JPH11128184A - Reflection type photoelectric pulse wave detection device - Google Patents

Reflection type photoelectric pulse wave detection device

Info

Publication number
JPH11128184A
JPH11128184A JP9298280A JP29828097A JPH11128184A JP H11128184 A JPH11128184 A JP H11128184A JP 9298280 A JP9298280 A JP 9298280A JP 29828097 A JP29828097 A JP 29828097A JP H11128184 A JPH11128184 A JP H11128184A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
component
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9298280A
Other languages
Japanese (ja)
Other versions
JP3790030B2 (en
Inventor
Toshihiko Ogura
敏彦 小椋
Hidekatsu Inukai
英克 犬飼
Hiroyuki Wakamiya
裕之 若宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Colin Co Ltd
Original Assignee
Nippon Colin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Colin Co Ltd filed Critical Nippon Colin Co Ltd
Priority to JP29828097A priority Critical patent/JP3790030B2/en
Publication of JPH11128184A publication Critical patent/JPH11128184A/en
Application granted granted Critical
Publication of JP3790030B2 publication Critical patent/JP3790030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflection type photoelectric pulse wave detection device having good measuring accuracy by automatically arraying to an optimum depth the depths at which beams of plural kinds of wavelengths irradiated to a living body, scattered within the living body, and received by photocells are scattered. SOLUTION: Two kinds of light emitting elements which emits beams of two kinds of wavelengths are varied in emission strength by a light emitting element drive circuit 30 and are made to emit light beams, which are scattered at different depths inside a living body. The beams emitted from the surface of the body are received by a photocell. The ratio of the alternate to direct components of the emitted beams is calculated by an alternate- direct component ratio calculation means 66, and an optimum emission strength is determined by an optimum emission strength determination means 67 according to an inflection point on the curve of change of the alternate-to-direct component ratio with respect to the emission strength. Since the inflection point shows that the beams are scattered at the depth where the density of peripheral blood vessels abruptly increases, the depths at which the beams of the two wavelengths irradiated toward the living body are scattered can be arrayed automatically, resulting in enhanced measuring accuracy of a reflection type photoelectric pulse wave detection device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生体に装着され
て、その表皮下の末梢血管から得られる生体情報たとえ
ば酸素飽和度あるいはヘマトクリット値などの情報を含
む光電脈波を検出する反射型光電脈波検出装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection type photoplethysmogram which is attached to a living body and detects a photoplethysmogram including biological information obtained from a peripheral blood vessel under the epidermis such as oxygen saturation or hematocrit value. The present invention relates to a wave detection device.

【0002】[0002]

【従来の技術】生体の表皮下の末梢血管から得られる生
体情報を検出するために生体に装着されて、その生体表
皮の所定部位に複数種類の波長の光を照射し、表皮下の
生体組織中で乱反射され、その所定部位から射出される
後方散乱光すなわち光電脈波を検出する反射型光電脈波
検出装置が知られている。たとえば、酸素飽和度測定に
用いられる反射型光電脈波検出装置では、発光素子とし
て酸化ヘモグロビンと無酸素化ヘモグロビンの吸光係数
が大きく異なる波長の赤色光を発光する発光素子と、酸
化ヘモグロビンと無酸素化ヘモグロビンの吸光係数が略
同じとなる波長の赤外光を発光する発光素子の2種類の
発光素子が用いられ、生体の体表面下の真皮または皮下
組織中の末梢血管からの散乱光を含む光電脈波に基づい
て酸素飽和度が算出される。
2. Description of the Related Art In order to detect biological information obtained from peripheral blood vessels under the epidermis of a living body, it is attached to a living body, and a predetermined portion of the living body epidermis is irradiated with light of a plurality of wavelengths. There is known a reflection type photoplethysmographic detector which detects backscattered light, ie, photoplethysmogram, which is irregularly reflected in the light and emitted from a predetermined portion thereof. For example, in a reflection-type photoplethysmography device used for oxygen saturation measurement, a light-emitting element that emits red light having a wavelength whose absorption coefficients of oxyhemoglobin and anoxic hemoglobin are significantly different from each other is used as a light-emitting element; Two types of light-emitting elements that emit infrared light having a wavelength at which the absorption coefficient of the modified hemoglobin is substantially the same, including light scattered from peripheral blood vessels in the dermis or subcutaneous tissue under the body surface of a living body The oxygen saturation is calculated based on the photoelectric pulse wave.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、生体に
対して照射される光が生体中で散乱を受けて体表面から
射出される光電脈波が、体表面からどのくらいの深度で
の散乱光を主として含むかは、表皮下への浸透深さに起
因し、その浸透深さは照射される光の波長および光の強
度によって異なっている。そのため、異なる複数種類の
波長の光が生体に対して照射され、その生体中での散乱
光が受光素子に受光された場合には、ハウジング内にお
いて複数種類の発光素子と受光素子との間の距離が略等
しいと、それぞれ異なる深度の情報を反映している場合
があり、測定の精度が得られない場合があった。また、
表皮および真皮の厚さは、性別、年齢或いは個人によっ
て差があり、また生体の部位によっても異なる。さら
に、体表面下のどのくらいの深度での散乱光が受光素子
により主として受光されるかは、発光素子と受光素子の
位置関係によっても異なってくる。そのため最適な深度
での散乱光により生体情報を測定していない場合もあっ
た。
However, the light emitted to the living body is scattered in the living body, and the photoelectric pulse wave emitted from the body surface mainly reflects the scattered light at any depth from the body surface. The inclusion depends on the penetration depth into the epidermis, and the penetration depth varies depending on the wavelength of the irradiated light and the intensity of the light. Therefore, light of a plurality of different wavelengths is irradiated on the living body, and when scattered light in the living body is received by the light receiving element, the light between the plurality of types of light emitting elements and the light receiving element in the housing. If the distances are substantially equal, information at different depths may be reflected, and measurement accuracy may not be obtained. Also,
The thickness of the epidermis and the dermis varies depending on gender, age or individual, and also varies depending on the part of the living body. Further, at what depth below the body surface the scattered light is mainly received by the light receiving element also depends on the positional relationship between the light emitting element and the light receiving element. Therefore, the biological information may not be measured by the scattered light at the optimum depth.

【0004】本発明は以上の事情を背景として為された
ものであって、その目的とするところは、生体に照射さ
れ、生体中で散乱されて受光素子により受光される複数
種類の波長の散乱光が散乱される深度をそれぞれ最適な
深度に自動的に揃えることにより、測定精度のよい反射
型光電脈波検出装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to irradiate a living body, scatter in the living body, and scatter light of a plurality of wavelengths received by a light receiving element. An object of the present invention is to provide a reflection-type photoplethysmographic detector with high measurement accuracy by automatically adjusting the depth at which light is scattered to the optimum depth.

【0005】[0005]

【課題を解決するための第1の手段】かかる目的を達成
するための第1発明の要旨とするところは、ハウジング
と、該ハウジングに収容されて生体の表皮に向かって複
数種類の波長の光を照射する複数種類の発光素子と、該
ハウジング内において遮光壁を介して該発光素子から所
定距離離れた位置に収容され、該複数種類の発光素子か
らの光が該生体表皮下で散乱を受けて体表面から射出さ
れる複数種類の波長の光を受光する受光素子とを備え、
該複数種類の波長の射出光に基づいて生体情報を得るた
めの光電脈波をそれぞれ検出する反射型光電脈波検出装
置であって、(a)前記複数種類の発光素子に順次駆動
電流を供給し、且つ該発光素子のそれぞれの発光強度を
調節することが可能な発光素子駆動回路と、(b)前記
受光素子により検出された射出光の交流成分と直流成分
の比を前記波長毎にそれぞれ算出する交直成分比算出手
段と、(c)前記受光素子により検出された射出光から
前記交直成分比算出手段により算出された交流成分と直
流成分の比と前記発光素子駆動回路によって駆動される
発光素子の発光強度との関係を波長毎に求め、その関係
から、前記波長毎にそれぞれ最適発光強度を決定する最
適発光強度決定手段と、(d)前記光電脈波の検出に先
立って、該最適発光強度決定手段により決定された最適
発光強度で前記発光素子駆動回路に前記複数種類の発光
素子をそれぞれ発光させる最適発光強度調節手段とを、
含むことにある。
SUMMARY OF THE INVENTION A first aspect of the present invention to achieve the above object is to provide a housing and a plurality of wavelengths of light which are accommodated in the housing and directed toward the epidermis of a living body. A plurality of types of light-emitting elements that are illuminated, and are housed in the housing at a predetermined distance from the light-emitting elements via light-shielding walls, and light from the plurality of types of light-emitting elements is scattered under the surface of the living body. A light receiving element that receives light of a plurality of wavelengths emitted from the body surface,
A reflection-type photoplethysmogram detection device for detecting photoplethysmograms for obtaining biological information based on the plurality of types of emission lights, respectively, wherein (a) a drive current is sequentially supplied to the plurality of types of light emitting elements And a light emitting element driving circuit capable of adjusting the light emission intensity of each of the light emitting elements; and (b) determining a ratio of an AC component to a DC component of the emitted light detected by the light receiving element for each of the wavelengths. (C) a ratio between an AC component and a DC component calculated from the emitted light detected by the light receiving element by the AC / DC component ratio calculating means, and light emission driven by the light emitting element driving circuit. Means for determining the relationship with the emission intensity of the element for each wavelength, and determining the optimum emission intensity for each wavelength from the relationship, and (d) determining the optimal emission intensity prior to the detection of the photoelectric pulse wave. Departure The optimum luminous intensity adjusting means for the causing plural types of light emitting elements to emit light respectively to the light emitting element driving circuit at the optimum light emission intensity determined by the intensity determining means,
To include.

【0006】[0006]

【第1発明の効果】このようにすれば、発光素子駆動回
路により、それぞれの波長の光を発光する発光素子の発
光強度が調節させられてその発光素子が発光させられ、
発光強度の変化によって、生体中の異なる深度で散乱を
受けた射出光が受光素子により検出される。受光された
射出光は、交直成分比算出手段において交流成分と直流
成分の比が算出され、最適発光強度決定手段において、
その交流成分と直流成分の比の発光強度に対する変化曲
線に基づいて最適発光強度が決定され、生体情報を測定
するために光電脈波が検出される状態では、最適発光強
度調節手段により発光素子が最適発光強度で発光させら
れる。交流成分と直流成分の比の発光強度に対する変化
曲線は、散乱光が散乱される深度における末梢血管の密
度に関連して変化する。従って、その変化曲線に基づい
て発光素子の発光強度を決定することにより、生体に照
射され、生体中で散乱されて受光素子により受光される
複数種類の波長の散乱光が散乱される深度をそれぞれ最
適な深度に自動的に揃えることができ、反射型光電脈波
検出装置の測定精度が向上する。
According to the first aspect of the present invention, the light emitting element driving circuit adjusts the light emitting intensity of the light emitting element that emits light of each wavelength to cause the light emitting element to emit light.
The emitted light scattered at different depths in the living body is detected by the light receiving element by the change in the light emission intensity. For the received emitted light, the ratio between the AC component and the DC component is calculated by the AC / DC component ratio calculation means, and the optimum emission intensity determination means:
The optimum luminescence intensity is determined based on the change curve of the ratio of the AC component and the DC component to the luminescence intensity, and in the state where the photoelectric pulse wave is detected to measure the biological information, the luminescence element is adjusted by the optimum luminescence intensity adjusting means. Light is emitted at the optimum emission intensity. The change curve of the ratio of the AC component to the DC component with respect to the emission intensity changes in relation to the density of the peripheral blood vessels at the depth where the scattered light is scattered. Therefore, by determining the light emission intensity of the light emitting element based on the change curve, the depth at which the scattered light of a plurality of wavelengths that are irradiated to the living body and scattered in the living body and received by the light receiving element is scattered, respectively. The depth can be automatically adjusted to the optimum depth, and the measurement accuracy of the reflection-type photoplethysmographic detector is improved.

【0007】[0007]

【課題を解決するための第2の手段】また、前記目的を
達成するための第2発明の要旨とするところは、生体の
表皮に向かって複数種類の波長の光を照射する複数種類
の発光素子と、該発光素子から所定距離離れた位置に収
容され、該複数種類の発光素子からの光が該生体表皮下
で散乱を受けて体表面から射出される複数種類の波長の
射出光を受光する受光素子とを備え、該複数種類の波長
の光に基づいて生体情報を得るための光電脈波をそれぞ
れ検出する反射型光電脈波検出装置であって、(a)前
記複数種類の発光素子と受光素子とが相互間に遮光壁が
介在させられた状態で収容され、且つ複数種類の波長毎
に設けられた複数の発光素子が、前記受光素子との間の
距離が漸次異なるようにそれぞれ設られたハウジング
と、(b)該ハウジング内にそれぞれ複数設けられた複
数種類の発光素子の中から波長毎に発光させるべき発光
素子を選択的に発光させることが可能な発光素子駆動回
路と、(c)前記受光素子により検出された射出光の交
流成分と直流成分の比を前記波長毎にそれぞれ算出する
交直成分比算出手段と、(d)前記受光素子により検出
された射出光から前期交直成分比算出手段により算出さ
れた交流成分と直流成分の比と前記発光素子駆動回路に
より選択される発光素子の前記受光素子との距離との関
係を波長毎に求め、その関係から、前記波長毎にそれぞ
れ最適発光素子を決定する最適発光素子決定手段と、
(e)前記光電脈波の検出に先立って、前記最適発光素
子決定手段により波長毎に決定された最適発光素子を前
記発光素子駆動回路に発光させる最適発光素子選択手段
とを、含むことにある。
According to a second aspect of the present invention, there is provided a light emitting apparatus comprising: a plurality of types of light emitting devices for irradiating light of a plurality of types of wavelengths toward an epidermis of a living body; An element and a plurality of wavelengths of light emitted from the body surface while being received at a predetermined distance from the light emitting element and scattered by the light from the plurality of light emitting elements under the surface of the living body under the skin. A reflection type photoplethysmography device for detecting a photoplethysmogram for obtaining biological information based on the light of the plurality of wavelengths, wherein (a) the plurality of types of light-emitting devices are provided. And a light receiving element are housed in a state where a light shielding wall is interposed therebetween, and a plurality of light emitting elements provided for each of a plurality of types of wavelengths are arranged such that a distance between the light receiving element and the light receiving element gradually varies. A housing provided, and (b) the housing A light emitting element driving circuit capable of selectively emitting a light emitting element to be emitted for each wavelength from a plurality of types of light emitting elements provided in a plurality of light emitting elements, and (c) detection by the light receiving element. AC / DC component ratio calculating means for calculating the ratio between the AC component and the DC component of the emitted light for each of the wavelengths; and (d) AC component calculated by the AC / DC component ratio calculating means from the emitted light detected by the light receiving element. The relationship between the DC component ratio and the distance between the light emitting element selected by the light emitting element driving circuit and the light receiving element is determined for each wavelength, and from the relationship, the optimal light emitting element is determined for each wavelength. Element determining means;
(E) prior to the detection of the photoelectric pulse wave, an optimum light emitting element selecting means for causing the light emitting element driving circuit to emit the optimum light emitting element determined for each wavelength by the optimum light emitting element determining means. .

【0008】[0008]

【第2発明の効果】このようにすれば、発光素子駆動回
路により、受光素子との間の距離が漸次異なるようにそ
れぞれ複数設けられた複数種類の発光素子が順次発光さ
せられると、受光素子と発光素子との距離がそれぞれ異
なることにより生体中の異なる深度で散乱された射出光
が受光素子により受光される。受光された射出光は、交
直成分比算出手段において交流成分と直流成分の比が算
出され、最適発光素子決定手段において、その交流成分
と直流成分の比の、発光素子と受光素子との距離に対す
る変化曲線に基づいて最適発光素子が決定される。生体
情報を測定するために光電脈波が検出される状態では、
最適発光素子選択手段により選択された最適発光素子が
発光させられる。交流成分と直流成分の比の、発光素子
と受光素子との距離に対する変化曲線は、散乱光が散乱
される深度における末梢血管の密度に関連して変化す
る。従って、その変化曲線に基づいて受光素子との間の
距離が最適となる発光素子を決定することにより、生体
に照射され、生体中で散乱されて受光素子により受光さ
れる複数種類の波長の散乱光が散乱される深度をそれぞ
れ最適な深度に自動的に揃えることができ、反射型光電
脈波検出装置の測定精度が向上する。
According to the present invention, when the plurality of types of light emitting elements provided in such a manner that the distance from the light receiving element gradually varies by the light emitting element driving circuit, the light emitting element driving circuit sequentially emits light. The emitted light scattered at different depths in the living body due to the different distances between the light-emitting element and the light-emitting element is received by the light-receiving element. For the received emitted light, the ratio between the AC component and the DC component is calculated by the AC / DC component ratio calculating means, and the ratio of the AC component to the DC component is determined by the optimum light emitting element determining means with respect to the distance between the light emitting element and the light receiving element. The optimum light emitting element is determined based on the change curve. In the state where the photoelectric pulse wave is detected to measure the biological information,
The optimal light-emitting element selected by the optimal light-emitting element selecting means emits light. The change curve of the ratio of the AC component to the DC component with respect to the distance between the light emitting element and the light receiving element changes in relation to the density of the peripheral blood vessel at the depth where the scattered light is scattered. Therefore, by determining the light emitting element having the optimum distance to the light receiving element based on the change curve, the light is radiated to the living body, scattered in the living body, and scattered at a plurality of wavelengths received by the light receiving element. The depth at which light is scattered can be automatically adjusted to the optimum depth, and the measurement accuracy of the reflection-type photoplethysmographic detector is improved.

【0009】[0009]

【発明の他の態様】ここで、好適には、上記第1発明の
最適発光強度決定手段は、前記交直成分比算出手段によ
り算出された交流成分と直流成分の比の、前記発光素子
駆動回路によって変化させられた発光素子の発光強度に
対する増加率を示す曲線すなわち上記交流成分と直流成
分の比と、上記発光強度との関係の変化曲線を発光強度
について微分した一次微分曲線を求め、その一次微分曲
線の最大値を示す発光強度よりも強い発光強度の範囲に
おいて、増加率が一定値以下となる発光強度に基づいて
最適発光強度を決定するものである。このようにすれ
ば、前記一次微分曲線の最大値は、発光素子から発せら
れた光の散乱光が末梢血管の密度が急に濃くなっている
深度での散乱であることを示し、その一次微分曲線の増
加率が一定値以下となる点は、発光素子から発せられた
光の散乱光が末梢血管の密度が十分濃くなった深度での
散乱であることを示しているので、生体に照射され、生
体中で散乱されて受光素子により受光される複数種類の
波長の散乱光が散乱される深度をそれぞれ最適な深度に
自動的に揃えることができ、反射型光電脈波検出装置の
測定精度が向上する。
In another preferred embodiment of the present invention, the optimum light emission intensity determining means according to the first aspect of the present invention comprises the light emitting element drive circuit of the ratio of the AC component to the DC component calculated by the AC / DC component ratio calculating means. A curve indicating an increase rate with respect to the light emission intensity of the light emitting element changed by the above, that is, a ratio of the AC component and the DC component, and a first derivative curve obtained by differentiating the change curve of the relationship between the light emission intensity with respect to the light emission intensity are obtained. The optimum emission intensity is determined based on the emission intensity at which the rate of increase becomes equal to or less than a certain value in a range of emission intensity higher than the emission intensity showing the maximum value of the differential curve. In this way, the maximum value of the first derivative curve indicates that the scattered light of light emitted from the light emitting element is scattered at a depth where the density of peripheral blood vessels is suddenly increased, and the first derivative thereof is The point at which the rate of increase of the curve becomes a certain value or less indicates that the scattered light of light emitted from the light emitting element is scattered at a depth where the density of peripheral blood vessels is sufficiently high, so that the living body is irradiated. The depth at which the scattered light of a plurality of wavelengths scattered in the living body and received by the light receiving element is scattered can be automatically adjusted to the optimum depth, respectively, and the measurement accuracy of the reflection type photoplethysmographic detector can be improved. improves.

【0010】また、好適には、上記第1発明の最適発光
強度決定手段は、前記交直成分比算出手段により算出さ
れた交流成分と直流成分の比と、前記発光素子駆動回路
によって変化させられた発光素子の発光強度との関係の
変化曲線を求め、その変化曲線の変曲点に基づいて最適
発光強度を決定するものである。このようにすれば、変
化曲線の変曲点は、発光素子から発せられた光の散乱光
が末梢血管の密度が急に濃くなっている深度での散乱で
あることを示しているので、生体に照射され、生体中で
散乱されて受光素子により受光される複数種類の波長の
散乱光が散乱される深度をそれぞれ最適な深度に自動的
に揃えることができ、反射型光電脈波検出装置の測定精
度が向上する。
Preferably, the optimum light emission intensity determining means of the first invention is changed by the light emitting element drive circuit and the ratio between the AC component and the DC component calculated by the AC / DC component ratio calculating means. A change curve of the relationship with the light emission intensity of the light emitting element is obtained, and the optimum light emission intensity is determined based on the inflection point of the change curve. In this way, the inflection point of the change curve indicates that the scattered light of the light emitted from the light emitting element is scattered at a depth where the density of the peripheral blood vessels is suddenly increased. The depth at which the scattered light of a plurality of wavelengths is scattered in the living body and received by the light receiving element can be automatically adjusted to the optimum depth, respectively. Measurement accuracy is improved.

【0011】また、好適には、上記第2発明の最適発光
素子決定手段は、前記交直成分比算出手段により算出さ
れた交流成分と直流成分の比の、前記発光素子駆動回路
によって選択させられた発光素子と受光素子との距離に
対する増加率を示す曲線すなわち上記交流成分と直流成
分の比と、上記発光素子と受光素子間の距離との関係の
変化曲線を発光素子と受光素子との距離について微分し
た一次微分曲線を求め、その一次微分曲線の最大値を示
す発光素子よりも発光素子と受光素子との距離が遠い範
囲において、増加率が基準値以下となる発光素子と受光
素子との距離に基づいて最適発光素子を決定するもので
ある。このようにすれば、前記一次微分曲線の最大値
は、発光素子から発せられた光の散乱光が末梢血管の密
度が急に濃くなっている深度での散乱であることを示
し、その一次微分曲線の増加率が基準値以下となる点
は、発光素子から発せられた光の散乱光が末梢血管の密
度が十分濃くなった深度での散乱であることを示してい
るので、生体に照射され、生体中で散乱されて受光素子
により受光される複数種類の波長の散乱光が散乱される
深度をそれぞれ最適な深度に自動的に揃えることがで
き、反射型光電脈波検出装置の測定精度が向上する。
Preferably, the optimum light-emitting element determining means of the second invention is selected by the light-emitting element drive circuit from a ratio of an AC component to a DC component calculated by the AC / DC component ratio calculating means. A curve indicating the rate of increase with respect to the distance between the light-emitting element and the light-receiving element, that is, the change curve of the relationship between the ratio of the AC component and the DC component and the distance between the light-emitting element and the light-receiving element, for the distance between the light-emitting element and the light-receiving element Find the differentiated first derivative curve, and in the range where the distance between the light emitting element and the light receiving element is farther than the light emitting element showing the maximum value of the first derivative curve, the distance between the light emitting element and the light receiving element whose increase rate is equal to or less than the reference value The optimum light emitting element is determined based on the above. In this way, the maximum value of the first derivative curve indicates that the scattered light of light emitted from the light emitting element is scattered at a depth where the density of peripheral blood vessels is suddenly increased, and the first derivative thereof is The point where the rate of increase of the curve is less than the reference value indicates that the scattered light of the light emitted from the light emitting element is scattered at a depth where the density of peripheral blood vessels is sufficiently high, so that the living body is irradiated. The depth at which the scattered light of a plurality of wavelengths scattered in the living body and received by the light receiving element is scattered can be automatically adjusted to the optimum depth, respectively, and the measurement accuracy of the reflection type photoplethysmographic detector can be improved. improves.

【0012】また、好適には、上記第2発明の最適発光
素子決定手段は、前記交直成分比算出手段により算出さ
れた交流成分と直流成分の比と、前記発光素子駆動回路
によって選択させられた発光素子の受光素子との距離と
の関係の変化曲線を求め、その変化曲線の変曲点に基づ
いて最適発光素子を決定するものである。このようにす
れば、変化曲線の変曲点は、発光素子から発せられた光
の散乱光が末梢血管の密度が急に濃くなっている深度で
の散乱であることを示しているので、生体に照射され、
生体中で散乱されて受光素子により受光される複数種類
の波長の散乱光が散乱される深度をそれぞれ最適な深度
に自動的に揃えることができ、反射型光電脈波検出装置
の測定精度が向上する。
Preferably, the optimum light emitting element determining means of the second invention is selected by the light emitting element driving circuit and a ratio of an AC component to a DC component calculated by the AC / DC component ratio calculating means. A change curve of a relationship between a light emitting element and a light receiving element is obtained, and an optimum light emitting element is determined based on an inflection point of the change curve. In this way, the inflection point of the change curve indicates that the scattered light of the light emitted from the light emitting element is scattered at a depth where the density of the peripheral blood vessels is suddenly increased. Irradiated to
The depth at which scattered light of multiple wavelengths scattered in the living body and received by the light receiving element can be automatically adjusted to the optimum depth, respectively, improving the measurement accuracy of the reflection-type photoelectric pulse wave detector. I do.

【0013】[0013]

【発明の好適な実施の形態】以下、本発明の第1発明に
ついての一実施例を図面に基づいて詳細に説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0014】図1は、反射型光電脈波検出装置である反
射型プロ−ブ10を備えた反射型オキシメ−タすなわち
酸素飽和度測定装置の構成を示している。図1におい
て、反射型プロ−ブ10は、たとえば生体の末梢血管の
密度が比較的高い額、指等の体表面12に密着した状態
で装着される。この反射型プロ−ブ10は、比較的浅い
有底円筒状のハウジング14と、体表面下で散乱を受け
て発光素子側へ出てくる後方散乱光を検知するためにそ
のハウジング14の底部内面の中央部に設けられ、ホト
ダイオ−ド或いはホトトランジスタ等から成る受光素子
16と、ハウジング14の底部内面の受光素子16を中
心とする同一半径rの円周上において所定間隔毎に交互
に設けられたLED等からなる複数個(本実施例では8
個)の第1発光素子18および第2発光素子20と、ハ
ウジング14内に一体的に設けられ受光素子16および
発光素子18、20を保護するためにそれを覆う透明樹
脂22と、ハウジング14内において受光素子16と発
光素子18、20との間に設けられ、発光素子18、2
0から照射された光の体表面12から受光素子16へ向
かう反射光を遮光する円環状の遮光壁24とを備えて構
成されている。
FIG. 1 shows a configuration of a reflection type oximeter provided with a reflection type probe 10, which is a reflection type photoplethysmography device, that is, an oxygen saturation measurement device. In FIG. 1, a reflective probe 10 is mounted in close contact with a body surface 12 such as a forehead or a finger having a relatively high density of peripheral blood vessels of a living body. The reflective probe 10 has a cylindrical housing 14 having a relatively shallow bottom and a bottom inner surface of the housing 14 for detecting backscattered light which is scattered below the body surface and emitted toward the light emitting element. And a light receiving element 16 composed of a photodiode or a phototransistor, and a light receiving element 16 alternately provided at predetermined intervals on a circumference of the same radius r centered on the light receiving element 16 on the bottom inner surface of the housing 14. (Eg, 8 in this embodiment)
A first light emitting element 18 and a second light emitting element 20, a transparent resin 22 integrally provided in the housing 14 and covering the light receiving element 16 and the light emitting elements 18 and 20 to protect the light receiving element 16 and the light emitting elements 18 and 20. Are provided between the light receiving element 16 and the light emitting elements 18 and 20,
An annular light-shielding wall 24 that shields reflected light from the body surface 12 of the light emitted from 0 toward the light-receiving element 16 is provided.

【0015】また、ハウジング14にはそのハウジング
14の外周面および底部外面を覆うようにキャップ状の
ゴム部材58が一体的に設けられている。このゴム部材
58は、たとえばクロロプレンゴム等を原料としてスポ
ンジ状に構成されており、好適な断熱性を備えている。
そして、このゴム部材58のハウジング14外周側に位
置する部分が両面粘着シ−ト60を介して体表面12に
固着されることにより、ハウジング14の開口端面およ
び遮光壁24の先端面が体表面12に密着する状態でプ
ロ−ブ10が体表面12に装着されている。なお、図1
において、両面粘着シ−ト60は便宜上実際より大幅に
厚く描かれている。
The housing 14 is integrally provided with a cap-shaped rubber member 58 so as to cover the outer peripheral surface and the bottom outer surface of the housing 14. The rubber member 58 is formed in a sponge shape using, for example, chloroprene rubber or the like as a raw material, and has a suitable heat insulating property.
The portion of the rubber member 58 located on the outer peripheral side of the housing 14 is fixed to the body surface 12 via the double-sided adhesive sheet 60, so that the open end surface of the housing 14 and the distal end surface of the light shielding wall 24 are attached to the body surface. The probe 10 is mounted on the body surface 12 in close contact with the body 12. FIG.
2, the double-sided adhesive sheet 60 is drawn much thicker than it is for convenience.

【0016】上記第1発光素子18は、酸素飽和度によ
りヘモグロビンの吸光係数が影響される第1波長λ1
とえば660nm程度の波長の赤色光を発光し、第2発
光素子20は、酸素飽和度によりヘモグロビンの吸光係
数が影響されない第2波長λ 2 たとえば910nm程度
の波長の赤外光を発光するものである。なお、上記第1
波長λ1 および第2波長λ2 は、必ずしもこれらの波長
に限定されるものではなく、酸素化ヘモグロビンの吸光
係数と無酸素化ヘモグロビンの吸光係数とが大きく異な
る波長と、それら両吸光係数が略同じとなる波長に設定
される。
The first light emitting element 18 is controlled by oxygen saturation.
First wavelength λ affected by the absorption coefficient of hemoglobin1 Was
For example, it emits red light having a wavelength of about 660 nm,
The optical element 20 has an absorption coefficient of hemoglobin depending on the oxygen saturation.
Second wavelength λ whose number is not affected Two For example, about 910 nm
It emits infrared light having a wavelength of In addition, the first
Wavelength λ1 And the second wavelength λTwo Are not necessarily at these wavelengths
The absorption of oxygenated hemoglobin is not limited to
Coefficient and the extinction coefficient of anoxic hemoglobin differ greatly.
And the wavelength at which both extinction coefficients are approximately the same
Is done.

【0017】上記第1発光素子18および第2発光素子
20は、光源として機能するものであって、発光素子駆
動回路30により数百Hz乃至数kHz程度の比較的高
い周波数で一定時間幅づつ交互に駆動されることにより
それぞれ発光させられる。この発光素子駆動回路30
は、上記第1発光素子18および第2発光素子20へ供
給する駆動電流すなわちそれら第1発光素子18および
第2発光素子20の発光強度を、後述の演算制御回路4
2からの指令に基づいて調節する機能を備えている。そ
れら第1発光素子18および第2発光素子20から体表
面12直下の生体組織(血管床)へ向かって第1波長λ
1 の光および第2波長λ2 の光が交互に照射されると、
生体組織の毛細血管内血液に含まれる血球などにより散
乱を受けた後方散乱光が反射光として体表面12から射
出されるので、その後方散乱光すなわち生体組織(血管
床)内からの反射光が共通の光センサとして機能する受
光素子16によりそれぞれ受光され、第1波長λ1 の散
乱光を示す第1光信号SVRおよび第2波長λ2 の散乱
光を示す第2光信号SVIRが出力されるようになってい
る。これら第1光信号SVR および第2光信号SV
IRは、図2に例示するように直流(DC)成分と、心拍
数に同期して変動する交流(AC)成分とを含んでい
る。
The first light emitting element 18 and the second light emitting element 20 function as a light source. The light emitting element driving circuit 30 alternates the light emitting element 18 at a relatively high frequency of about several hundred Hz to several kHz for a certain time width. Are driven to emit light. This light emitting element drive circuit 30
The driving current supplied to the first light emitting element 18 and the second light emitting element 20, that is, the light emission intensity of the first light emitting element 18 and the second light emitting element 20
It has a function to make adjustments based on commands from the two. The first wavelength λ from the first light emitting element 18 and the second light emitting element 20 toward the living tissue (vascular bed) immediately below the body surface 12.
When the light of 1 and the light of the second wavelength λ 2 are alternately irradiated,
Since the backscattered light scattered by blood cells contained in the blood in the blood capillaries of the living tissue is emitted from the body surface 12 as reflected light, the backscattered light, that is, the reflected light from the living tissue (blood vessel bed) is generated. Each of the light receiving elements 16 functioning as a common optical sensor receives light, and outputs a first optical signal SV R indicating scattered light of the first wavelength λ 1 and a second optical signal SV IR indicating scattered light of the second wavelength λ 2. It is supposed to be. These first optical signal SV R and second optical signal SV
The IR includes a direct current (DC) component and an alternating current (AC) component that fluctuates in synchronization with the heart rate as illustrated in FIG.

【0018】発光強度E1 、E2 すなわち生体の体表面
12に照射される光の強度が異なると、その照射された
光の生体中への浸透深度が異なり、弱い光が照射される
と比較的体表面12に近い(浅い)深度までしか浸透し
ないが、強い光が照射されると比較的体表面12から遠
い(深い)部位まで浸透して散乱される。発光素子駆動
回路30により変化させられる第1発光素子18および
第2発光素子20の発光強度E1 、E2 の範囲は、個体
差や反射型プロ−ブ10が装着される部位により表皮お
よび真皮の厚さが異なっても、照射される光が毛細血管
が多く存在する真皮あるいは皮下組織で主として散乱さ
れることとなる発光強度を十分に含む範囲となるよう
に、予め実験的に決定される。
If the luminous intensities E 1 and E 2 , that is, the intensity of the light irradiated on the body surface 12 of the living body are different, the depth of penetration of the irradiated light into the living body is different, and it is compared with the irradiation of weak light. It penetrates only to a depth close to (shallow) the target body surface 12, but when irradiated with intense light, it penetrates and scatters to a part relatively deep (deep) from the body surface 12. The ranges of the light emission intensities E 1 and E 2 of the first light emitting element 18 and the second light emitting element 20 changed by the light emitting element driving circuit 30 depend on individual differences and the part where the reflective probe 10 is mounted. Even if the thickness is different, it is experimentally determined beforehand so that the irradiated light has a sufficient range of luminescence intensity that is mainly scattered in the dermis or subcutaneous tissue where many capillaries exist. .

【0019】上記受光素子16は、第1波長λ1 の後方
散乱光を示す第1光信号SVR と第2波長λ2 の後方散
乱光を示す第2光信号SVIRとを含む光信号SVを増幅
器32を介してローパスフィルタ34へ出力する。ロー
パスフィルタ34は入力された光信号SVから脈波の周
波数よりも高い周波数を有するノイズを除去し、そのノ
イズが除去された光信号SVをデマルチプレクサ36へ
出力する。なお、上記第1光信号SVR および第2光信
号SVIRは、体表面12の下の血管床における血液容積
の脈動に対応して周期的に変化する光信号であるので、
所謂容積脈波信号あるいは光電脈波信号ともいう。
The light receiving element 16 generates an optical signal SV including a first optical signal SV R indicating backscattered light having a first wavelength λ 1 and a second optical signal SV IR indicating backscattered light having a second wavelength λ 2. Is output to the low-pass filter 34 via the amplifier 32. The low-pass filter 34 removes noise having a frequency higher than the frequency of the pulse wave from the input optical signal SV, and outputs the optical signal SV from which the noise has been removed to the demultiplexer 36. Since the first optical signal SV R and the second optical signal SV IR are optical signals that periodically change in response to the pulsation of the blood volume in the vascular bed below the body surface 12,
It is also called a so-called volume pulse signal or photoelectric pulse signal.

【0020】デマルチプレクサ36は後述の切換信号S
Cにより第1発光素子18および第2発光素子20の発
光に同期して切り換えられることにより、第1波長λ1
の赤色光である第1光信号SVR をサンプルホールド回
路38およびA/D変換器40を介して演算制御回路4
2内のI/Oポート44へ逐次供給するとともに、第2
波長λ2 の赤外光である第2光信号SVIRをサンプルホ
ールド回路46およびA/D変換器48を介してI/O
ポート44へ逐次供給する。サンプルホールド回路3
8、46は、入力された光信号SVR 、SVIRをA/D
変換器40、48へ逐次出力する際に、前回出力した光
信号SVR 、SVIRについてのA/D変換器40、48
における変換作動が終了するまで次に出力する各光信号
SVR 、SVIRをそれぞれ保持するためのものである。
The demultiplexer 36 outputs a switching signal S to be described later.
C, the first light emitting element 18 and the second light emitting element 20 are switched in synchronization with the light emission, so that the first wavelength λ 1
First optical signal SV R a sample-and-hold circuit 38 and A / D converter 40 calculation control circuit 4 through a red light
2 to the I / O port 44 in the
The second optical signal SV IR , which is infrared light of the wavelength λ 2 , is input to the I / O
Supply sequentially to port 44. Sample hold circuit 3
8 and 46 convert the input optical signals SV R and SV IR into A / D
When sequentially outputting to the converters 40 and 48, the A / D converters 40 and 48 for the previously output optical signals SV R and SV IR.
The optical signals SV R and SV IR to be outputted next are respectively held until the conversion operation in is completed.

【0021】上記I/Oポート44は、データバスライ
ンを介してCPU50、ROM52、RAM54、表示
器56とそれぞれ接続されている。CPU50は、RA
M54の記憶機能を利用しつつROM52に予め記憶さ
れたプログラムに従って第1発光素子18および第2発
光素子20の最適発光強度決定動作および酸素飽和度測
定測定動作を実行する。すなわち、演算制御装置42
は、図示しない起動釦が操作された場合には、まず以下
の動作により第1発光素子18の最適発光強度AE1
よび第2発光素子20の最適発光強度AE2 を決定す
る。
The I / O port 44 is connected to a CPU 50, a ROM 52, a RAM 54, and a display 56 via data bus lines. The CPU 50
Using the storage function of M54, the operation of determining the optimum light emission intensity and measuring and measuring the oxygen saturation of the first light emitting element 18 and the second light emitting element 20 are executed according to a program stored in the ROM 52 in advance. That is, the arithmetic and control unit 42
, When the start button not shown is operated, first to determine the optimum luminous intensity AE 2 of the optimum luminous intensity AE 1 and the second light emitting element 20 of the first light emitting element 18 by the following operation.

【0022】演算制御装置42は、I/Oポート44か
ら発光素子駆動回路30へ駆動指令信号SLDを出力す
ることにより、第1発光素子18および第2発光素子2
0を数百Hz乃至数kHz程度の比較的高い周波数で一
定時間幅づつ交互に発光させ、さらに脈波の交流成分お
よび直流成分を算出するため、脈拍の1拍分あるいは数
拍分として予め設定される時間T0 毎に、発光素子駆動
回路30から第1発光素子18および第2発光素子20
へ出力される電流を漸次増加させ、第1発光素子18お
よび第2発光素子20の発光強度E1 、E2 を漸次変化
させる。また、それら第1発光素子18および第2発光
素子20の発光に同期して切換信号SCを出力してデマ
ルチプレクサ36を切り換えることにより、第1光信号
SVR をサンプルホールド回路38へ、第2光信号SV
IRをサンプルホールド回路46へそれぞれ振り分ける。
The arithmetic and control unit 42 outputs a drive command signal SLD from the I / O port 44 to the light emitting element driving circuit 30 so that the first light emitting element 18 and the second light emitting element 2
0 is alternately emitted at a relatively high frequency of about several hundred Hz to several kHz for a certain period of time, and is set in advance as one or several beats of a pulse in order to calculate an AC component and a DC component of a pulse wave. The light emitting element drive circuit 30 sends the first light emitting element 18 and the second light emitting element 20 every time T 0
The current output to the first light-emitting element 18 and the second light-emitting element 20 is gradually increased, so that the light-emitting intensities E 1 and E 2 of the first light-emitting element 18 and the second light-emitting element 20 are gradually changed. Further, by outputting the switching signal SC in synchronization with the light emission of the first light emitting element 18 and the second light emitting element 20 and switching the demultiplexer 36, the first optical signal SVR is sent to the sample hold circuit 38 and the second light Optical signal SV
The IR is distributed to the sample hold circuit 46.

【0023】また、演算制御装置42により、発光強度
の変化の影響を受けた第1光信号SVR および第2光信
号SVIRから、予め記憶されたプログラムに従って、第
1発光素子18の最適発光強度AE1 および第2発光素
子20の最適発光強度AE2が決定される。
The arithmetic and control unit 42 calculates the optimum light emission of the first light emitting element 18 from the first light signal SV R and the second light signal SV IR affected by the change of the light emission intensity in accordance with a previously stored program. The intensity AE 1 and the optimum emission intensity AE 2 of the second light emitting element 20 are determined.

【0024】続いて、以下の酸素飽和度測定動作が実行
される。すなわち、I/Oポ−ト44から発光素子駆動
回路30に駆動指令信号SLDが出力されることによ
り、発光素子駆動回路30から第1発光素子18および
第2発光素子20へ最適発光強度AE1 、AE2 を発光
するための電流が出力され、第1発光素子18および第
2発光素子20が数百Hz乃至数kHz程度の比較的高
い周波数で一定時間幅づつ交互に発光させられる。受光
素子16により受光される光信号SVは最適発光強度決
定動作の場合と同様にしてI/Oポート44へ入力され
る。
Subsequently, the following oxygen saturation measurement operation is performed. That is, when the drive command signal SLD is output from the I / O port 44 to the light emitting element driving circuit 30, the light emitting element driving circuit 30 transmits the optimum light emitting intensity AE 1 to the first light emitting element 18 and the second light emitting element 20. , AE 2 is emitted, and the first light emitting element 18 and the second light emitting element 20 are alternately caused to emit light at a relatively high frequency of about several hundred Hz to several kHz for a certain time width. The optical signal SV received by the light receiving element 16 is input to the I / O port 44 in the same manner as in the operation of determining the optimum light emission intensity.

【0025】CPU50は、予め記憶されたプログラム
に従って前記第1光信号SVR および第2光信号SVIR
がそれぞれ表す光電脈波形に基づいて末梢血管を流れる
血液中の酸素飽和度SaO2 を決定し且つその決定した
酸素飽和度SaO2 を表示器56に表示させる。
The CPU 50 operates the first optical signal SV R and the second optical signal SV IR in accordance with a program stored in advance.
The oxygen saturation SaO 2 in the blood flowing through the peripheral blood vessels is determined based on the photoplethysmographic waveforms respectively represented by the above and the determined oxygen saturation SaO 2 is displayed on the display 56.

【0026】図3は、上記演算制御装置42の制御機能
の要部を説明する機能ブロック線図である。図3におい
て発光強度変化手段62は、発光素子駆動回路30に駆
動指令信号SLDを出力することにより、発光素子駆動
回路30から第1発光素子18および第2発光素子20
に出力される電流を漸次変化させ、第1発光素子18の
発光強度E1 および第2発光素子20の発光強度E2
変化させつつ、それら第1発光素子18および第2発光
素子20を数百Hz乃至数kHz程度の比較的高い周波
数で一定時間幅づつ交互に発光させる。
FIG. 3 is a functional block diagram for explaining a main control function of the arithmetic and control unit 42. As shown in FIG. In FIG. 3, the light emission intensity changing means 62 outputs a drive command signal SLD to the light emitting element driving circuit 30 so that the first light emitting element 18 and the second light emitting element 20 are output from the light emitting element driving circuit 30.
Gradually changing the current output, the number of emission intensity E 1 and while changing the emission intensity E 2 of the second light emitting element 20, which first light emitting element 18 and the second light emitting element 20 of the first light emitting element 18 Light is emitted alternately at a relatively high frequency of about 100 Hz to several kHz for a certain time width.

【0027】周波数解析手段64は、高速フ−リエ変換
法を利用した周波数解析を予め設定された所定の区間に
施すことにより、受光素子16から出力された第1光信
号SVR および第2光信号SVIRから、その所定区間毎
の第1光信号SVR の交流成分ACR および直流成分D
R と第2光信号SVIRの交流成分ACIRおよび直流成
分DCIRとをそれぞれ逐次決定する。上記交流成分AC
R およびACIRは、生体の脈拍数PR(1/分)すなわ
ち脈拍周波数PF(Hz)に相当する周波数成分の信号電力
(ワット)として得られ、上記直流成分DCR およびD
IRは、直流に相当する周波数成分の信号電力(ワッ
ト)として得られる。図4には、上記周波数解析によっ
てえられた第1光信号SVR 或いは第2光信号SVIR
周波数スペクトルの例が示されている。
The frequency analysis unit 64, a high speed off - by performing a frequency analysis using Fourier transform method previously set predetermined interval, the first optical signal SV R and the second light output from the light receiving element 16 from the signal SV IR, the alternating current component AC R and DC components D of the first optical signal SV R for each the predetermined interval
The C R and the AC component AC IR and the DC component DC IR of the second optical signal SV IR are sequentially determined. AC component AC
R and AC IR are obtained as signal power (watt) of a frequency component corresponding to the pulse rate PR (1 / min) of the living body, that is, the pulse frequency PF (Hz), and the DC components DC R and D
C IR is obtained as signal power (watt) of a frequency component corresponding to DC. Figure 4 shows an example of the frequency spectrum of the first optical signal SV R or the second optical signal SV IR which is example by the frequency analysis are shown.

【0028】交直成分比算出手段66は、受光素子16
により検出された射出光の交流成分ACR 、ACIRと直
流成分DCR 、DCIRの比を波長λ1 、λ2 毎にそれぞ
れ算出する。すなわち、上記周波数解析手段64により
決定された第1光信号SVRの交流成分ACR および直
流成分DCR と第2光信号SVIRの交流成分ACIRおよ
び直流成分DCIRとから、その第1光信号SVR の交直
成分比(ACR /DC R )と、第2光信号SVIRの交直
成分比(ACIR/DCIR)とをそれぞれ算出する。とこ
ろで、末梢血管は表皮にはほとんど存在せず、その下層
の真皮およびさらにその下層にある皮下組織に集中して
いる。入射した光が真皮あるいは皮下組織で主として散
乱されることにより、受光素子16に受光される散乱光
が末梢血管の血液成分の影響を受ける場合は、散乱光の
強度は末梢血管の脈動に対応して変化するため、光信号
SVR 、SVIRは交流成分の割合が相対的に大きくな
る。
The AC / DC component ratio calculating means 66 includes a light receiving element 16
AC component AC of emission light detected byR, ACIRDirectly
Flow component DCR, DCIROf the wavelength λ1, ΛTwoEach time
Is calculated. That is, the frequency analysis means 64
The determined first optical signal SVRAC component ofRAnd straight
Flow component DCRAnd the second optical signal SVIRAC component ofIRAnd
And DC component DCIRFrom the first optical signal SVRAlternation of
Component ratio (ACR/ DC R) And the second optical signal SVIRAlternation of
Component ratio (ACIR/ DCIR) Is calculated. Toko
The peripheral blood vessels are hardly present in the epidermis,
Concentrated on the dermis and the underlying subcutaneous tissue
I have. The incident light is mainly scattered in the dermis or subcutaneous tissue.
Scattered light received by the light receiving element 16 due to the disturbance
Is affected by peripheral blood components,
Since the intensity changes in response to the pulsation of the peripheral blood vessels,
SVR, SVIRIs relatively large
You.

【0029】最適発光強度決定手段67は、交直成分比
算出手段66により算出された2つの波長λ1 、λ2
射出光の交流成分ACR 、ACIRと直流成分DCR 、D
IRの比と発光素子駆動回路30によって駆動される発
光素子18、20の発光強度との関係を波長毎にそれぞ
れ求め、その関係から、波長毎にそれぞれ最適発光強度
AE1 、AE2 を決定する。すなわち、交直成分比算出
手段66により逐次算出された第1光信号SVR の交直
成分比(ACR /DCR )から、図5に示すように交直
成分比(ACR /DCR )を縦軸とし、発光強度E1
横軸とする二次元座標系において描かれる曲線C1 を酸
素飽和度SaO2 の測定に先立って求め、その曲線C1
の変曲点i1 に基づいて最適発光強度AE1 を決定す
る。たとえば、変曲点i1 を示す発光強度より予め設定
された一定量aだけ強い発光強度を最適発光強度AE1
として決定する。さらに、同様にして、第2光信号SV
IRの交直成分比(ACIR/DCIR)から曲線C2 を求
め、その曲線C2 の変曲点i2に基づいて最適発光強度
AE2 を決定する。たとえば、変曲点i2 を示す発光強
度より予め設定された一定量aだけ強い発光強度を最適
発光強度AE2 として決定する。
The optimum light emission intensity determining means 67 calculates the AC components AC R and AC IR and the DC components DC R and D of the emission lights of the two wavelengths λ 1 and λ 2 calculated by the AC / DC component ratio calculating means 66.
Respectively determined the relationship between the emission intensity of the light emitting elements 18 and 20 which are driven as the ratio of C IR by a light emitting element driving circuit 30 for each wavelength, determined from the relation, respectively for each wavelength the optimum luminous intensity AE 1, AE 2 I do. That is, the vertical AC to DC component ratio of the first optical signal SV R which is sequentially calculated by the AC-DC component ratio calculating means 66 from the (AC R / DC R), AC-DC component ratio as shown in FIG. 5 (AC R / DC R) an axis, determined by the curve C 1 depicted in a two-dimensional coordinate system in which the emission intensity E 1 and the horizontal axis prior to the measurement of oxygen saturation SaO 2, the curve C 1
To determine the optimal emission intensity AE 1 based on the inflection point i 1 of. For example, the light emission intensity that is higher than the light emission intensity indicating the inflection point i 1 by a predetermined amount a is set to the optimum light emission intensity AE 1
To be determined. Further, similarly, the second optical signal SV
Determine the curve C 2 from the AC-DC component ratio of IR (AC IR / DC IR) , to determine the optimal emission intensity AE 2 based on the inflection point i 2 of the curve C 2. For example, the light emission intensity that is higher than the light emission intensity indicating the inflection point i 2 by a predetermined constant amount a is determined as the optimum light emission intensity AE 2 .

【0030】変曲点i1 、i2 は、受光素子16により
受光される散乱光が、末梢血管の密度が急に濃くなる深
度での散乱によるものであることを示し、一定量aは、
その深度よりもさらに少し深い深度である末梢血管の密
度がほぼ一定となる深度での散乱光を受光するために予
め実験的に求められるものである。
The inflection points i 1 and i 2 indicate that the scattered light received by the light receiving element 16 is due to scattering at a depth where the density of peripheral blood vessels suddenly increases.
This is experimentally determined in advance in order to receive scattered light at a depth at which the density of the peripheral blood vessels, which is slightly deeper than that depth, is substantially constant.

【0031】最適発光強度調節手段68は、酸素飽和度
SaO2 を得るための光電脈波の検出に先立って、最適
発光強度決定手段67により決定された最適発光強度A
1、AE2 となるように前記発光素子駆動回路30に
第1発光素子18および第2発光素子20をそれぞれ発
光させ、その発光強度を保持させる。酸素飽和度算出手
段69では、最適発光強度調節手段68により最適発光
強度AE1 、AE2 で第1発光素子18および第2発光
素子20がそれぞれ発光させられている状態で、第1光
信号SVR の交直成分比(ACR /DCR )と第2光信
号SVIRの交直成分比(ACIR/DCIR)との比R〔=
(ACR /DCR )/(ACIR/DCIR)〕を逐次算出
し、たとえば図6に示す予め記憶された関係から、実際
の比Rに基づいて酸素飽和度SaO2 を一拍あるいは数
拍毎に逐次算出し、表示器56に表示させる。
The optimum light emission intensity adjusting means 68 detects the optimum light emission intensity A determined by the optimum light emission intensity determining means 67 prior to the detection of the photoelectric pulse wave for obtaining the oxygen saturation SaO 2.
The first light emitting element 18 and the second light emitting element 20 are caused to emit light by the light emitting element driving circuit 30 so that E 1 and AE 2 are obtained, and the light emission intensity is maintained. In the oxygen saturation calculating means 69, the first light signal SV is output in a state where the first light emitting element 18 and the second light emitting element 20 emit light at the optimum light emission intensities AE 1 and AE 2 by the optimum light emission intensity adjusting means 68. the ratio R of the AC-DC component ratio R (AC R / DC R) and AC-DC component ratio of the second optical signal SV IR (AC IR / DC IR ) [=
(AC R / DC R ) / (AC IR / DC IR )] are sequentially calculated, and the oxygen saturation SaO 2 is calculated by one beat or a number based on the actual ratio R from the relationship stored in advance shown in FIG. It is calculated sequentially for each beat and displayed on the display 56.

【0032】図7は、前記演算制御回路42の制御作動
の最適発光強度AE1 、AE2 を決定する動作の要部を
説明するフロ−チャ−トである。図7において、SA1
では、図示しない起動ボタンが操作されることによっ
て、測定の起動操作が行われたか否かが判断される。こ
のSA1の判断が否定された場合には待機させられる
が、肯定された場合には図示しない初期処理ステップに
おいて、種々のカウンタやレジスタがクリアされた後、
SA2において、発光素子駆動回路30を介して第1発
光素子18に入力される電流および第2発光素子20に
入力される電流がそれぞれ初期値に決定される。次い
で、SA3において第1発光素子18および第2発光素
子20が、数百Hz乃至数kHz程度の比較的高い周波
数で一定期間幅づつ交互に発光させられ、続くSA4で
は、第1光信号SVR および第2光信号SVIRが読み込
まれる。
FIG. 7 is a flowchart for explaining the main part of the operation for determining the optimum light emission intensities AE 1 and AE 2 of the control operation of the arithmetic and control circuit 42. In FIG. 7, SA1
By operating a start button (not shown), it is determined whether or not a start operation for measurement has been performed. If the determination at SA1 is denied, the process waits. If the determination is affirmed, after various counters and registers are cleared in an initial processing step (not shown),
In SA2, the current input to the first light emitting element 18 and the current input to the second light emitting element 20 via the light emitting element driving circuit 30 are each determined to be the initial value. Next, in SA3, the first light emitting element 18 and the second light emitting element 20 are alternately caused to emit light at a relatively high frequency of about several hundred Hz to several kHz for a certain period of time, and then in SA4, the first light signal SV R. And the second optical signal SV IR are read.

【0033】続くSA5では、タイマカウンタCTの内
容に「1」が加算された後、SA6において、タイマカ
ウンタCTの内容が予め設定された判断基準時間T0
上となったか否かが判断される。この判断基準時間T0
は、光信号SVの交流成分および直流成分を算出するた
めに脈拍の一拍分あるいは数拍分に設定されている。
[0033] In subsequent SA5, after "1" is added to the contents of the timer counter CT, in SA6, whether the contents of the timer counter CT reaches a preset determination reference time T 0 or more is determined . This judgment reference time T 0
Is set to one or several beats of a pulse in order to calculate the AC and DC components of the optical signal SV.

【0034】当初は上記SA6の判断が否定されるの
で、SA3以下が繰り返し実行されることにより第1光
信号SVR および第2光信号SVIRが連続的に読み込ま
れる。そして、それら第1光信号SVR および第2光信
号SVIRが連続的に読み込まれるうちにSA6の判断が
肯定されると、前記周波数解析手段64に対応するSA
7において、上記の単位区間内の第1光信号SVR およ
び第2光信号SVIRに対して周波数解析処理がそれぞれ
実行されることにより、第1光信号SVR の交流成分A
R (信号電力値)および直流成分DCR (信号電力
値)と、第2光信号SVIRの交流成分ACIR(信号電力
値)および直流成分DCIR(信号電力値)とが抽出され
る。
Initially, the determination at SA6 is denied, so that the first optical signal SV R and the second optical signal SV IR are continuously read by repeatedly executing SA3 and subsequent steps. If the determination of SA6 is affirmative while the first optical signal SV R and the second optical signal SV IR are continuously read, the SA corresponding to the frequency analysis unit 64 is determined.
7, the frequency analysis processing is performed on the first optical signal SV R and the second optical signal SV IR in the unit section, respectively, so that the AC component A of the first optical signal SV R
C R (signal power value) and DC component DC R (signal power value), and AC component AC IR (signal power value) and DC component DC IR (signal power value) of the second optical signal SV IR are extracted. .

【0035】次いで、前記交直成分比算出手段66に対
応するSA8では、上記SA7において抽出された第1
光信号SVR の交流成分ACR および直流成分DCR
ら、その第1光信号SVR の交直成分比(ACR /DC
R )が算出されるとともに、SA7において抽出された
第2光信号SVIRの交流成分ACIRおよび直流成分DC
IRから、その第2光信号SVIRの交直成分比(ACIR
DCIR)が算出される。
Next, in SA8 corresponding to the AC-DC component ratio calculating means 66, the first extracted in SA7 is used.
From the AC component AC R and a DC component DC R of the optical signal SV R, AC-DC component ratio of the first optical signal SV R (AC R / DC
R ) is calculated, and the AC component AC IR and the DC component DC of the second optical signal SV IR extracted in SA7 are calculated.
From the IR , an AC / DC component ratio of the second optical signal SV IR (AC IR /
DCIR ) is calculated.

【0036】続く発光強度変化手段62に対応するSA
9では、第1発光素子18および第2発光素子20の発
光強度E1 、E2 を変化させるため、発光素子駆動回路
30に駆動指令信号SLDを出力することにより、第1
発光素子18および第2発光素子20に入力される電流
を一定量だけ増加させる。続くSA10では、第1発光
素子18および第2発光素子20に入力される電流が予
め設定された最適発光強度決定動作の終了電流となった
か否が判断される。なお、SA9において増加される一
定量の電流は、電流の変化によって変化する発光強度E
1 、E2 と、交直成分比(ACR /DCR )、(ACIR
/DCIR)との関係を示す点をプロットして得られる曲
線C1 、C2 において、変曲点i1 、i2 を判断するの
に十分な点間隔が得られるように設定され、SA10の
終了電流も、変曲点i1 、i2 が得られる、すなわち照
射された光が末梢血管の密度が急に濃くなる深度まで浸
透する発光強度となるように十分高く設定されている。
SA corresponding to the following light emission intensity changing means 62
9, the drive command signal SLD is output to the light emitting element drive circuit 30 to change the light emission intensity E 1 , E 2 of the first light emitting element 18 and the second light emitting element 20, whereby the first
The current input to the light emitting element 18 and the second light emitting element 20 is increased by a certain amount. In the subsequent SA10, it is determined whether or not the current input to the first light emitting element 18 and the second light emitting element 20 is a preset end current of the optimum light emission intensity determining operation. Note that the constant amount of current that is increased in SA9 is a light emission intensity E that changes with a change in current.
1 , E 2 and the AC / DC component ratio (AC R / DC R ), (AC IR
/ DC IR ) are set such that a point interval sufficient to determine the inflection points i 1 and i 2 is obtained on the curves C 1 and C 2 obtained by plotting the points indicating the relationship with SA10 / DC IR ). Is set high enough so that the inflection points i 1 and i 2 are obtained, that is, the luminescence intensity is such that the irradiated light penetrates to a depth where the density of peripheral blood vessels suddenly increases.

【0037】このSA10の判断が否定されるうちは、
上記の曲線C1 、C2 が変曲点i1、i2 を得るのに十
分な測定点が得られていないので、SA3以降が繰り返
されるが、肯定された場合には、続くSA11におい
て、図5に示すような曲線C1が第1光信号SVR の交
直成分比(ACR /DCR )に基づいて描かれ、曲線C
2 が第2光信号SVIRの交直成分比(ACIR/DCIR
に基づいて描かれ、その曲線C1 、C2 の変曲点i1
2 がそれぞれ求められる。
While the determination in SA10 is denied,
Curve C above1 , CTwo Is the inflection point i1, ITwo Ten to get
Since no sufficient measurement points have been obtained, SA3 and subsequent steps are repeated.
However, if affirmed, the next SA11
And a curve C as shown in FIG.1Is the first optical signal SVRExchange
Direct component ratio (ACR/ DCR) Based on the curve C
Two Is the second optical signal SVIRAC-DC component ratio (ACIR/ DCIR)
And the curve C1 , CTwo Inflection point i1 ,
iTwo Are required respectively.

【0038】続くSA12では、SA11で求められた
変曲点i1 、i2 を示す発光強度から所定量aだけ強い
発光強度を最適発光強度AE1 、AE2 として決定す
る。従って、本実施例では、SA11およびSA12が
最適発光強度決定手段67に対応している。
In the subsequent SA12, the emission intensities by a predetermined amount a are determined as the optimum emission intensities AE 1 and AE 2 from the emission intensities indicating the inflection points i 1 and i 2 obtained in SA11. Therefore, in this embodiment, SA11 and SA12 correspond to the optimum light emission intensity determining means 67.

【0039】上述のように本実施例によれば、発光素子
駆動回路30により、第1波長λ1の光を発光する第1
発光素子18および第2波長λ2 の光を発光する第2発
光素子20の発光強度E1 、E2 が漸次変化させられ
て、それら第1発光素子18および第2発光素子20が
発光させられ、発光強度E1 、E2 の変化によって、生
体中の異なる深度で散乱を受けた射出光が受光素子16
により検出される。受光された散乱光は、交直成分比算
出手段66において交直成分比(ACR /DCR)、
(ACIR/DCIR)が算出され、最適発光強度決定手段
67において、その交直成分比(ACR /DCR )、
(ACIR/DCIR)の発光強度E1 、E2 に対する変化
曲線C1 、C2 の変曲点i1 、i2 に基づいて最適発光
強度AE1 、AE2 が決定される。酸素飽和度SaO2
を測定するために光電脈波が検出される状態では、最適
発光強度調節手段68により第1発光素子18が最適発
光強度AE1 で発光させられ、第2発光素子20が最適
発光強度AE2 で発光させられて光電脈波が検出され
る。上記変化曲線C1 、C2 は、散乱光が散乱される深
度における末梢血管の密度に関連して変化し、変曲点i
1 、i2 は2点とも散乱光が末梢血管の密度が急に濃く
なっている深度での散乱であることを示している。従っ
て、生体に照射される2つの波長の光の散乱光が散乱さ
れる深度を最適な深度に自動的に揃えることができ、反
射型プロ−ブ10の測定精度が向上する。
As described above, according to this embodiment, the first light emitting device 30 emits light of the first wavelength λ 1 by the light emitting element driving circuit 30.
The light emission intensity E 1 and E 2 of the light emitting element 18 and the second light emitting element 20 that emits light of the second wavelength λ 2 are gradually changed, and the first light emitting element 18 and the second light emitting element 20 emit light. The light emitted from the light receiving element 16 is scattered at different depths in the living body due to changes in the light emission intensities E 1 and E 2.
Is detected by The received scattered light is converted into an AC / DC component ratio (AC R / DC R ) by the AC / DC component ratio calculating means 66.
(AC IR / DC IR ) is calculated, and the optimum luminous intensity determining means 67 calculates the AC / DC component ratio (AC R / DC R ),
The optimum emission intensities AE 1 and AE 2 are determined based on the inflection points i 1 and i 2 of the change curves C 1 and C 2 with respect to the emission intensities E 1 and E 2 of (AC IR / DC IR ). Oxygen saturation SaO 2
In a state in which the photoelectric pulse wave is detected in order to measure the first light emitting element 18 by the optimum light emission intensity adjusting means 68 is caused to emit light at the optimum light emission intensity AE 1, the second light emitting element 20 at the optimum light emission intensity AE 2 The light is emitted and the photoelectric pulse wave is detected. The change curves C 1 and C 2 change in relation to the density of the peripheral blood vessels at the depth where the scattered light is scattered, and the inflection point i
Both 1 and i 2 indicate that the scattered light is scattered at a depth where the density of peripheral blood vessels suddenly increases. Therefore, the depth at which the scattered light of the two wavelengths irradiated to the living body is scattered can be automatically adjusted to the optimum depth, and the measurement accuracy of the reflective probe 10 is improved.

【0040】次に、第2発明についての一実施例を図面
に基づいて詳細に説明する。尚、上記実施例と同一の構
成を有する部分には同一の符号を付して説明を省略す
る。
Next, an embodiment of the second invention will be described in detail with reference to the drawings. Note that portions having the same configuration as the above embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0041】図8は、反射型光電脈波検出装置である反
射型プロ−ブ70を備えた反射型オキシメ−タすなわち
酸素飽和度測定装置の構成を示している。反射型プロ−
ブ70は、前述の実施例の反射型プロ−ブ10と同様
に、たとえば生体の末梢血管の密度が比較的高い額、指
等の体表面12に密着した状態で装着される。反射型プ
ロ−ブ70は、比較的浅い有底角柱状のハウジング72
と、そのハウジング72の底部内面に設けられる前述の
実施例と同様の第1発光素子18、第2発光素子20お
よび受光素子16と、ハウジング72内に一体的に設け
られ受光素子16および発光素子18、20を保護する
ためにそれを覆う透明樹脂74と、発光素子18、20
からの照射光の一部、照射された光の体表面12から受
光素子16へ向かう反射光、および照射された光の生体
中で散乱され受光素子16へ向かう散乱光の一部を遮光
するためハウジング72内に設けられる遮光壁76とを
備えて構成されている。
FIG. 8 shows a configuration of a reflection type oximeter provided with a reflection type probe 70 which is a reflection type photoplethysmogram detection device, that is, an oxygen saturation measurement device. Reflective pro
The probe 70 is attached to the body surface 12 such as a forehead or a finger having a relatively high density of peripheral blood vessels of a living body, for example, similarly to the reflective probe 10 of the above-described embodiment. The reflection type probe 70 has a relatively shallow bottomed prismatic housing 72.
A first light-emitting element 18, a second light-emitting element 20, and a light-receiving element 16 provided on the inner surface of the bottom portion of the housing 72 as in the above-described embodiment; and the light-receiving element 16 and the light-emitting element provided integrally in the housing 72. A transparent resin 74 covering the light-emitting elements 18 and 20 to protect the light-emitting elements 18 and 20;
To shield part of the irradiation light from the body, reflected light of the irradiated light from the body surface 12 toward the light receiving element 16, and part of the scattered light of the irradiated light scattered in the living body and directed to the light receiving element 16. And a light-shielding wall 76 provided in the housing 72.

【0042】図9は、反射型プロ−ブ70を体表面12
に対向する側から見た図である。図9において、受光素
子16はハウジング72の底部内面の長手方向の一端部
に固設され、複数個の第1発光素子18および第2発光
素子20はそれぞれ受光素子16からの距離が漸次増加
するように反射型プロ−ブ70の長手方向に等間隔で固
設されている。遮光壁76は、受光素子16とそれに最
も近い第1発光素子18および第2発光素子20との
間、および一組の発光素子18、20と他の一組の発光
素子18、20の間毎に設けられている。なお、本実施
例では、第1発光素子18および第2発光素子20は、
作図の便宜上それぞれ6個備えられているが、ハウジン
グ72の底部内面に収容できる範囲で、さらに多くの発
光素子18、20が用いられてもよいし、6個よりも少
ない数であってもよい。
FIG. 9 shows that the reflection type probe 70 is connected to the body surface 12.
FIG. 9, the light receiving element 16 is fixed to one end in the longitudinal direction of the inner surface of the bottom of the housing 72, and the distance between the plurality of first light emitting elements 18 and the second light emitting elements 20 gradually increases from the light receiving element 16 respectively. As described above, the reflection type probes 70 are fixed at equal intervals in the longitudinal direction. The light shielding wall 76 is provided between the light receiving element 16 and the first light emitting element 18 and the second light emitting element 20 closest to the light receiving element 16 and between the one set of light emitting elements 18 and 20 and the other set of light emitting elements 18 and 20. It is provided in. In the present embodiment, the first light emitting element 18 and the second light emitting element 20
Six light emitting elements are provided for convenience of drawing, however, as long as the light emitting elements 18 and 20 can be accommodated in the bottom inner surface of the housing 72, more light emitting elements 18 and 20 may be used, or the number may be smaller than six. .

【0043】図8に戻って、図示しない測定起動ボタン
が起動されることにより、第1発光素子18および第2
発光素子20は、発光素子駆動回路78により駆動され
ることにより発光させられる。この発光素子駆動回路7
8は、それぞれ複数設けられた第1発光素子18および
第2発光素子の中から波長λ1 、λ2 毎に発光させるべ
き発光素子18、20を選択的に発光させる機能を備え
ている。すなわち、発光素子駆動回路78は、演算制御
回路42からの駆動指令信号SLDにより、先ず第1発
光素子18を受光素子16に最も近い側から最も遠い側
へと順に、連続的に一定時間T1 づつ発光させ、続いて
第2発光素子20を受光素子16に最も近い側から最も
遠い側へと順に連続的に一定時間T1 づつ発光させる。
ここでの一定時間T1 は、脈波の交流成分および直流成
分を算出するための時間であり、前述の実施例の時間T
0 と同様に脈拍の一拍分あるいは数拍分に設定される。
Referring back to FIG. 8, when the measurement start button (not shown) is activated, the first light emitting element 18 and the second
The light emitting element 20 emits light when driven by the light emitting element drive circuit 78. This light emitting element drive circuit 7
Reference numeral 8 has a function of selectively emitting light from the light-emitting elements 18 and 20 to be emitted for each of the wavelengths λ 1 and λ 2 from among the plurality of first light-emitting elements 18 and second light-emitting elements. That is, the light-emitting element driving circuit 78 continuously drives the first light-emitting elements 18 from the side closest to the light-receiving element 16 to the side farthest from the light-receiving element 16 continuously for a certain period of time T 1 according to the drive command signal SLD from the arithmetic control circuit 42. Then, the second light emitting element 20 emits light continuously for a certain time T 1 from the side closest to the light receiving element 16 to the side farthest from the light receiving element 16.
Here, the fixed time T 1 is a time for calculating the AC component and the DC component of the pulse wave, and the time T 1 in the above-described embodiment.
As in the case of 0 , it is set to one beat or several beats of the pulse.

【0044】それら第1発光素子18および第2発光素
子20が発光させられると、生体組織(血管床)内から
の散乱光が受光素子16により受光され、第1波長λ1
の散乱光を示す第1光信号SVR および第2光信号SV
IRが出力される。第1光信号SVR および第2光信号S
IRとを含む光信号SVは、増幅器32、ロ−パスフィ
ルタ34、デマルチプレクサ36、サンプルホ−ルド回
路38、46、A/D変換器40、48を介して演算制
御回路42内のI/Oポ−ト44へ逐次供給される。
When the first light emitting element 18 and the second light emitting element 20 emit light, the scattered light from inside the living tissue (blood vessel bed) is received by the light receiving element 16 and the first wavelength λ 1.
Optical signal SV R and second optical signal SV indicating the scattered light of
IR is output. First optical signal SV R and the second optical signal S
Optical signal SV and a V IR includes an amplifier 32, B - pass filter 34, a demultiplexer 36, a sample-- hold circuit 38, 46, I of the arithmetic and control circuit 42 via the A / D converter 40, 48 / O port 44 are sequentially supplied.

【0045】ここで、遮光壁76と発光素子18、20
との距離および発光素子18、20から受光素子16ま
での距離と、受光素子16により受光される散乱光の散
乱深度との関係について説明する。図10は、図9のA
−A線の断面図である。なお、図10の反射型プロ−ブ
70は透明樹脂74を省略して示してある。図10にお
いて、交点P1 は、受光素子16に最も近い側に配置さ
れている第1発光素子18から発光された光のうちで、
体表面12から最も近い部位すなわち最も浅い部位で散
乱されて、受光素子16により受光される場合の散乱深
度を示している。同様に交点P2 、P3 、P4 、P5
6 も、それぞれの第1発光素子18から発光させられ
た光が体表面12から最も浅い部位で散乱されて、受光
素子16により受光される場合の散乱される深度を示し
ている。
Here, the light shielding wall 76 and the light emitting elements 18 and 20
The relationship between the distance from the light-emitting elements 18 and 20 to the light-receiving element 16 and the scattering depth of the scattered light received by the light-receiving element 16 will be described. FIG. 10 shows A in FIG.
It is sectional drawing of the -A line. The reflective probe 70 shown in FIG. 10 is shown without the transparent resin 74. In FIG. 10, the intersection P 1 is the light emitted from the first light emitting element 18 arranged on the side closest to the light receiving element 16,
The scattered depth is shown when the light is scattered at a position closest to the body surface 12, that is, the lightest part, and is received by the light receiving element 16. Similarly, the intersection points P 2 , P 3 , P 4 , P 5 ,
P 6 also indicates the depth at which the light emitted from each of the first light emitting elements 18 is scattered from the body surface 12 at the shallowest part and is received by the light receiving element 16.

【0046】すなわち、受光素子16に最も近い距離に
配置された発光素子18、20により発光された光の散
乱光を受光素子16が受光する場合は、体表面12に近
い(浅い)部位からの散乱光を多く受光するのに対し、
受光素子16から最も遠い距離に配置された発光素子1
8、20により発光された光の散乱光を受光素子16が
受光する場合は、体表面12に近い部位で散乱させられ
た散乱光は遮光壁76により遮光されるため受光されな
い。そのため、体表面12から比較的遠い(深い)部位
で散乱された散乱光が相対的に多く受光されることにな
る。
That is, when the light receiving element 16 receives the scattered light of the light emitted by the light emitting elements 18 and 20 arranged at the closest distance to the light receiving element 16, the light from the part close to the body surface 12 (shallow). While receiving a lot of scattered light,
Light-emitting element 1 arranged farthest from light-receiving element 16
When the light receiving element 16 receives the scattered light of the light emitted by 8 and 20, the scattered light scattered at a portion near the body surface 12 is not received because it is shielded by the light shielding wall 76. Therefore, scattered light scattered at a portion relatively far (deep) from the body surface 12 is received relatively more.

【0047】受光素子16に受光される光が、体表面1
2からどの程度の深度以下からの散乱光であるかは、受
光素子16と発光素子18、20との距離、発光素子1
8、20と遮光壁76との距離あるいは受光素子16と
遮光壁76との距離、および遮光壁76の高さすなわち
発光素子18、20と体表面12との距離によって決定
される。これらの受光素子16と発光素子18、20と
の距離、発光素子18、20と遮光壁76との距離ある
いは受光素子16と遮光壁76との距離、および遮光壁
76の高さは、散乱光が体表面12下の末梢血管床から
の散乱光が十分に検出できるように、たとえば最浅検出
深度が0.3mmから2.0mmまでの範囲で変化する
ように予め実験的に求められる。
The light received by the light receiving element 16 is the body surface 1
The distance from the light receiving element 16 to the light emitting elements 18 and 20 and the light emitting element 1
The distance is determined by the distance between the light-shielding wall 76 and the light-receiving element 16, and the distance between the light-emitting elements 18 and 20 and the body surface 12. The distance between the light receiving element 16 and the light emitting elements 18 and 20, the distance between the light emitting elements 18 and 20 and the light shielding wall 76, the distance between the light receiving element 16 and the light shielding wall 76, and the height of the light shielding wall 76 are scattered light. Is determined experimentally in advance so that the scattered light from the peripheral vascular bed under the body surface 12 can be sufficiently detected, for example, so that the shallowest detection depth changes in a range from 0.3 mm to 2.0 mm.

【0048】それぞれ受光素子16から異なる距離にお
いて発光させられた第1波長λ1 の光および第2波長λ
2 の光の生体中からの散乱光を示す第1光信号SVR
よび第2光信号SVIRがI/Oポ−ト44へ出力される
と、演算制御装置42において、予め記憶されたプログ
ラムに従って、第1発光素子18および第2発光素子2
0の最適発光素子がそれぞれ決定される。
The light of the first wavelength λ 1 and the light of the second wavelength λ which are emitted at different distances from the light receiving element 16 respectively.
First optical signal SV R and the second optical signal SV IR showing the scattered light from in the second optical vivo I / O port - the output to preparative 44, the arithmetic and control unit 42, a program stored in advance , The first light emitting element 18 and the second light emitting element 2
The optimum light emitting elements of 0 are respectively determined.

【0049】続いて、発光素子駆動回路78へ駆動指令
信号SLDを出力して最適発光素子として決定された第
1発光素子18および同じく最適発光素子として決定さ
れた第2発光素子20を数百Hz乃至数kHz程度の比
較的高い周波数で一定時間幅づつ交互に発光させること
により、最適な深度での散乱光に基づいて酸素飽和度が
連続的に決定され、且つその決定した酸素飽和度SaO
2 を表示器56に表示させる。
Subsequently, a drive command signal SLD is output to the light emitting element driving circuit 78 to drive the first light emitting element 18 determined as the optimum light emitting element and the second light emitting element 20 also determined as the optimum light emitting element to several hundred Hz. To a relatively high frequency of about several kHz, the oxygen saturation is continuously determined based on the scattered light at the optimum depth, and the determined oxygen saturation SaO is obtained.
2 is displayed on the display 56.

【0050】図11は、上記演算制御装置42の制御機
能の要部を説明する機能ブロック線図である。図11に
おいて発光素子選択手段80は発光素子駆動回路78に
駆動指令信号SLDを出力し、発光素子駆動回路78
は、その駆動指令信号SLDに基づいて、第1発光素子
18を受光素子16に最も近い側から最も遠い側へ順に
連続的に一定時間T1 づつ発光させ、次いで第2発光素
子20を受光素子16に最も近い側から最も遠い側へ順
に連続的に一定時間T1 づつ発光させる。なお、受光素
子16と発光素子18、20との間の距離が遠くなるに
つれて、受光素子16に受光される光量は減少するの
で、受光素子16から遠くなるほど発光強度が強くなる
ように設定されてもよい。
FIG. 11 is a functional block diagram for explaining a main control function of the arithmetic and control unit 42. In FIG. 11, the light emitting element selecting means 80 outputs a drive command signal SLD to the light emitting element driving circuit 78, and the light emitting element driving circuit 78
, Based on the drive command signal SLD, the first light-emitting element 18 continuously for a predetermined time T 1 at a time emission in order to farthest from the side closest to the light receiving element 16, then the second light emitting element 20 light-receiving element 16 continuously for a predetermined time T 1 at a time emission in order to farthest from the side closest to the. Note that, as the distance between the light receiving element 16 and the light emitting elements 18 and 20 increases, the amount of light received by the light receiving element 16 decreases. Therefore, the light emission intensity is set to increase as the distance from the light receiving element 16 increases. Is also good.

【0051】受光素子16により散乱光が受光されるこ
とにより、受光素子16から出力された第1光信号SV
R 、第2光信号SVIRは、前述の実施例と同様に、周波
数解析手段64において、交流成分ACR 、ACIRおよ
び直流成分DCR 、DCIRが決定され、交直成分比算出
手段66において、第1光信号SVR の交直成分比(A
R /DCR )と、第2光信号SVIRの交直成分比(A
IR/DCIR)が算出される。
When the scattered light is received by the light receiving element 16, the first optical signal SV output from the light receiving element 16 is output.
R, the second optical signal SV IR, like the above-described embodiment, the frequency analysis means 64, the alternating current component AC R, AC IR and DC component DC R, DC IR is determined, in AC-DC component ratio calculating means 66 , AC to DC component ratio of the first optical signal SV R (a
C R / DC R ) and the alternating-current component ratio (A) of the second optical signal SV IR
CIR / DCIR ) is calculated.

【0052】最適発光素子決定手段82は、交直成分比
算出手段66により算出された交直成分比(ACR /D
R )、(ACIR/DCIR)と発光素子駆動回路78に
より選択される発光素子18、20の受光素子16との
距離との関係を波長λ1 、λ 2 毎に求め、その関係か
ら、波長λ1 、λ2 毎にそれぞれ最適発光素子を決定す
る。すなわち、最適発光素子決定手段82では、図12
(a)に示されているように、交直成分比算出手段66
により逐次算出された第1光信号SVR の交直成分比
(ACR /DCR )あるいは第2光信号SVIRの交直成
分比(ACIR/DC IR)の、発光素子18、20と受光
素子16との間の距離に対する増加率を示す曲線C3
予め算出され、その曲線C3 の最大値を示す発光素子1
8、20と受光素子16との距離よりも受光素子16と
の距離が遠い範囲において、増加率が予め定められた基
準値Bとなる発光素子18、20と受光素子16との距
離Dを求め、増加率が基準値B以下となる範囲で受光素
子16との距離が距離Dに最も近い発光素子18、20
を最適発光素子としてそれぞれ決定する。
The optimum light emitting element determining means 82 calculates the AC / DC component ratio.
The AC-DC component ratio (ACR/ D
CR), (ACIR/ DCIR) And the light emitting element drive circuit 78
Of the light emitting elements 18 and 20 selected from
Wavelength λ1, Λ TwoAsked each time, whether the relationship
The wavelength λ1, ΛTwoDetermine the optimal light-emitting element for each
You. That is, in the optimum light emitting element determining means 82, FIG.
(A) As shown in FIG.
Optical signal SV sequentially calculated byRAC component ratio of
(ACR/ DCR) Or the second optical signal SVIRAlternation of
Division ratio (ACIR/ DC IR), Light emitting elements 18 and 20 and light receiving
Curve C showing the rate of increase with respect to the distance to the element 16ThreeBut
It is calculated in advance and its curve CThreeLight-emitting element 1 showing the maximum value of
The distance between the light receiving element 16 and the light receiving element 16 is larger than the distance between the light receiving element 16 and the light receiving element 16.
In a range where the distance of
The distance between the light emitting elements 18 and 20 having the quasi-value B and the light receiving element 16
The separation D is obtained, and the light receiving element
Light-emitting elements 18 and 20 whose distance from the element 16 is closest to the distance D
Is determined as the optimum light emitting element.

【0053】上記基準値Bは、照射された光が散乱され
る深度が、末梢血管の密度がほぼ一定となる深度である
ことを判断するために比較的低い値として予め実験的に
決定される。なお、図12(b)は、交直成分比(AC
R /DCR )、(ACIR/DCIR)と、発光素子18、
20と受光素子16との距離との関係を示す曲線であ
り、図12(a)は図12(b)の曲線を発光素子1
8、20と受光素子16との距離について微分した一次
微分曲線としても求められる。
The reference value B is experimentally determined in advance as a relatively low value for judging that the depth at which the irradiated light is scattered is a depth at which the density of the peripheral blood vessels becomes almost constant. . FIG. 12B shows the AC / DC component ratio (AC
R / DC R ), (AC IR / DC IR ), the light emitting element 18,
12A is a curve showing the relationship between the distance between the light-emitting element 20 and the light-receiving element 16, and FIG.
It can also be obtained as a first derivative curve obtained by differentiating the distance between 8, 20 and the light receiving element 16.

【0054】最適発光素子選択手段83は、酸素飽和度
SaO2 の検出のための光電脈波の採取に先立って、最
適発光素子決定手段82において最適発光素子が決定さ
れた後に、発光素子駆動回路78に駆動指令信号SLD
を出力することにより、連続的に数百Hz乃至数kHz
程度の比較的高い周波数で一定期間幅づつその最適発光
素子として決定された第1発光素子18および第2発光
素子20を発光させる。酸素飽和度算出手段69は、最
適発光素子選択手段83により第1発光素子18および
第2発光素子20の最適発光素子が発光させられている
状態で、交直成分比算出手段66において算出される第
1光信号SVR の交直成分比(ACR /DCR )と第2
光信号SVIRの交直成分比(ACIR/DCIR)との比R
〔=(ACR /DCR )/(ACIR/DCIR)〕に基づ
いて、たとえば図6に示す予め記憶された関係から、実
際の比Rに基づいて酸素飽和度SaO2 を逐次算出し、
表示器56に表示させる。
The optimum light emitting element selecting means 83 is provided with a light emitting element driving circuit after the optimum light emitting element is determined by the optimum light emitting element determining means 82 prior to the collection of the photoelectric pulse wave for detecting the oxygen saturation SaO 2. Drive command signal SLD at 78
By outputting several hundred Hz to several kHz continuously.
The first light emitting element 18 and the second light emitting element 20 which are determined as the optimum light emitting elements for a certain period at a relatively high frequency are made to emit light. The oxygen saturation calculating means 69 calculates the first and second light emitting elements 18 and 20 in the state where the optimum light emitting elements of the first light emitting element 18 and the second light emitting element 20 are caused to emit light by the optimum light emitting element selecting means 83. AC-DC component ratio of the first optical signal SV R and (AC R / DC R) second
Ratio R of optical signal SV IR to AC / DC component ratio (AC IR / DC IR )
Based on [= (AC R / DC R ) / (AC IR / DC IR )], for example, the oxygen saturation SaO 2 is sequentially calculated based on the actual ratio R from the relationship stored in advance shown in FIG. ,
It is displayed on the display 56.

【0055】図13は、本実施例の演算制御回路42の
制御作動のうち、最適発光素子を決定する動作の要部を
説明するフロ−チャ−トである。SB1では、SA1と
同様に、起動操作がされたか否かが判断され、この判断
が否定された場合には待機させられるが、肯定された場
合には、SA1と同様の初期処理が実行された後、続く
SB2において、演算制御回路42からの発光素子駆動
回路78へ駆動指令信号SLDが出力されることによ
り、受光素子16に最も近い側の第1発光素子18が一
定時間T1 だけ連続的に発光させられ、SB3におい
て、第1光信号SV R が読み込まれる。
FIG. 13 shows the operation control circuit 42 of this embodiment.
The main part of the control operation that determines the optimal light emitting element
This is a flowchart for explanation. In SB1, SA1 and
Similarly, it is determined whether or not a start operation has been performed.
If the answer is no, the game is made to wait.
In this case, after the initial processing similar to SA1 is performed,
In SB2, the light emitting element drive from the arithmetic control circuit 42
When drive command signal SLD is output to circuit 78,
The first light emitting element 18 closest to the light receiving element 16
Fixed time T1 Only emits light continuously and smells SB3
And the first optical signal SV RIs read.

【0056】続くSB4では、SB2において発光させ
られた第1発光素子18が、受光素子16から最も遠い
側の第1発光素子18であったか否かが判断される。当
初は、この判断が否定されるので、SB5において発光
させられる第1発光素子18が切換られた後にSB2以
降が繰り返される。すなわち、SB5において、次回発
光させられる第1発光素子18が、前回SB2において
発光させられた第1発光素子18より一つ受光素子16
から遠い側に配置されている第1発光素子18に設定さ
れた後に、SB2以降が繰り返される。
At SB4, it is determined whether or not the first light emitting element 18 emitted at SB2 is the first light emitting element 18 farthest from the light receiving element 16. Initially, this determination is denied, so that SB2 and the subsequent steps are repeated after the first light emitting element 18 that is caused to emit light in SB5 is switched. That is, in SB5, the first light emitting element 18 to be emitted next time is one light receiving element 16 more than the first light emitting element 18 to be emitted last time in SB2.
After the setting of the first light emitting element 18 arranged on the side farther from SB2, SB2 and subsequent steps are repeated.

【0057】しかし、このSB4の判断が肯定された場
合には、すべての第1発光素子18が発光させられたこ
ととなるので、続くSB6からSB9において、SB2
からSB5までと同様の動作が、第2発光素子20につ
いて行われる。すなわち、SB6において、受光素子1
6に最も近い側の第2発光素子20が一定時間T1 発光
させられ、SB7において、第2光信号SVIRが読み込
まれる。そして、続くSB8において、SB6における
第2発光素子20の位置が受光素子16から最も遠い側
の第2発光素子20であるかが判断され、このSB8の
判断が否定された場合には、SB9において発光させら
れる素子が受光素子16から一つ遠い側へ切り換えら
れ、SB6以降が繰り返される。本実施例では、SB
2、SB4、SB5、SB6、SB8、SB9が発光素
子選択手段80に対応している。
However, if the determination at SB4 is affirmative, it means that all the first light-emitting elements 18 have been made to emit light.
To SB5 are performed for the second light emitting element 20. That is, in SB6, the light receiving element 1
6 the second light emitting device 20 nearest the side is allowed to a certain time T 1 emits, at SB7, the second optical signal SV IR are read. Then, in SB8, it is determined whether the position of the second light emitting element 20 in SB6 is the second light emitting element 20 farthest from the light receiving element 16. If the determination in SB8 is denied, the process proceeds to SB9. The element to emit light is switched to a side farther from the light receiving element 16 by one, and SB6 and subsequent steps are repeated. In this embodiment, SB
2, SB4, SB5, SB6, SB8, and SB9 correspond to the light emitting element selection means 80.

【0058】しかし、このSB8の判断が肯定された場
合には、すべての第2発光素子20が発光させられたこ
ととなるので、続く周波数解析手段64に対応するSB
10において、SA7と同様にして、それぞれの発光素
子18、20毎に、第1光信号SVR の交流成分ACR
および直流成分DCR と、第2光信号SVIRの交流成分
ACIRおよび直流成分DCIRとが抽出される。続く交直
成分比算出手段66に対応するSB11では、SA8と
同様にして第1光信号SVR の交直成分比(ACR /D
R )および第2光信号SVIRの交直成分比(ACIR
DCIR)が算出される。
However, if the determination in SB8 is affirmative, it means that all the second light emitting elements 20 have been lit, so that the SB
In 10, in the same manner as in SA7, for each of the light emitting elements 18 and 20, the alternating current component AC R of the first optical signal SV R
The DC component DC R and the AC component AC IR and the DC component DC IR of the second optical signal SV IR are extracted. In SB11 corresponds to the subsequent AC-DC component ratio calculating means 66, AC-DC component ratio of the first optical signal SV R in the same manner as SA8 (AC R / D
C R ) and the AC / DC component ratio of the second optical signal SV IR (AC IR /
DCIR ) is calculated.

【0059】続くSB12では、図12(a)に示すよ
うに、SB11において算出された第1光信号SVR
交直成分比(ACR /DCR )の第1発光素子18と受
光素子16との間の距離に対する増加率を示す曲線、お
よび第2光信号SVIRの交直成分比(ACIR/DCIR
の第2発光素子20と受光素子16との間の距離に対す
る増加率を示す曲線がそれぞれ算出され、続くSB13
において、そのそれぞれ算出された増加率曲線におい
て、最大値を示す発光素子18、20と受光素子16と
の距離よりも受光素子16との距離が遠い範囲で、増加
率が基準値Bとなる発光素子18、20と受光素子16
との距離Dをそれぞれ決定する。
[0059] In subsequent SB12, as shown in FIG. 12 (a), a first light emitting element 18 and the light receiving element 16 of the AC-DC component ratio of the first optical signal SV R calculated in SB11 (AC R / DC R) Curve showing the rate of increase with respect to the distance between, and the ratio of the AC-DC component of the second optical signal SV IR (AC IR / DC IR )
The curve showing the rate of increase with respect to the distance between the second light-emitting element 20 and the light-receiving element 16 is calculated.
In the calculated increase rate curves, in the range where the distance to the light receiving element 16 is farther than the distance between the light emitting elements 18 and 20 showing the maximum value and the light receiving element 16, the light emission at which the increase rate becomes the reference value B is obtained. Elements 18, 20 and light receiving element 16
Are determined respectively.

【0060】続くSB14では、SB13においてそれ
ぞれ決定された距離Dに基づいて、第1発光素子18の
最適発光素子および第2発光素子20の最適発光素子を
決定する。たとえば、増加率が基準値B以下となる範囲
で受光素子16との距離が距離Dに最も近い発光素子1
8、20を最適発光素子としてそれぞれ決定する。従っ
て、本実施例では、SB12、SB13、SB14が最
適発光素子決定手段82に対応している。
At SB14, the optimum light emitting element of the first light emitting element 18 and the optimum light emitting element of the second light emitting element 20 are determined based on the distance D determined at SB13. For example, the light emitting element 1 whose distance to the light receiving element 16 is closest to the distance D within a range where the increase rate is equal to or less than the reference value B.
8, 20 are determined as the optimum light emitting elements, respectively. Therefore, in this embodiment, SB12, SB13, and SB14 correspond to the optimum light emitting element determining means 82.

【0061】上述のように、本実施例によれば、発光素
子駆動回路78により、受光素子16との間の距離が漸
次異なるようにそれぞれ複数設けられた2種類の発光素
子18、20が順次発光させられると、受光素子16と
発光素子18、20との距離がそれぞれ異なることによ
り、生体中の異なる深度で散乱された射出光が受光素子
16により受光される。受光された射出光は、交直成分
比算出手段66において交流成分ACR 、ACIRと直流
成分DCR 、DCIRの比(ACR /DCR )、(ACIR
/DCIR)が算出され、最適発光素子決定手段82にお
いて、その交流成分と直流成分の比(ACR /D
R )、(ACIR/DCIR)の、発光素子18、20と
受光素子16との距離に対する変化曲線の一次微分曲線
である、交直成分比(ACR /DCR )、(ACIR/D
IR)の、発光素子18、20と受光素子16との距離
に対する増加率を示す曲線を求め、その一次微分曲線の
最大値を示す発光素子18、20と受光素子16との距
離よりも受光素子16との距離が遠い範囲で、増加率が
基準値B以下となる発光素子18、20と受光素子16
との距離に基づいて最適発光素子が決定されていた。
As described above, according to this embodiment, the light-emitting element driving circuit 78 causes the two types of light-emitting elements 18 and 20 provided in such a manner that the distance from the light-receiving element 16 gradually changes, respectively. When the light is emitted, the emitted light scattered at different depths in the living body is received by the light receiving element 16 due to the different distances between the light receiving element 16 and the light emitting elements 18 and 20. The received outgoing light is converted by the AC / DC component ratio calculating means 66 into AC components AC R , AC IR and DC components DC R , the ratio of DC IR (AC R / DC R ), (AC IR
/ DC IR ), and the optimum light emitting element determining means 82 calculates the ratio (AC R / D) of the AC component to the DC component.
C R), (the AC IR / DC IR), a first derivative curve of change curve with respect to the distance between the light emitting element 18 and the light receiving element 16, AC-DC component ratio (AC R / DC R), (AC IR / D
A curve showing the rate of increase of C IR ) with respect to the distance between the light-emitting elements 18 and 20 and the light-receiving element 16 is obtained, and the light-receiving amount is larger than the distance between the light-emitting elements 18 and 20 and the light-receiving element 16 showing the maximum value of the first derivative curve. The light-emitting elements 18 and 20 and the light-receiving element 16 whose increase rate is equal to or less than the reference value B in a range where the distance to the element 16 is long.
The optimum light-emitting element has been determined based on the distance from.

【0062】従って、前記一次微分曲線の最大値は、発
光素子18、20から発せられた光の散乱光が末梢血管
の密度が急に濃くなっている深度での散乱であることを
示し、その一次微分曲線の増加率が基準値以下となる点
は、発光素子18、20から発せられた光の散乱光が末
梢血管の密度が十分に濃くなった深度での散乱であるこ
とを示しているので、生体に照射され、生体中で散乱さ
れて受光素子により受光される2種類の波長の光の散乱
光が散乱される深度をそれぞれ最適な深度に自動的に揃
えることができ、反射型プロ−ブ10の測定精度が向上
する。
Accordingly, the maximum value of the first derivative curve indicates that the scattered light of the light emitted from the light emitting elements 18 and 20 is scattered at a depth where the density of the peripheral blood vessels suddenly increases. The point at which the rate of increase of the first derivative curve is equal to or less than the reference value indicates that the scattered light of the light emitted from the light emitting elements 18 and 20 is scattered at a depth where the density of peripheral blood vessels is sufficiently high. Therefore, it is possible to automatically adjust the depth at which the scattered light of the two wavelengths illuminated into the living body, scattered in the living body and received by the light receiving element is automatically adjusted to the optimum depth, respectively. -The measurement accuracy of the probe 10 is improved.

【0063】以上、本発明の一実施例を図面に基づいて
説明したが、本発明はその他の態様においても適用され
る。
While the embodiment of the present invention has been described with reference to the drawings, the present invention can be applied to other embodiments.

【0064】たとえば、前述の第1発明に対する図1の
実施例において、最適発光強度AE 1 、AE2 を求める
場合に、発光強度E1 、E2 と交直成分比(ACR /D
R)、(ACIR/DCIR)との関係曲線C1 、C2
算出し、その曲線C1 、C2の変曲点i1 、i2 に基づ
いて最適発光強度AE1 、AE2 がそれぞれ決定されて
いたが、第2発明に対する実施例で最適発光素子が決定
されたと同様に、交直成分比(ACR /DCR )、(A
IR/DCIR)と発光強度E1 、E2 との関係の変化曲
線の一次微分曲線すなわち交直成分比(ACR /D
R )、(ACIR/DCIR)の発光強度E1 、E2 に対
する増加率を示す曲線に基づいて最適発光強度がそれぞ
れ決定されてもよい。
For example, FIG.
In the embodiment, the optimum emission intensity AE 1, AETwoAsk for
The emission intensity E1, ETwoAnd the AC / DC component ratio (ACR/ D
CR), (ACIR/ DCIR) And relationship curve C1, CTwoTo
Calculated and its curve C1, CTwoInflection point i1, ITwoBased on
And the optimal emission intensity AE1, AETwoIs determined respectively
However, the optimum light emitting element is determined in the embodiment of the second invention.
Similarly, the AC-DC component ratio (ACR/ DCR), (A
CIR/ DCIR) And emission intensity E1, ETwoChange song with relationship
Derivative curve of the line, that is, the AC / DC component ratio (ACR/ D
CR), (ACIR/ DCIR) Emission intensity E1, ETwoTo
The optimum emission intensity is calculated based on the
May be determined.

【0065】また、前述の第2発明に対する図8の実施
例において、交直成分比(ACR /DCR )、(ACIR
/DCIR)の、発光素子18、20と受光素子16との
距離に対する増加率を示す曲線C3 に基づいて最適発光
素子がそれぞれ決定されていたが、第1発明に対する実
施例で最適発光強度が決定されたと同様に、交直成分比
(ACR /DCR )、(ACIR/DCIR)と、発光素子
18、20と受光素子16との距離との関係曲線を算出
し、その曲線の変曲点に基づいて最適発光素子がそれぞ
れ決定されてもよい。
Further, in the embodiment of FIG. 8 for the second invention described above, the AC / DC component ratio (AC R / DC R ), (AC IR
/ DC IR ), the optimum light emitting elements were determined based on the curve C 3 indicating the rate of increase of the distance between the light emitting elements 18 and 20 and the light receiving element 16. Similarly, the relationship curve between the AC / DC component ratio (AC R / DC R ) and (AC IR / DC IR ) and the distance between the light emitting elements 18 and 20 and the light receiving element 16 is calculated, and the curve of the curve is calculated. The optimum light emitting element may be determined based on the inflection point.

【0066】また、前述の第1発明に対する図1の実施
例において、最適発光強度決定手段68では、変曲点i
1 、i2 を示す発光強度E1 、E2 より一定量aだけ強
い発光強度を最適発光強度AE1 、AE2 として決定し
ていたが、変曲点i1 、i2を示す発光強度E1 、E2
が最適発光強度AE1 、AE2 として決定されてもよ
い。
Further, in the embodiment of FIG. 1 for the first invention described above, the optimum emission intensity determining means 68 determines the inflection point i.
1, i 2 emission intensity E 1 showing a has been determined a strong emission intensity by a predetermined amount a from E 2 as an optimum luminous intensity AE 1, AE 2, the emission intensity E showing the inflection point i 1, i 2 1, E 2
May be determined as the optimum emission intensities AE 1 and AE 2 .

【0067】また、前述の2つの実施例では、反射型プ
ロ−ブ10、70が酸素飽和度測定に用いられていた
が、ヘマトクリット値を測定するヘマトクリット値測定
装置に用いられてもよい。
In the above two embodiments, the reflection probes 10 and 70 are used for measuring the oxygen saturation, but they may be used for a hematocrit value measuring device for measuring a hematocrit value.

【0068】また、前述の2つの実施例では、2種類の
発光素子18、20から発光された光の散乱光が、共通
の受光素子16により受光されていたが、単一の波長の
みを受光する受光素子がそれぞれの波長に対応して設け
られてもよい。この場合は、第1発光素子18および第
2発光素子20は交互に発光させられる必要はなく、同
時に発光させられてもよい。
In the above two embodiments, the scattered light of the light emitted from the two types of light emitting elements 18 and 20 is received by the common light receiving element 16, but only a single wavelength is received. May be provided corresponding to the respective wavelengths. In this case, the first light emitting element 18 and the second light emitting element 20 do not need to emit light alternately, but may emit light at the same time.

【0069】また、前述の第2発明に対する図8の実施
例では、演算制御回路42からの駆動指令信号SLDを
受けた発光素子駆動回路78により、第1発光素子18
が受光素子16に最も近い側から最も遠い側へと順に発
光させられ、さらに第2発光素子20が受光素子16に
最も近い側から最も遠い側へと順に発光させられていた
が、発光素子18、20の受光素子16との距離と交直
成分比(ACR /DC R )、(ACIR/DCIR)が明確
であれば、その他の順で発光させられてもよい。
Further, the embodiment of FIG.
In the example, the drive command signal SLD from the arithmetic control circuit 42 is
The first light emitting element 18 is received by the received light emitting element drive circuit 78.
Are emitted sequentially from the side closest to the light receiving element 16 to the side farthest away.
Light, and the second light emitting element 20
Light was emitted in order from the closest side to the farthest side
Is the distance between the light emitting elements 18 and 20 and the light receiving element 16 and
Component ratio (ACR/ DC R), (ACIR/ DCIR) Is clear
If so, the light may be emitted in another order.

【0070】また、前述の第2発明に対する図8の実施
例において、反射型プロ−ブ70には、受光素子16か
らの距離が漸次異なるように、長手状に第1発光素子1
8および第2発光素子20が配置されていたが、受光素
子16を中心として、同心円状に複数の遮光壁が設けら
れ、その複数設けられた遮光壁と遮光壁との間に、発光
素子18、20が環状に設けられることにより、受光素
子16からの距離が漸次異なるように配置されてもよ
い。
Also, in the embodiment of FIG. 8 for the second invention described above, the first light emitting element 1 is longitudinally attached to the reflection type probe 70 so that the distance from the light receiving element 16 is gradually different.
8 and the second light-emitting element 20 are arranged, but a plurality of light-shielding walls are provided concentrically around the light-receiving element 16, and the light-emitting element 18 is provided between the plurality of provided light-shielding walls. , 20 may be arranged in a ring shape so that the distance from light receiving element 16 gradually varies.

【0071】また、前述の第2発明に対する図8の実施
例では、一組の発光素子18、20毎に遮光壁76が配
置されていたが、受光素子16と、受光素子16と最も
近い発光素子18、20との間に比較的大きい遮光壁8
4が設けられることによって、受光素子16に受光され
る散乱光の散乱深度が変化させられるものであってもよ
く、たとえば、図14に示すような反射型プロ−ブ86
が用いられてもよい。図14は、反射型プロ−ブ86の
図9のA−A線と同様の線での断面図を示している。こ
の反射型プロ−ブ86の場合は、前述の実施例の反射型
プロ−ブ70と同様の検出範囲を得ようとすると、プロ
−ブ86全体は大きくなるが、遮光壁84が一つで済む
ので、プロ−ブ86の構造が簡単となる利点がある。ま
た、この場合、受光素子16から最も遠い側の発光素子
18、20からの光の散乱光が、最も体表面12から浅
い部位からの散乱光を含んでいる。
In the embodiment of FIG. 8 for the second invention described above, the light-shielding wall 76 is provided for each of the pair of light-emitting elements 18 and 20, but the light-receiving element 16 and the light-emitting element closest to the light-receiving element 16 are arranged. A relatively large light-shielding wall 8 between the elements 18 and 20
By providing the light-receiving element 4, the scattering depth of the scattered light received by the light-receiving element 16 may be changed. For example, a reflective probe 86 as shown in FIG.
May be used. FIG. 14 is a sectional view of the reflective probe 86 taken along a line similar to the line AA in FIG. In the case of this reflective probe 86, to obtain a detection range similar to that of the reflective probe 70 of the above-described embodiment, the entire probe 86 becomes large, but only one light shielding wall 84 is used. Thus, there is an advantage that the structure of the probe 86 is simplified. In this case, the scattered light of the light from the light emitting elements 18 and 20 farthest from the light receiving element 16 includes the scattered light from the portion shallowest from the body surface 12.

【0072】その他、本発明はその主旨を逸脱しない範
囲において種々変更が加えられ得るものである。
The present invention can be variously modified without departing from the gist of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1発明の一実施例である反射型プロ
−ブを備えた酸素飽和度測定装置の構成を示すブロック
図である。
FIG. 1 is a block diagram showing a configuration of an oxygen saturation measuring apparatus provided with a reflective probe according to an embodiment of the first invention of the present invention.

【図2】受光素子により検出される光電脈波信号の周期
的な変動を例示する図である。
FIG. 2 is a diagram illustrating a periodic fluctuation of a photoelectric pulse wave signal detected by a light receiving element.

【図3】図1の実施例の演算制御装置の制御機能の要部
を説明する機能ブロック線図である。
FIG. 3 is a functional block diagram for explaining a main part of a control function of the arithmetic and control unit according to the embodiment of FIG. 1;

【図4】図3の周波数解析手段において解析された第1
光信号SVR 或いは第2光信号SVIRの交流成分ACR
或いはACIRおよび直流成分DCR 或いはDCIRを示す
図である。
FIG. 4 is a diagram showing a first example analyzed by the frequency analysis means of FIG. 3;
AC component AC R of optical signal SV R or second optical signal SV IR
Alternatively, it is a diagram showing AC IR and DC component DC R or DC IR .

【図5】図3の最適発光強度決定手段において求められ
る発光強度と交直成分比との関係曲線を示す図である。
FIG. 5 is a diagram showing a relationship curve between the light emission intensity and the AC / DC component ratio obtained by the optimum light emission intensity determination means in FIG. 3;

【図6】図3の酸素飽和度算出手段において用いられる
関係を示す図である。
FIG. 6 is a diagram showing a relationship used in the oxygen saturation calculating means of FIG. 3;

【図7】図1の実施例の演算制御装置の制御作動のうち
最適発光強度を決定する動作の要部を説明するフローチ
ャートである。
FIG. 7 is a flowchart illustrating a main part of an operation for determining an optimum light emission intensity among control operations of the arithmetic and control unit of the embodiment of FIG. 1;

【図8】本発明の第2発明の一実施例である反射型プロ
−ブを備えた酸素飽和度測定装置の構成を示すブロック
図である。
FIG. 8 is a block diagram showing a configuration of an oxygen saturation measuring apparatus provided with a reflective probe according to one embodiment of the second invention of the present invention.

【図9】図8の反射型プロ−ブを生体の体表面に対向す
る側から見た図である。
9 is a view of the reflective probe of FIG. 8 as viewed from a side facing a body surface of a living body.

【図10】図8の実施例の第1発光素子と受光素子との
距離と、受光素子により受光される射出光の散乱深度と
の関係を示す図である。
FIG. 10 is a diagram showing a relationship between a distance between a first light emitting element and a light receiving element in the embodiment of FIG. 8 and a scattering depth of emitted light received by the light receiving element.

【図11】図8の実施例の演算制御装置の制御機能の要
部を説明する機能ブロック線図である。
FIG. 11 is a functional block diagram illustrating a main part of a control function of the arithmetic and control unit according to the embodiment of FIG. 8;

【図12】図11の最適発光素子決定手段において求め
られる交直成分比の、発光素子と受光素子との距離に対
する増加率を示す図である。
FIG. 12 is a diagram showing an increasing rate of an AC / DC component ratio obtained by the optimum light emitting element determining means in FIG. 11 with respect to a distance between the light emitting element and the light receiving element.

【図13】図8の実施例の演算制御装置の制御作動のう
ち最適発光素子を決定する動作の要部を説明するフロー
チャートである。
FIG. 13 is a flowchart illustrating a main part of an operation of determining an optimal light emitting element among control operations of the arithmetic and control unit of the embodiment in FIG. 8;

【図14】第2発明の他の実施例である反射型プロ−ブ
の、図9のA−A線と同様の線での断面図を示す図であ
る。
FIG. 14 is a sectional view of a reflective probe according to another embodiment of the second invention, taken along a line similar to the line AA in FIG. 9;

【符合の説明】[Description of sign]

10、70、86:反射型プロ−ブ(反射型光電脈波検
出装置) 16:受光素子 18:第1発光素子 20:第2発光素子 24、76、84:遮光壁 30、78:発光素子駆動回路 62:発光強度変化手段 66:交直成分比算出手段 67:最適発光強度決定手段 68:最適発光強度調節手段 80:発光素子選択手段 82:最適発光素子決定手段 83:最適発光素子選択手段
10, 70, 86: Reflective probe (reflective photoelectric pulse wave detector) 16: Light receiving element 18: First light emitting element 20: Second light emitting element 24, 76, 84: Light shielding wall 30, 78: Light emitting element Driving circuit 62: Emission intensity changing means 66: AC / DC component ratio calculating means 67: Optimal emission intensity determining means 68: Optimal emission intensity adjusting means 80: Light emitting element selecting means 82: Optimal light emitting element determining means 83: Optimal light emitting element selecting means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ハウジングと、該ハウジングに収容され
て生体の表皮に向かって複数種類の波長の光を照射する
複数種類の発光素子と、該ハウジング内において遮光壁
を介して該発光素子から所定距離離れた位置に収容さ
れ、該複数種類の発光素子からの光が該生体表皮下で散
乱を受けて体表面から射出される複数種類の波長の光を
受光する受光素子とを備え、該複数種類の波長の射出光
に基づいて生体情報を得るための光電脈波をそれぞれ検
出する反射型光電脈波検出装置であって、 前記複数種類の発光素子に順次駆動電流を供給し、且つ
該発光素子のそれぞれの発光強度を調節することが可能
な発光素子駆動回路と、 前記受光素子により検出された射出光の交流成分と直流
成分の比を前記波長毎にそれぞれ算出する交直成分比算
出手段と、 前記受光素子により検出された射出光から前記交直成分
比算出手段により算出された交流成分と直流成分の比と
前記発光素子駆動回路によって駆動される発光素子の発
光強度との関係を波長毎に求め、その関係から、前記波
長毎にそれぞれ最適発光強度を決定する最適発光強度決
定手段と、 前記光電脈波の検出に先立って、該最適発光強度決定手
段により決定された最適発光強度で前記発光素子駆動回
路に前記複数種類の発光素子をそれぞれ発光させる最適
発光強度調節手段とを、含むことを特徴とする反射型光
電脈波検出装置。
1. A housing, a plurality of types of light emitting elements housed in the housing, and irradiating light of a plurality of wavelengths toward the epidermis of a living body, and a predetermined number of light emitting elements within the housing via a light shielding wall. A light receiving element that is received at a distance and receives light of a plurality of wavelengths emitted from the body surface after light from the plurality of light emitting elements is scattered under the surface of the living body subcutaneously; A reflection-type photoelectric pulse wave detection device for detecting photoelectric pulse waves for obtaining biological information based on emission lights of different wavelengths, wherein a drive current is sequentially supplied to the plurality of types of light emitting elements, and the light emission is performed. A light emitting element driving circuit capable of adjusting the light emission intensity of each of the elements, and an AC / DC component ratio calculating means for calculating a ratio between an AC component and a DC component of the emitted light detected by the light receiving element for each of the wavelengths. The relationship between the ratio between the AC component and the DC component calculated by the AC / DC component ratio calculating means from the emission light detected by the light receiving element and the emission intensity of the light emitting element driven by the light emitting element driving circuit is obtained for each wavelength. From the relationship, an optimal emission intensity determining means for determining an optimal emission intensity for each of the wavelengths, and prior to the detection of the photoelectric pulse wave, the light emitting element with an optimal emission intensity determined by the optimal emission intensity determining means A reflection type photoelectric pulse wave detecting device, comprising: a driving circuit; and an optimum light emission intensity adjusting means for causing each of the plurality of types of light emitting elements to emit light.
【請求項2】 生体の表皮に向かって複数種類の波長の
光を照射する複数種類の発光素子と、該発光素子から所
定距離離れた位置に収容され、該複数種類の発光素子か
らの光が該生体表皮下で散乱を受けて体表面から射出さ
れる複数種類の波長の射出光を受光する受光素子とを備
え、該複数種類の波長の光に基づいて生体情報を得るた
めの光電脈波をそれぞれ検出する反射型光電脈波検出装
置であって、 前記複数種類の発光素子と受光素子とが相互間に遮光壁
が介在させられた状態で収容され、且つ複数種類の波長
毎に設けられた複数の発光素子が、前記受光素子との間
の距離が漸次異なるようにそれぞれ設られたハウジング
と、 該ハウジング内にそれぞれ複数設けられた複数種類の発
光素子の中から波長毎に発光させるべき発光素子を選択
的に発光させることが可能な発光素子駆動回路と、 前記受光素子により検出された射出光の交流成分と直流
成分の比を前記波長毎にそれぞれ算出する交直成分比算
出手段と、 前記受光素子により検出された射出光から前期交直成分
比算出手段により算出された交流成分と直流成分の比と
前記発光素子駆動回路により選択される発光素子の前記
受光素子との距離との関係を波長毎に求め、その関係か
ら、前記波長毎にそれぞれ最適発光素子を決定する最適
発光素子決定手段と、 前記光電脈波の検出に先立って、前記最適発光素子決定
手段により波長毎に決定された最適発光素子を前記発光
素子駆動回路に発光させる最適発光素子選択手段とを、
含むことを特徴とする反射型光電脈波検出装置。
2. A plurality of types of light-emitting elements for irradiating light of a plurality of types of wavelengths toward the epidermis of a living body, and light emitted from the plurality of types of light-emitting elements is housed at a predetermined distance from the light-emitting elements. A light-receiving element that receives light of a plurality of wavelengths emitted from the body surface by being scattered under the body surface subcutaneously, and a photoelectric pulse wave for obtaining biological information based on the light of the plurality of wavelengths Respectively, wherein the plurality of types of light emitting elements and the light receiving elements are housed with a light shielding wall interposed therebetween, and provided for each of a plurality of types of wavelengths. A plurality of light emitting elements, a housing provided so that the distance between the light receiving elements is gradually different, and a plurality of types of light emitting elements provided in the housing to emit light for each wavelength. Select light emitting element A light-emitting element driving circuit capable of emitting light to the light-emitting element; an AC / DC component ratio calculating means for calculating a ratio between an AC component and a DC component of the emitted light detected by the light receiving element for each of the wavelengths; The relationship between the ratio of the AC component and the DC component calculated from the emitted light by the AC / DC component ratio calculation unit and the distance between the light-emitting element and the light-receiving element selected by the light-emitting element drive circuit is determined for each wavelength, From the relationship, optimal light emitting element determining means for determining an optimal light emitting element for each wavelength, and prior to the detection of the photoelectric pulse wave, the optimal light emitting element determined for each wavelength by the optimal light emitting element determining means, Optimal light emitting element selecting means for causing the light emitting element driving circuit to emit light,
A reflection-type photoplethysmographic detector characterized by including:
JP29828097A 1997-10-30 1997-10-30 Reflective photoelectric pulse wave detector Expired - Lifetime JP3790030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29828097A JP3790030B2 (en) 1997-10-30 1997-10-30 Reflective photoelectric pulse wave detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29828097A JP3790030B2 (en) 1997-10-30 1997-10-30 Reflective photoelectric pulse wave detector

Publications (2)

Publication Number Publication Date
JPH11128184A true JPH11128184A (en) 1999-05-18
JP3790030B2 JP3790030B2 (en) 2006-06-28

Family

ID=17857597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29828097A Expired - Lifetime JP3790030B2 (en) 1997-10-30 1997-10-30 Reflective photoelectric pulse wave detector

Country Status (1)

Country Link
JP (1) JP3790030B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083994A (en) * 1999-09-01 1999-12-06 조현우 Blood vessel search device
JP2000034134A (en) * 1998-07-16 2000-02-02 Ohara Inc Lithium ion conductive glass ceramics and cell or battery and gas sensor using the same
JP2003235819A (en) * 2001-12-14 2003-08-26 Nippon Koden Corp Signal processing method and pulse wave signal processing method
JP2004344668A (en) * 2003-05-21 2004-12-09 Asulab Sa Portable measuring instrument measuring physiological numerical value and including device irradiating surface of organic tissue
US7252639B2 (en) 2003-02-28 2007-08-07 Denso Corporation Method and apparatus for measuring biological condition
JP2011530351A (en) * 2008-08-07 2011-12-22 ユニバーシティ オブ マサチューセッツ Spectroscopic sensor
JP2013063203A (en) * 2011-09-20 2013-04-11 Rohm Co Ltd Pulse wave sensor
JP2013150707A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Pulse wave measurement device and signal processor
JP2013150708A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Method for mounting semiconductor element
JP2013153845A (en) * 2012-01-27 2013-08-15 Seiko Epson Corp Pulse wave measuring device and detection device
JP2016036728A (en) * 2014-08-05 2016-03-22 パナソニックIpマネジメント株式会社 Pulse wave sensor
JP2016052503A (en) * 2014-09-02 2016-04-14 アップル インコーポレイテッド Multiple light paths architecture and obscuration methods for signal and perfusion index optimization
JP2017176266A (en) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 Biological information measurement device
JP2018029870A (en) * 2016-08-26 2018-03-01 セイコーエプソン株式会社 Detection device and detection method
JP2019136442A (en) * 2018-02-15 2019-08-22 セイコーエプソン株式会社 Biological information measurement device
JP2019136441A (en) * 2018-02-15 2019-08-22 セイコーエプソン株式会社 Biological information detection sensor and biological information measurement device
JP2019166266A (en) * 2018-03-26 2019-10-03 セイコーエプソン株式会社 Biological information measuring device
JP2019166267A (en) * 2018-03-26 2019-10-03 セイコーエプソン株式会社 Biological information measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576504A (en) * 1991-09-20 1993-03-30 Colleen Denshi Kk Peripheral circulation state detector
JPH0524006U (en) * 1991-09-17 1993-03-30 コーリン電子株式会社 Reflective oximeter probe
JPH06319723A (en) * 1993-05-13 1994-11-22 Omron Corp Motion monitor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524006U (en) * 1991-09-17 1993-03-30 コーリン電子株式会社 Reflective oximeter probe
JPH0576504A (en) * 1991-09-20 1993-03-30 Colleen Denshi Kk Peripheral circulation state detector
JPH06319723A (en) * 1993-05-13 1994-11-22 Omron Corp Motion monitor device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034134A (en) * 1998-07-16 2000-02-02 Ohara Inc Lithium ion conductive glass ceramics and cell or battery and gas sensor using the same
KR19990083994A (en) * 1999-09-01 1999-12-06 조현우 Blood vessel search device
JP2003235819A (en) * 2001-12-14 2003-08-26 Nippon Koden Corp Signal processing method and pulse wave signal processing method
US7252639B2 (en) 2003-02-28 2007-08-07 Denso Corporation Method and apparatus for measuring biological condition
JP2004344668A (en) * 2003-05-21 2004-12-09 Asulab Sa Portable measuring instrument measuring physiological numerical value and including device irradiating surface of organic tissue
JP4580684B2 (en) * 2003-05-21 2010-11-17 アスラブ・エス アー Portable instrument for measuring physiological values including devices that illuminate the surface of organic tissue
US9095291B2 (en) 2008-08-07 2015-08-04 University Of Massachusetts Spectroscopic sensors
JP2011530351A (en) * 2008-08-07 2011-12-22 ユニバーシティ オブ マサチューセッツ Spectroscopic sensor
JP2013063203A (en) * 2011-09-20 2013-04-11 Rohm Co Ltd Pulse wave sensor
JP2013150707A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Pulse wave measurement device and signal processor
JP2013150708A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Method for mounting semiconductor element
JP2013153845A (en) * 2012-01-27 2013-08-15 Seiko Epson Corp Pulse wave measuring device and detection device
JP2016036728A (en) * 2014-08-05 2016-03-22 パナソニックIpマネジメント株式会社 Pulse wave sensor
JP2016052503A (en) * 2014-09-02 2016-04-14 アップル インコーポレイテッド Multiple light paths architecture and obscuration methods for signal and perfusion index optimization
US10215698B2 (en) 2014-09-02 2019-02-26 Apple Inc. Multiple light paths architecture and obscuration methods for signal and perfusion index optimization
US11536653B2 (en) 2014-09-02 2022-12-27 Apple Inc. Multiple light paths architecture and obscuration methods for signal and perfusion index optimization
JP2017176266A (en) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 Biological information measurement device
JP2018029870A (en) * 2016-08-26 2018-03-01 セイコーエプソン株式会社 Detection device and detection method
JP2019136442A (en) * 2018-02-15 2019-08-22 セイコーエプソン株式会社 Biological information measurement device
JP2019136441A (en) * 2018-02-15 2019-08-22 セイコーエプソン株式会社 Biological information detection sensor and biological information measurement device
JP2019166266A (en) * 2018-03-26 2019-10-03 セイコーエプソン株式会社 Biological information measuring device
JP2019166267A (en) * 2018-03-26 2019-10-03 セイコーエプソン株式会社 Biological information measurement device

Also Published As

Publication number Publication date
JP3790030B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP3790030B2 (en) Reflective photoelectric pulse wave detector
US8143605B2 (en) System and method for non-invasively monitoring conditions of a object
EP0812148B1 (en) Isolated layer pulse oximetry
US5203329A (en) Noninvasive reflectance oximeter sensor providing controlled minimum optical detection depth
JP3772189B2 (en) Sensor for optical measurement of blood oxygen saturation, measuring method thereof, and measuring apparatus thereof
US5772587A (en) Photosensor with multiple light sources
RU2727242C2 (en) Method and device for non-invasive optical in vivo determination of glucose concentration in leaking blood
JPH10216115A (en) Highly accurate reflection type degree of oxygen saturation measuring apparatus
JP2004135854A (en) Reflection type photoelectric pulse wave detector and reflection type oxymeter
JP4097522B2 (en) Biological light measurement device
EP1008925B1 (en) Device for controlling equipment by using signals from a living body
JPH10337282A (en) Reflection type oxygen saturation degree measuring device
JPH10216114A (en) Degree of oxygen saturation measuring apparatus
EP0747002A1 (en) Non-invasive bilirubin monitor
JP2011239863A (en) Optical measuring apparatus for living body, and optical measuring method for living body
JP3705667B2 (en) Heart failure monitoring device
JP3738335B2 (en) Peripheral circulation state measurement device
JP2555833Y2 (en) Reflective oximeter probe
JPH09215664A (en) Evaluator of autonomic nerve function
EP2339957A1 (en) Method and system for non-invasively monitoring fluid flow in a subject
JP2851088B2 (en) Biological signal pulse detector
JP4272024B2 (en) Optical biological measurement device
Prokop et al. Monitoring of the arterial blood waveforms with a multi-sensor system
WO2024028469A1 (en) Method for determining a substance concentration and detector device
JP2019130070A (en) Biological information measurement device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

EXPY Cancellation because of completion of term