前述のよう
にN型のFETで立ち上がり波形、P型のFETで立ち
下がり波形を発生する緩勾配波形発生回路を構成するこ
とができる。
With the above configuration, the same effects as in the first embodiment can be obtained. In the first embodiment, N
A gentle slope waveform generating circuit that generates a rising waveform and a falling waveform can be configured by using either one of the P-type FET and the P-type FET. A gentle-gradient waveform generation circuit that generates a falling waveform with a waveform and a P-type FET can be configured.

【0049】また、プルアップFETQ3(維持電極駆
動回路に用いた場合はプルダウンFETとなる)はバイ
ポーラトランジスタなどFET以外の素子であってもよ
い。
The pull-up FET Q 3 (which becomes a pull-down FET when used in a sustain electrode driving circuit) may be a device other than the FET, such as a bipolar transistor.

【0050】また上記の構成では、電流制限素子に抵抗
G3を使用しているが、定電流素子など抵抗以外の電流
制限素子であってもよい。
In the above configuration, the resistor RG3 is used as the current limiting element. However, a current limiting element other than the resistor, such as a constant current element, may be used.

【0051】(実施の形態3)次に図4(a)〜(d)
は、本発明によるPDPの駆動回路の実施の形態3にお
ける走査電極駆動回路の緩勾配波形発生回路部分のみを
示す回路図であり、その他の構成は実施の形態1または
2と同じである。
(Embodiment 3) Next, FIGS. 4 (a) to 4 (d)
FIG. 10 is a circuit diagram showing only a gentle gradient waveform generating circuit portion of a scan electrode driving circuit according to a third embodiment of the PDP driving circuit according to the present invention, and the other configuration is the same as that of the first or second embodiment.

【0052】図4(a)の緩勾配波形発生回路U4が図
1の緩勾配波形発生回路U2aと回路構成上異なる点は、
プルアップFETQ4のゲートとドレインとの間に、コ
ンデンサCF4と抵抗RF4とを直列接続したものを設けた
ことである。図4(b)の緩勾配波形発生回路U5が図
3の緩勾配波形発生回路U3と回路構成上異なる点は、
プルアップFETQ5のゲートと定電位点VB2(V)と
の間に、コンデンサCF5と抵抗RF5とを直列接続したも
のを設けたことである。図4(c)の緩勾配波形発生回
路U6が図1の緩勾配波形発生回路U2aと回路構成上異
なる点は、プルアップFETQ6のゲートとドレインと
の間に、コンデンサCF6と定電圧ダイオードZDF6とを
直列接続したものを設けたことである。図4(d)の緩
勾配波形発生回路U7が図3の緩勾配波形発生回路U3
回路構成上異なる点は、プルアップFETQ7のゲート
と定電位点VB2(V)との間に、コンデンサCF7と定電
圧ダイオードZDF7とを直列接続したものに置き換えた
点である。緩勾配波形発生回路U4、U5、U6およびU7
により発生する立ち上がりの緩勾配波形を図5(a)に
実線で示す。
The point that the gentle gradient waveform generating circuit U 4 of FIG. 4A is different from the gentle gradient waveform generating circuit U 2a of FIG.
Between the gate and the drain of the pull-up FETs Q 4, is that of providing a material obtained by serially connecting the capacitor C F4 and resistors R F4. FIG 4 (b) of gradually varying waveform generation circuit U 5 is gradually varying waveform generation circuit U 3 and the circuit configuration on different points in FIG. 3,
Between the pull-up FETs Q 5 of the gate and the constant potential point V B2 (V), is that of providing those connected in series with the capacitor C F5 and resistor R F5. Figure 4 (c) of gradually varying waveform generation circuit U 6 is gradually varying waveform generation circuit U 2a and circuitry on different points 1, between the gate and drain of the pull-up FETs Q 6, capacitor C F6 and constant That is, a voltage diode ZD F6 connected in series is provided. Figure 4 (d) of gradually varying waveform generation circuit U 7 is gradually varying waveform generation circuit U 3 and the circuit configuration on different points in Figure 3, between the pull-up FETs Q 7 of the gate and the constant potential point V B2 (V) Another point is that the capacitor C F7 and the constant voltage diode ZD F7 are replaced with a capacitor connected in series. Gentle gradient waveform generation circuits U 4 , U 5 , U 6 and U 7
5 (a) is shown by a solid line in FIG.

【0053】また、緩勾配波形発生回路U4またはU6
維持電極駆動回路の緩勾配波形発生回路として用いるこ
とができる。この場合発生する立ち下がりの緩勾配波形
を図5(b)に実線で示す。このように本実施の形態で
は、緩勾配波形にオフセット電圧VF(V)を設けるこ
とができる。オフセット電圧VFの値は抵抗RF(RF4
たはRF5)を設ける場合、入力電圧をVIN、FETQ
(Q4またはQ5)のゲートしきい値電圧をVT、ゲート
抵抗をRGとすると、VF=RF×(VIN−VT)/RG
計算される値となる。また、定電圧ダイオードZD
F(ZDF6またはZDF7)を設ける場合、オフセット電
圧VFの値は定電圧ダイオードZDFのツェナー電圧値と
なる。このVFの値は緩勾配波形印加時におけるPDP
の放電開始電圧よりもわずかに小さい値に設定する。図
5(a)、(b)に点線で示す波形は図1、図2、図3
に示した緩勾配波形発生回路U2a、U2b、U3により発
生する緩勾配波形であり、印加期間t1を要する。一
方、VFなるオフセット電圧を設けた場合は、緩勾配波
形の電圧変化量がVFだけ少なくなるため印加時間がt2
となり、緩勾配波形発生回路U2a、U2b、U3の場合よ
りも印加時間を小さく抑えることができ、実施の形態1
の場合以上に駆動回路のタイミングの設計自由度を大き
くすることができる。
Further, the gentle gradient waveform generating circuit U 4 or U 6 can be used as a gentle gradient waveform generating circuit of the sustain electrode driving circuit. The gentle falling waveform that occurs in this case is shown by the solid line in FIG. As described above, in the present embodiment, the offset voltage V F (V) can be provided in the gentle gradient waveform. If the value of the offset voltage V F is provided with a resistor R F (R F4 or R F5), the input voltage V IN, FETs Q
(Q 4 or Q 5) the gate threshold voltage V T of the gate resistor and R G, the value calculated by V F = R F × (V IN -V T) / R G. In addition, the constant voltage diode ZD
When providing the F (ZD F6 or ZD F7), the value of the offset voltage V F becomes the Zener voltage value of the constant voltage diode ZD F. PDP value of the V F is is supplied, gradually varying waveform
Is set to a value slightly smaller than the discharge starting voltage of The waveforms indicated by the dotted lines in FIGS. 5A and 5B are shown in FIGS.
Gradually varying waveform generation circuit U 2a shown in, U 2b, a gradually varying waveform generated by U 3, requires the application period t 1. On the other hand, when an offset voltage of V F is provided, the voltage change amount of the gentle gradient waveform is reduced by V F, so that the application time is t 2
Thus, the application time can be made shorter than in the case of the gentle gradient waveform generation circuits U 2a , U 2b , and U 3.
The degree of freedom in designing the timing of the driving circuit can be increased more than in the case of (1).

【0054】(実施の形態4)次に図6(a)、(b)
は、本発明によるPDPの駆動回路の実施の形態4にお
ける走査電極駆動回路の緩勾配波形発生回路部分のみを
示す回路図であり、その他の構成は実施の形態1または
2と同じである。図6(a)の緩勾配波形発生回路U8
が緩勾配波形発生回路U2aと回路構成上異なる点は、コ
ンデンサCF8に、電流制限素子である抵抗RS8と整流素
子であるダイオードDS8とを並列接続したものを直列接
続するとともに、電流制限素子RG8に整流素子DG8を並
列接続していることである。図6(b)の緩勾配波形発
生回路U9が緩勾配波形発生回路U3と回路構成上異なる
点は、コンデンサCF9に、電流制限素子である抵抗RS9
と整流素子であるダイオードDS9とを並列接続したもの
を直列接続するとともに、電流制限素子RG9に整流素子
G9を並列接続していることである。
(Embodiment 4) Next, FIGS. 6 (a) and 6 (b)
FIG. 10 is a circuit diagram showing only a gentle gradient waveform generating circuit portion of a scan electrode driving circuit according to a fourth embodiment of the PDP driving circuit according to the present invention, and the other configuration is the same as that of the first or second embodiment. The gentle waveform generator U 8 shown in FIG.
There gradually varying waveform generation circuit U 2a and the circuit configuration on a different point, the capacitor C F8, together with those connected in parallel and a diode D S8 is rectifying element and the resistor R S8 is a current limiting element connected in series, the current The rectifying element D G8 is connected in parallel to the limiting element R G8 . FIG 6 (b) of gradually varying waveform generation circuit U 9 is gradually varying waveform generation circuit U 3 and the circuit configuration on a different point, the capacitor C F9, resistor R S9 is a current limiting element
And a diode D S9 , which is a rectifying element, connected in parallel, and a rectifying element D G9 is connected in parallel to the current limiting element R G9 .

【0055】緩勾配波形発生回路U8、U9では、緩勾配
波形発生時のコンデンサCF8、CF9の放電電流はダイオ
ードDS8、DS9を通じて流れ、緩勾配波形発生後の急激
な電圧復帰の時にコンデンサCF8、CF9の充電電流のピ
ーク値が抵抗RS8、RS9で抑えられるとともに、プルア
ップFETQ8、Q9のゲート電圧が引き上がるのをダイ
オードDG8、DG9で抑えることができる。したがって、
緩勾配波形発生後の急激な電圧復帰の時にプルアップF
ETQ8、Q9のゲート電圧の引き上がりがなくなり、プ
ルアップFETQ8、Q9の加熱や破壊を防止することが
できる。
In the gentle slope waveform generating circuits U 8 and U 9 , the discharge current of the capacitors C F8 and C F9 when the slow slope waveform is generated flows through the diodes D S8 and D S9 , and the voltage is rapidly restored after the slow slope waveform is generated. In this case, the peak value of the charging current of the capacitors C F8 and C F9 is suppressed by the resistors R S8 and R S9 , and the rise of the gate voltage of the pull-up FETs Q 8 and Q 9 is suppressed by the diodes D G8 and D G9. Can be. Therefore,
Pull-up F at the time of sudden voltage return after generation of gentle gradient waveform
ETQ 8, there is no pull-up of the gate voltage of Q 9, it is possible to prevent the heating and destruction of the pull-up FETQ 8, Q 9.

【0056】緩勾配波形発生回路U8と同様の回路構成
によって、維持電極駆動回路の緩勾配波形発生回路とす
ることができる。また、緩勾配波形発生回路U9はN型
のFETQ9をP型にすることによって、維持電極駆動
回路の緩勾配波形発生回路に使用することができる。こ
の場合も前述と同様の効果を得ることができる。
[0056] By a similar circuit configuration as gradually varying waveform generation circuit U 8, it may be a gradually varying waveform generation circuit of the sustain electrode driving circuit. Further, the gentle slope waveform generating circuit U 9 can be used as a gentle slope waveform generating circuit of the sustain electrode drive circuit by making the N-type FET Q 9 a P-type. In this case, the same effect as described above can be obtained.

【0057】(実施の形態5)次に図7(a)は、本発
明の気体放電型表示装置の駆動回路の実施の形態5にお
ける維持電極駆動回路の緩勾配波形発生回路部分のみを
示す回路図であり、その他の構成は、実施の形態1と同
じである。図7(a)の緩勾配波形発生回路U 10が図2
の緩勾配波形発生回路U2bと回路構成上異なる点は、プ
ルダウンFETQ10のドレインとコンデンサCF10との
接続点と維持パルス発生回路W1の出力との間にダイオ
ード(整流素子)DA10を設けていることである。
(Embodiment 5) Next, FIG.
Embodiment 5 of the driving circuit for the gas discharge type display device
Of the sustain electrode drive circuit
FIG. 3 is a circuit diagram showing the same components as in the first embodiment.
The same. 7 (a), a gentle gradient waveform generation circuit U TenFigure 2
Gentle slope waveform generation circuit U2bThe difference in circuit configuration from the
DOWN FET QTenDrain and capacitor CF10With
Connection point and sustain pulse generation circuit W1Between the output of
Mode (rectifying element) DA10Is provided.

【0058】図7(a)のような構成にすることによ
り、緩勾配波形発生回路U10が緩勾配波形を出力すると
きにコンデンサCF10が放電し、その後の緩勾配波形終
了時の電圧復帰の時にコンデンサCF10は充電されるも
のの、ワイヤードオア接続されたプッシュプル回路から
なる維持パルス発生回路W1がその後、プッシュプル動
作しても整流素子DA10があるため、コンデンサCF10
放電電流は阻止されて、コンデンサCF10での充放電が
行われなくなり、駆動回路の消費電力を減らすことがで
きる。
[0058] By the configuration shown in FIG. 7 (a), the capacitor C F10 is discharged when the gradually varying waveform generating circuit U 10 outputs a gradually varying waveform, subsequent gradually varying waveform at the end of the voltage recovery , The capacitor C F10 is charged, but the sustain pulse generation circuit W 1, which is a push-pull circuit wired or connected, has a rectifying element D A10 even after the push-pull operation, so that the discharge current of the capacitor C F10 is reduced. Is prevented, charging and discharging of the capacitor C F10 are not performed, and power consumption of the drive circuit can be reduced.

【0059】なお、立ち上がりが緩勾配である緩勾配波
形発生回路にプッシュプル回路W2がワイヤードオア接
続される場合は図7(b)、図7(c)のようになる。
図7(b)の緩勾配波形発生回路U11が図1の緩勾配波
形発生回路U2aと回路構成上異なる点は、プルアップF
ETQ11のソースにダイオードDA11を設けていること
である。図7(c)の緩勾配波形発生回路U12が図3の
緩勾配波形発生回路U 3と回路構成上異なる点は、プル
アップFETQ12のソースにダイオードDA12を設けて
いることである。
A gentle gradient wave whose rising is gentle
Push-pull circuit WTwoIs wired or connected
7B and FIG. 7C when the operation is continued.
FIG. 7B shows a gentle gradient waveform generation circuit U.11Is the slow gradient wave in Fig. 1.
Shape generation circuit U2aThe difference with the circuit configuration is that the pull-up F
ETQ11Diode D at the source ofA11That you have
It is. FIG. 7C shows a gentle gradient waveform generation circuit U.12Of FIG.
Gentle waveform generator U ThreeThe difference with the circuit configuration is that the pull
Up FET Q12Diode D at the source ofA12With
It is that you are.

【0060】(実施の形態6)次に図8(a)、(b)
は、本発明の気体放電型表示装置の駆動回路の実施の形
態6における走査電極駆動回路の緩勾配波形発生回路部
分のみを示す回路図であり、その他の構成は実施の形態
1または2と同じである。図8(a)の緩勾配波形発生
回路U13が緩勾配波形発生回路U2aと回路構成上異なる
点、および図8(b)の緩勾配波形発生回路U14が緩勾
配波形発生回路U3と回路構成上異なる点は、抵抗(電
流制限素子)RG13、RG14の一端に他の抵抗(電流制限
素子)R I13、RI14の一端と定電圧素子ZDG13、ZD
G14の一端とを接続するとともに、定電圧素子ZDG13
ZDG14の他端をFETQ13、Q14の共通端子に接続し
たことである。
(Embodiment 6) Next, FIGS. 8A and 8B
Is an embodiment of the driving circuit of the gas discharge type display device of the present invention.
Slow gradient waveform generation circuit section of scan electrode drive circuit in state 6
FIG. 3 is a circuit diagram showing only the components,
Same as 1 or 2. Generation of the gentle gradient waveform in FIG.
Circuit U13Is a gentle gradient waveform generation circuit U2aAnd circuit configuration
8 and the gentle gradient waveform generation circuit U shown in FIG.14Is gentle
Waveform generator UThreeThe difference between the circuit configuration and
Flow restricting element) RG13, RG14One end of the other resistor (current limit
Element) R I13, RI14Terminal and constant voltage element ZDG13, ZD
G14And one end of the constant voltage element ZDG13,
ZDG14The other end of FETQ13, Q14Connected to the common terminal of
That is.

【0061】図8のような構成により、入力電圧VIN
変動は定電圧素子ZDG13、ZDG14で安定化されるた
め、入力電圧VINが変動しても緩勾配波形の勾配はほと
んど変化しなくなる。なお、抵抗RI13、RI14は定電圧
素子ZDG13、ZDG14を過電流から保護するためのもの
である。
With the configuration shown in FIG. 8, the fluctuation of the input voltage V IN is stabilized by the constant voltage elements ZD G13 and ZD G14 . Therefore, even if the input voltage V IN fluctuates, the gradient of the gentle gradient waveform almost changes. No longer. The resistors R I13 and R I14 protect the constant voltage elements ZD G13 and ZD G14 from overcurrent.

【0062】緩勾配波形発生回路U13と同様の回路構成
によって、維持電極駆動回路の緩勾配波形発生回路とす
ることができる。また、緩勾配波形発生回路U14はN型
のFETQ14をP型にした回路構成によって、維持電極
駆動回路の緩勾配波形発生回路とすることができる。こ
の場合も前述と同様の効果を得ることができる。
[0062] By a similar circuit configuration as gradually varying waveform generation circuit U 13, it may be a gradually varying waveform generation circuit of the sustain electrode driving circuit. Also, gradually varying waveform generation circuit U 14 depending on the circuit configuration in which the FETs Q 14 of N-type in P-type, may be a gradually varying waveform generation circuit of the sustain electrode driving circuit. In this case, the same effect as described above can be obtained.

【0063】なお、上記6つの実施の形態では、初期化
パルス発生回路および消去パルス発生回路に本発明の緩
勾配波形発生回路を用いた例を説明しているが、これ以
外の気体放電型表示装置の駆動回路の駆動パルス発生回
路においても、上記6つの実施の形態で説明した緩勾配
波形発生回路を用いることができる。
In the above-described six embodiments, an example is described in which the gentle slope waveform generation circuit of the present invention is used for the initialization pulse generation circuit and the erase pulse generation circuit. Also in the drive pulse generation circuit of the drive circuit of the device, the gentle gradient waveform generation circuit described in the above six embodiments can be used.

【0064】また、上記6つの実施の形態では、3電極
面放電型の気体放電型表示装置の駆動回路を例にして説
明しているが、2電極対向放電型やその他の気体放電型
表示装置の駆動回路においても上記6つの実施の形態で
説明した緩勾配波形発生回路を用いることができる。
Further, in the above-mentioned six embodiments, the drive circuit of the three-electrode surface discharge type gas discharge type display device is described as an example, but the two-electrode opposed discharge type and other gas discharge type display devices are described. In the drive circuit described above, the gentle gradient waveform generation circuit described in the above six embodiments can be used.

【0065】[0065]

【発明の効果】以上のように本発明によれば、気体放電
型表示装置の電極にミラー積分回路からなる緩勾配波形
発生回路の出力電圧波形を印加するように構成している
ので、放電電流の変化や電極浮遊容量のばらつきなど負
荷の変動があっても駆動回路から出力される緩勾配波形
の勾配の変化が少なくなり、その結果気体放電型表示装
置の放電動作範囲を広くすることができる。また、駆動
回路から出力される緩勾配波形の先端を短時間で完全に
飽和電圧まで到達させ、印加時間を抑えることができる
ので、駆動回路のタイミングの設計自由度を大きくする
ことができる。
As described above, according to the present invention, since the output voltage waveform of the gentle gradient waveform generation circuit comprising the Miller integration circuit is applied to the electrodes of the gas discharge type display device, the discharge current is reduced. Even if there is a load variation such as a variation in the stray capacitance of the electrode or a variation in the stray capacitance of the electrode, the variation in the gradient of the gentle gradient waveform output from the drive circuit is reduced, and as a result, the discharge operation range of the gas discharge type display device can be widened. . Further, since the leading end of the gentle gradient waveform output from the drive circuit can completely reach the saturation voltage in a short time and the application time can be suppressed, the degree of freedom in designing the timing of the drive circuit can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の走査電極駆動回路を示
すブロック図
FIG. 1 is a block diagram showing a scan electrode drive circuit according to a first embodiment of the present invention;

【図2】本発明の実施の形態1の維持電極駆動回路を示
すブロック図
FIG. 2 is a block diagram showing a sustain electrode driving circuit according to the first embodiment of the present invention.

【図3】本発明の実施の形態2の緩勾配波形発生回路を
示すブロック図
FIG. 3 is a block diagram showing a gentle gradient waveform generation circuit according to a second embodiment of the present invention;

【図4】本発明の実施の形態3の緩勾配波形発生回路を
示すブロック図
FIG. 4 is a block diagram showing a gentle slope waveform generating circuit according to a third embodiment of the present invention;

【図5】図4の緩勾配波形発生回路の出力波形図FIG. 5 is an output waveform diagram of the gentle gradient waveform generation circuit of FIG. 4;

【図6】本発明の実施の形態4の緩勾配波形発生回路を
示すブロック図
FIG. 6 is a block diagram showing a gentle gradient waveform generation circuit according to a fourth embodiment of the present invention.

【図7】本発明の実施の形態5の緩勾配波形発生回路を
示すブロック図
FIG. 7 is a block diagram showing a gentle gradient waveform generation circuit according to a fifth embodiment of the present invention;

【図8】本発明の実施の形態6の緩勾配波形発生回路を
示すブロック図
FIG. 8 is a block diagram showing a gentle gradient waveform generation circuit according to a sixth embodiment of the present invention.

【図9】気体放電型表示装置の部分破断斜視図FIG. 9 is a partially broken perspective view of a gas discharge type display device.

【図10】本発明の気体放電型表示装置の駆動回路全体
の構成図
FIG. 10 is a configuration diagram of an entire driving circuit of the gas discharge display device of the present invention.

【図11】本発明による気体放電型表示装置の駆動タイ
ミング図
FIG. 11 is a drive timing diagram of the gas discharge type display device according to the present invention.

【図12】従来例における気体放電型表示装置の駆動回
路全体の構成図
FIG. 12 is a configuration diagram of an entire driving circuit of a conventional gas discharge type display device.

【図13】従来例における気体放電型表示装置の駆動タ
イミング図
FIG. 13 is a drive timing chart of a gas discharge type display device in a conventional example.

【図14】従来例における気体放電型表示装置の走査電
極駆動回路を示すブロック図
FIG. 14 is a block diagram showing a scan electrode drive circuit of a conventional gas discharge type display device.

【図15】従来例における気体放電型表示装置の維持電
極駆動回路を示すブロック図
FIG. 15 is a block diagram showing a sustain electrode drive circuit of a conventional gas discharge type display device.

【符号の説明】[Explanation of symbols]

1 第1のガラス基板 2 走査電極 3 維持電極 4 第1の誘電体層 5 保護膜層 6 隔壁 7 第2のガラス基板 8 データ電極 9 第2の誘電体層 10 蛍光体 11 気体放電型表示装置 13、15 走査電極駆動回路 14、16 維持電極駆動回路 DESCRIPTION OF SYMBOLS 1 1st glass substrate 2 scanning electrode 3 sustaining electrode 4 1st dielectric layer 5 protective film layer 6 partition 7 2nd glass substrate 8 data electrode 9 2nd dielectric layer 10 fluorescent substance 11 gas discharge display 13, 15 scan electrode drive circuit 14, 16 sustain electrode drive circuit

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 放電空間を挟んで対向配置した第1基板
と第2基板とを有し、前記第1基板上に第1電極が配列
され、前記第1電極と直交対向して第2電極が前記第2
基板上に配列された気体放電型表示装置を駆動する駆動
回路であって、前記第1電極または前記第2電極に接続
されたミラー積分回路からなる緩勾配波形発生回路を備
えた気体放電型表示装置の駆動回路。
A first electrode disposed on the first substrate and disposed opposite to each other with a discharge space interposed therebetween, a first electrode arranged on the first substrate, and a second electrode orthogonally opposed to the first electrode. Is the second
A drive circuit for driving a gas discharge type display device arranged on a substrate, the gas discharge type display including a gentle gradient waveform generation circuit comprising a Miller integration circuit connected to the first electrode or the second electrode. The drive circuit of the device.
【請求項2】 第1電極または第2電極に共通端子が接
続されるとともに定電位点に出力端子が接続された反転
増幅素子と、前記反転増幅素子の入力端子に接続された
電流制限素子と、前記入力端子と前記出力端子との間に
接続されたコンデンサとを有するミラー積分回路を備え
た請求項1記載の気体放電型表示装置の駆動回路。
2. An inverting amplifying element having a common terminal connected to the first electrode or the second electrode and having an output terminal connected to a constant potential point, and a current limiting element connected to an input terminal of the inverting amplifying element. 2. A driving circuit for a gas discharge type display device according to claim 1, further comprising a Miller integrating circuit having a capacitor connected between said input terminal and said output terminal.
【請求項3】 第1電極または第2電極に出力端子が接
続されるとともに定電位点に共通端子が接続された反転
増幅素子と、前記反転増幅素子の入力端子に接続された
電流制限素子と、前記入力端子と前記出力端子との間に
接続されたコンデンサとを有するミラー積分回路を備え
た請求項1記載の気体放電型表示装置の駆動回路。
3. An inverting amplifying element having an output terminal connected to the first electrode or the second electrode and having a common terminal connected to a constant potential point, and a current limiting element connected to an input terminal of the inverting amplifying element. 2. A driving circuit for a gas discharge type display device according to claim 1, further comprising a Miller integrating circuit having a capacitor connected between said input terminal and said output terminal.
【請求項4】 第1電極または第2電極に共通端子が接
続されるとともに定電位点に出力端子が接続された反転
増幅素子と、前記反転増幅素子の入力端子に接続された
電流制限素子と、前記定電位点とは別の定電位点と前記
入力端子との間に接続されたコンデンサとを有するミラ
ー積分回路を備えた請求項1記載の気体放電型表示装置
の駆動回路。
4. An inverting amplifier element having a common terminal connected to the first electrode or the second electrode and having an output terminal connected to a constant potential point, and a current limiting element connected to an input terminal of the inverting amplifier element. 2. The driving circuit for a gas discharge display device according to claim 1, further comprising a Miller integrating circuit having a capacitor connected between the constant potential point different from the constant potential point and the input terminal.
【請求項5】 コンデンサのかわりに、コンデンサと電
流制限素子または定電圧素子とを直列接続した素子を設
けた請求項2ないし4のいずれかに記載の気体放電型表
示装置の駆動回路。
5. The drive circuit for a gas discharge type display device according to claim 2, wherein an element in which a capacitor and a current limiting element or a constant voltage element are connected in series is provided instead of the capacitor.
【請求項6】 コンデンサのかわりに、電流制限素子と
整流素子とを並列接続した素子にコンデンサを直列接続
した素子を設けるとともに、入力端子に接続された電流
制限素子に並列接続された整流素子を設けた請求項2な
いし4のいずれかに記載の気体放電型表示装置の駆動回
路。
6. In place of a capacitor, an element in which a capacitor is connected in series to an element in which a current limiting element and a rectifying element are connected in parallel is provided, and a rectifying element connected in parallel to a current limiting element connected to an input terminal is provided. 5. A driving circuit for a gas discharge type display device according to claim 2, wherein the driving circuit is provided.
【請求項7】 反転増幅素子の共通端子に整流素子を接
続した請求項2または4記載の気体放電型表示装置の駆
動回路。
7. The driving circuit for a gas discharge type display device according to claim 2, wherein a rectifier is connected to a common terminal of the inverting amplifier.
【請求項8】 出力端子とコンデンサとの接続点に整流
素子を接続した請求項3記載の気体放電型表示装置の駆
動回路。
8. The driving circuit for a gas discharge type display device according to claim 3, wherein a rectifying element is connected to a connection point between the output terminal and the capacitor.
【請求項9】 一端が入力端子に接続された電流制限素
子の他端に、別の電流制限素子の一端と定電圧素子の一
端とを接続するとともに、前記定電圧素子の他端を共通
端子に接続した請求項2ないし4のいずれかに記載の気
体放電型表示装置の駆動回路。
9. One end of another current limiting element and one end of a constant voltage element are connected to the other end of the current limiting element having one end connected to the input terminal, and the other end of the constant voltage element is connected to a common terminal. 5. A driving circuit for a gas discharge type display device according to claim 2, wherein said driving circuit is connected to a driving circuit.
JP9296764A 1997-10-29 1997-10-29 Drive circuit for gas discharge type display device Pending JPH11133914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9296764A JPH11133914A (en) 1997-10-29 1997-10-29 Drive circuit for gas discharge type display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9296764A JPH11133914A (en) 1997-10-29 1997-10-29 Drive circuit for gas discharge type display device

Publications (1)

Publication Number Publication Date
JPH11133914A true JPH11133914A (en) 1999-05-21

Family

ID=17837832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9296764A Pending JPH11133914A (en) 1997-10-29 1997-10-29 Drive circuit for gas discharge type display device

Country Status (1)

Country Link
JP (1) JPH11133914A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017345A1 (en) * 2000-08-18 2002-02-28 Matsushita Electric Industrial Co., Ltd. Gas dischargeable panel
JP2002108278A (en) * 2000-10-03 2002-04-10 Matsushita Electric Ind Co Ltd Plasma display device and driving method therefor
KR20020062142A (en) * 2001-01-19 2002-07-25 후지츠 히다찌 플라즈마 디스플레이 리미티드 Circuit for driving flat display device
JP2002236468A (en) * 2000-12-06 2002-08-23 Pioneer Electronic Corp Driving method for plasma display panel and plasma display device
JP2002328649A (en) * 2001-03-02 2002-11-15 Fujitsu Ltd Method for driving plasma display panel and display driving device
KR20040029689A (en) * 2002-10-02 2004-04-08 엘지전자 주식회사 Method and apparatus for driving plasma display panel
KR100430089B1 (en) * 2002-01-11 2004-05-03 엘지전자 주식회사 Apparatus Of Driving Plasma Display Panel
KR100467432B1 (en) * 2002-07-23 2005-01-24 삼성에스디아이 주식회사 Driving circuit for plasma display panel and method thereof
KR100489273B1 (en) * 2002-10-02 2005-05-17 엘지전자 주식회사 Method and apparatus for driving plasma display panel
KR100491838B1 (en) * 2003-05-01 2005-05-27 엘지전자 주식회사 Apparatus for driving ramp waveform of plasma display panel
KR100497237B1 (en) * 2003-10-09 2005-06-23 삼성에스디아이 주식회사 Driving apparatus and method of plasma display panel
KR100502927B1 (en) * 2003-06-23 2005-07-21 삼성에스디아이 주식회사 Driving apparatus and method of plasma display panel
KR100647755B1 (en) 2003-12-24 2006-11-24 후지츠 히다찌 플라즈마 디스플레이 리미티드 Driving circuit, driving method, and plasma display device
KR100709134B1 (en) * 2000-10-27 2007-04-19 가부시끼가이샤 히다치 세이사꾸쇼 Driving method and driving circuit of plasma display panel
JP2008102477A (en) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd Plasma display device, driving apparatus thereof, and driving method thereof
US7468714B2 (en) 1998-09-04 2008-12-23 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
JP2009047870A (en) * 2007-08-20 2009-03-05 Hitachi Ltd Plasma display device and driving method thereof
JP2010066780A (en) * 2002-07-26 2010-03-25 Samsung Sdi Co Ltd Device and method for driving plasma display panel
US7911417B2 (en) 2001-01-18 2011-03-22 Lg Electronics Inc. Method and apparatus for expressing gray levels in a plasma display panel

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724214B2 (en) 1998-09-04 2010-05-25 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7705807B2 (en) 1998-09-04 2010-04-27 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7701418B2 (en) 1998-09-04 2010-04-20 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7701417B2 (en) 1998-09-04 2010-04-20 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7683859B2 (en) 1998-09-04 2010-03-23 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7652643B2 (en) 1998-09-04 2010-01-26 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7649511B2 (en) 1998-09-04 2010-01-19 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7728793B2 (en) 1998-09-04 2010-06-01 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7468714B2 (en) 1998-09-04 2008-12-23 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7728795B2 (en) 1998-09-04 2010-06-01 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7728794B2 (en) 1998-09-04 2010-06-01 Panasonic Corporation Plasma display panel driving method and plasma display panel apparatus capable of displaying high-quality images with high luminous efficiency
US7009587B2 (en) 2000-08-18 2006-03-07 Matsushita Electric Industrial Co., Ltd. Gas dischargeable panel
USRE43083E1 (en) 2000-08-18 2012-01-10 Panasonic Corporation Gas dischargeable panel
JP4828781B2 (en) * 2000-08-18 2011-11-30 パナソニック株式会社 Gas discharge panel
WO2002017345A1 (en) * 2000-08-18 2002-02-28 Matsushita Electric Industrial Co., Ltd. Gas dischargeable panel
JP2002108278A (en) * 2000-10-03 2002-04-10 Matsushita Electric Ind Co Ltd Plasma display device and driving method therefor
KR100709134B1 (en) * 2000-10-27 2007-04-19 가부시끼가이샤 히다치 세이사꾸쇼 Driving method and driving circuit of plasma display panel
JP2002236468A (en) * 2000-12-06 2002-08-23 Pioneer Electronic Corp Driving method for plasma display panel and plasma display device
US7911417B2 (en) 2001-01-18 2011-03-22 Lg Electronics Inc. Method and apparatus for expressing gray levels in a plasma display panel
KR20020062142A (en) * 2001-01-19 2002-07-25 후지츠 히다찌 플라즈마 디스플레이 리미티드 Circuit for driving flat display device
JP2002328649A (en) * 2001-03-02 2002-11-15 Fujitsu Ltd Method for driving plasma display panel and display driving device
JP4512971B2 (en) * 2001-03-02 2010-07-28 株式会社日立プラズマパテントライセンシング Display drive device
KR100723994B1 (en) * 2001-03-02 2007-06-04 가부시끼가이샤 히다치 세이사꾸쇼 Method for driving plasma display panel and display driving apparatus
KR100430089B1 (en) * 2002-01-11 2004-05-03 엘지전자 주식회사 Apparatus Of Driving Plasma Display Panel
KR100467432B1 (en) * 2002-07-23 2005-01-24 삼성에스디아이 주식회사 Driving circuit for plasma display panel and method thereof
JP2010066780A (en) * 2002-07-26 2010-03-25 Samsung Sdi Co Ltd Device and method for driving plasma display panel
KR100489273B1 (en) * 2002-10-02 2005-05-17 엘지전자 주식회사 Method and apparatus for driving plasma display panel
KR20040029689A (en) * 2002-10-02 2004-04-08 엘지전자 주식회사 Method and apparatus for driving plasma display panel
KR100491838B1 (en) * 2003-05-01 2005-05-27 엘지전자 주식회사 Apparatus for driving ramp waveform of plasma display panel
KR100502927B1 (en) * 2003-06-23 2005-07-21 삼성에스디아이 주식회사 Driving apparatus and method of plasma display panel
KR100497237B1 (en) * 2003-10-09 2005-06-23 삼성에스디아이 주식회사 Driving apparatus and method of plasma display panel
KR100647755B1 (en) 2003-12-24 2006-11-24 후지츠 히다찌 플라즈마 디스플레이 리미티드 Driving circuit, driving method, and plasma display device
JP2008102477A (en) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd Plasma display device, driving apparatus thereof, and driving method thereof
JP4519147B2 (en) * 2006-10-17 2010-08-04 三星エスディアイ株式会社 Plasma display device and driving device thereof
JP2009047870A (en) * 2007-08-20 2009-03-05 Hitachi Ltd Plasma display device and driving method thereof

Similar Documents

Publication Publication Date Title
JPH11133914A (en) Drive circuit for gas discharge type display device
US7545345B2 (en) Plasma display panel and driving method thereof
US6608609B1 (en) Method for driving plasma display panel
JP2000305510A (en) Driving method of ac plasma display panel
KR20030084806A (en) Method for driving AC plasma display panel
JP4121486B2 (en) Plasma display panel driving device and plasma display device
JP3582964B2 (en) Driving device for plasma display panel
US7924242B2 (en) Apparatus and method of driving plasma display panel
US7414597B2 (en) Plasma display panel driving circuit
US7852292B2 (en) Plasma display apparatus and driving method thereof
US7612740B2 (en) Plasma display and driving method thereof
KR100515322B1 (en) Driving method of plasma display panel and plasma display device
JP2005338842A (en) Plasma display apparatus
KR100911963B1 (en) Driving device of plasma display panel
JP2007011193A (en) Plasma display panel driving circuit and display device
US7486259B2 (en) Plasma display panel and method for driving the same
JP2002196720A (en) Plasma display device
JPH0830228A (en) Method of driving gas discharge type display device
KR20050095154A (en) Driving method of plasma display panel and plasma display device
KR100578938B1 (en) Plasma display device and driving method thereof
JP3008888B2 (en) Driving method of plasma display panel
KR100508950B1 (en) Driving method of plasma display panel and plasma display device
KR100570607B1 (en) Driving apparatus and method of plasma display panel
KR100581882B1 (en) Ramp circuit of plasma display panel
KR100560475B1 (en) Plasma display panel and driving method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040805

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080418

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080606

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118