JPH11128184A - Reflection type photoelectric pulse wave detection device - Google Patents

Reflection type photoelectric pulse wave detection device

Info

Publication number
JPH11128184A
JPH11128184A JP29828097A JP29828097A JPH11128184A JP H11128184 A JPH11128184 A JP H11128184A JP 29828097 A JP29828097 A JP 29828097A JP 29828097 A JP29828097 A JP 29828097A JP H11128184 A JPH11128184 A JP H11128184A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
light
emitting element
light emitting
optimum
plurality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29828097A
Other languages
Japanese (ja)
Other versions
JP3790030B2 (en )
Inventor
Hidekatsu Inukai
Toshihiko Ogura
Hiroyuki Wakamiya
敏彦 小椋
英克 犬飼
裕之 若宮
Original Assignee
Nippon Colin Co Ltd
日本コーリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reflection type photoelectric pulse wave detection device having good measuring accuracy by automatically arraying to an optimum depth the depths at which beams of plural kinds of wavelengths irradiated to a living body, scattered within the living body, and received by photocells are scattered.
SOLUTION: Two kinds of light emitting elements which emits beams of two kinds of wavelengths are varied in emission strength by a light emitting element drive circuit 30 and are made to emit light beams, which are scattered at different depths inside a living body. The beams emitted from the surface of the body are received by a photocell. The ratio of the alternate to direct components of the emitted beams is calculated by an alternate- direct component ratio calculation means 66, and an optimum emission strength is determined by an optimum emission strength determination means 67 according to an inflection point on the curve of change of the alternate-to-direct component ratio with respect to the emission strength. Since the inflection point shows that the beams are scattered at the depth where the density of peripheral blood vessels abruptly increases, the depths at which the beams of the two wavelengths irradiated toward the living body are scattered can be arrayed automatically, resulting in enhanced measuring accuracy of a reflection type photoelectric pulse wave detection device.
COPYRIGHT: (C)1999,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、生体に装着されて、その表皮下の末梢血管から得られる生体情報たとえば酸素飽和度あるいはヘマトクリット値などの情報を含む光電脈波を検出する反射型光電脈波検出装置に関するものである。 The present invention relates can be fitted to the living body, reflective optical Denmyaku for detecting a photoelectric pulse wave including information such as biometric information such as oxygen saturation level obtained from the peripheral blood vessels or hematocrit value under that skin it relates wave detection apparatus.

【0002】 [0002]

【従来の技術】生体の表皮下の末梢血管から得られる生体情報を検出するために生体に装着されて、その生体表皮の所定部位に複数種類の波長の光を照射し、表皮下の生体組織中で乱反射され、その所定部位から射出される後方散乱光すなわち光電脈波を検出する反射型光電脈波検出装置が知られている。 BACKGROUND ART is attached to a living body to detect biological information obtained from peripheral blood vessels under the skin of a living body is irradiated with light of a wavelength of a plurality of types to the predetermined site of the living epidermis, the subepidermal biological tissue It is diffusely reflected at medium, reflective photoelectric pulse-wave detector for detecting backscattered light i.e. the photoelectric pulse wave is emitted is known from the predetermined site. たとえば、酸素飽和度測定に用いられる反射型光電脈波検出装置では、発光素子として酸化ヘモグロビンと無酸素化ヘモグロビンの吸光係数が大きく異なる波長の赤色光を発光する発光素子と、酸化ヘモグロビンと無酸素化ヘモグロビンの吸光係数が略同じとなる波長の赤外光を発光する発光素子の2種類の発光素子が用いられ、生体の体表面下の真皮または皮下組織中の末梢血管からの散乱光を含む光電脈波に基づいて酸素飽和度が算出される。 For example, a reflection type photoelectric-pulse-wave detecting device used in oxygen saturation measurement, a light emitting element extinction coefficient of oxyhemoglobin and oxygen-free hemoglobin as the light emitting element emits red light of substantially different wavelengths, oxyhemoglobin and anoxic 2 types of light-emitting elements of the light emitting element is used for emitting infrared light having a wavelength extinction coefficient of hemoglobin is substantially the same, including light scattered from the peripheral blood vessels of the dermis or subcutaneous tissue beneath the body surface of a living body oxygen saturation is calculated based on the photoelectric pulse wave.

【0003】 [0003]

【発明が解決しようとする課題】しかしながら、生体に対して照射される光が生体中で散乱を受けて体表面から射出される光電脈波が、体表面からどのくらいの深度での散乱光を主として含むかは、表皮下への浸透深さに起因し、その浸透深さは照射される光の波長および光の強度によって異なっている。 However [0007], the photoelectric pulse wave light irradiated is emitted from the body surface by receiving scattered in the body to a living body is mainly scattered light in how much depth from the body surface It comprises or, due to the penetration depth into subepidermal, the penetration depth is different by the strength of the wavelength and light of the light irradiated. そのため、異なる複数種類の波長の光が生体に対して照射され、その生体中での散乱光が受光素子に受光された場合には、ハウジング内において複数種類の発光素子と受光素子との間の距離が略等しいと、それぞれ異なる深度の情報を反映している場合があり、測定の精度が得られない場合があった。 Therefore, light of different types of wavelengths is irradiated to a living body, if the scattered light in the biological is received by the light receiving element, between a plurality of types of light-emitting element and the light receiving element in the housing If the distance is substantially equal, might reflect the information of different depths, there is a case where the accuracy of the measurement can not be obtained. また、 Also,
表皮および真皮の厚さは、性別、年齢或いは個人によって差があり、また生体の部位によっても異なる。 The thickness of the epidermis and dermis, there is a difference sex, age or individual, also varies depending on the site of the living body. さらに、体表面下のどのくらいの深度での散乱光が受光素子により主として受光されるかは、発光素子と受光素子の位置関係によっても異なってくる。 Furthermore, either primarily received by the scattered light receiving element in how much depth beneath the body surface, it varies depending on the position relation between the light emitting element and the light receiving element. そのため最適な深度での散乱光により生体情報を測定していない場合もあった。 If you do not measure the biological information it was also the scattered light at that for optimum depth.

【0004】本発明は以上の事情を背景として為されたものであって、その目的とするところは、生体に照射され、生体中で散乱されて受光素子により受光される複数種類の波長の散乱光が散乱される深度をそれぞれ最適な深度に自動的に揃えることにより、測定精度のよい反射型光電脈波検出装置を提供することにある。 [0004] The present invention was made in view of the background art described above, it is an object is irradiated to the living body, the scattering of a plurality of kinds of wavelengths to be received by the light receiving element is scattered in the living body by aligning the depth which light is scattered automatically to the optimum depth respectively, to provide a good reflection-type photoelectric pulse wave detector measurement accuracy.

【0005】 [0005]

【課題を解決するための第1の手段】かかる目的を達成するための第1発明の要旨とするところは、ハウジングと、該ハウジングに収容されて生体の表皮に向かって複数種類の波長の光を照射する複数種類の発光素子と、該ハウジング内において遮光壁を介して該発光素子から所定距離離れた位置に収容され、該複数種類の発光素子からの光が該生体表皮下で散乱を受けて体表面から射出される複数種類の波長の光を受光する受光素子とを備え、 [First means for solving the problems] such it is an gist of the first invention for achieving the object, the housing and the light of the wavelength of the plurality of kinds are accommodated in the housing towards the skin of the living body a plurality of types of light emitting elements for irradiating, is housed at a predetermined distance from the light emitting element via the light shielding wall within said housing, receives the light scattered under biological epidermis from the plurality several light emitting element and a light receiving element for receiving light of a plurality of kinds of wavelengths emitted from the body surface Te,
該複数種類の波長の射出光に基づいて生体情報を得るための光電脈波をそれぞれ検出する反射型光電脈波検出装置であって、(a)前記複数種類の発光素子に順次駆動電流を供給し、且つ該発光素子のそれぞれの発光強度を調節することが可能な発光素子駆動回路と、(b)前記受光素子により検出された射出光の交流成分と直流成分の比を前記波長毎にそれぞれ算出する交直成分比算出手段と、(c)前記受光素子により検出された射出光から前記交直成分比算出手段により算出された交流成分と直流成分の比と前記発光素子駆動回路によって駆動される発光素子の発光強度との関係を波長毎に求め、その関係から、前記波長毎にそれぞれ最適発光強度を決定する最適発光強度決定手段と、(d)前記光電脈波の検出に先立って、該最適発 A reflection type photoelectric pulse-wave detecting device which detects respective photoelectric pulse wave for obtaining biological information based on the light emitted plurality several wavelengths, sequentially supplied drive current to (a) the plurality of types of light emitting elements and and each of the light emitting element driving circuit capable of adjusting the light emission intensity of the light emitting element, (b), respectively the ratio of the DC component and the detected emitted light of the AC component by the light receiving element for each of the wavelength and AC-DC component ratio calculating means for calculating, driven by (c) said the emitted light detected by the light receiving element AC-DC component ratio AC component calculated by the calculation means and the ratio of the DC component the light-emitting element driving circuit emitting determine the relationship of the luminous intensity of the element for each wavelength, from the relationship, and the optimum light emission intensity determining means for determining respective optimum light emission intensity for each of the wavelength, prior to detection of the photoelectric pulse wave (d), the optimum departure 強度決定手段により決定された最適発光強度で前記発光素子駆動回路に前記複数種類の発光素子をそれぞれ発光させる最適発光強度調節手段とを、 The optimum luminous intensity adjusting means for the causing plural types of light emitting elements to emit light respectively to the light emitting element driving circuit at the optimum light emission intensity determined by the intensity determining means,
含むことにある。 Some that include.

【0006】 [0006]

【第1発明の効果】このようにすれば、発光素子駆動回路により、それぞれの波長の光を発光する発光素子の発光強度が調節させられてその発光素子が発光させられ、 [Effects of the first invention] In this way, the light emitting element driving circuit, the light emitting element is caused to emit light emission intensity of the light emitting element that emits light in the respective wavelengths is allowed to adjust,
発光強度の変化によって、生体中の異なる深度で散乱を受けた射出光が受光素子により検出される。 By changes in emission intensity, emitted light received scattered at different depths of a living body is detected by the light receiving element. 受光された射出光は、交直成分比算出手段において交流成分と直流成分の比が算出され、最適発光強度決定手段において、 Emitted light received is calculated the ratio of the DC component and an AC component in the AC-DC component ratio calculating means, the optimum light emission intensity determining means,
その交流成分と直流成分の比の発光強度に対する変化曲線に基づいて最適発光強度が決定され、生体情報を測定するために光電脈波が検出される状態では、最適発光強度調節手段により発光素子が最適発光強度で発光させられる。 The optimum luminous intensity based on changes curves AC component with respect to the emission intensity ratio of the DC component is determined, in the state in which the photoelectric pulse wave is detected in order to measure the biological information, the light emitting element is the optimum luminous intensity adjusting means It is caused to emit light at the optimum light emission intensity. 交流成分と直流成分の比の発光強度に対する変化曲線は、散乱光が散乱される深度における末梢血管の密度に関連して変化する。 Change curve to the emission intensity ratio of the AC component and the DC component, the scattered light varies with respect to the density of the peripheral blood vessels in the depth to be scattered. 従って、その変化曲線に基づいて発光素子の発光強度を決定することにより、生体に照射され、生体中で散乱されて受光素子により受光される複数種類の波長の散乱光が散乱される深度をそれぞれ最適な深度に自動的に揃えることができ、反射型光電脈波検出装置の測定精度が向上する。 Therefore, by determining the emission intensity of the light-emitting element based on the change curve, it is irradiated to the living body, a plurality of kinds of depths which the scattered light is scattered in the wavelength received by the light receiving element is scattered in the living body, respectively It can be automatically aligned to the optimum depth, thereby improving the measurement accuracy of the reflection-type photoelectric pulse-wave detecting device.

【0007】 [0007]

【課題を解決するための第2の手段】また、前記目的を達成するための第2発明の要旨とするところは、生体の表皮に向かって複数種類の波長の光を照射する複数種類の発光素子と、該発光素子から所定距離離れた位置に収容され、該複数種類の発光素子からの光が該生体表皮下で散乱を受けて体表面から射出される複数種類の波長の射出光を受光する受光素子とを備え、該複数種類の波長の光に基づいて生体情報を得るための光電脈波をそれぞれ検出する反射型光電脈波検出装置であって、(a)前記複数種類の発光素子と受光素子とが相互間に遮光壁が介在させられた状態で収容され、且つ複数種類の波長毎に設けられた複数の発光素子が、前記受光素子との間の距離が漸次異なるようにそれぞれ設られたハウジングと、(b)該ハウジ The A second means for solving], where the gist of the second invention for achieving the above object, emitting a plurality of types for emitting light of a plurality of types of wavelengths towards the skin of the living body and the element is accommodated at a predetermined distance from the light emitting element, receiving the emitted light of a plurality of kinds of wavelengths in which light is emitted from the body surface by receiving scattered under biological epidermis from the plurality several light emitting element and a light receiving element for, a reflection type photoelectric pulse-wave detecting device which detects respective photoelectric pulse wave for obtaining biological information based on the light of the plurality several wavelengths, (a) said plurality of types of light emitting elements a light receiving element and is accommodated in a state in which the light shielding wall was interposed therebetween, and a plurality of light emitting elements provided in each of a plurality of types of wavelengths, respectively distances progressively different between the light receiving element a housing has been set, (b) said housings グ内にそれぞれ複数設けられた複数種類の発光素子の中から波長毎に発光させるべき発光素子を選択的に発光させることが可能な発光素子駆動回路と、(c)前記受光素子により検出された射出光の交流成分と直流成分の比を前記波長毎にそれぞれ算出する交直成分比算出手段と、(d)前記受光素子により検出された射出光から前期交直成分比算出手段により算出された交流成分と直流成分の比と前記発光素子駆動回路により選択される発光素子の前記受光素子との距離との関係を波長毎に求め、その関係から、前記波長毎にそれぞれ最適発光素子を決定する最適発光素子決定手段と、 A light emitting element driving circuit capable of selectively emitting the light emitting element to emit light for each wavelength from the plurality of types of light-emitting elements provided in plural, respectively in the grayed was detected by (c) said light receiving element and AC-DC component ratio calculating means for calculating each ratio of the AC component and the DC component of the emitted light for each said wavelength, the AC component calculated by the year AC-DC component ratio calculation means from the emitted light detected by; (d) light receiving element a DC obtain the relation of the components the ratio between the distance between the light receiving elements of the light emitting element selected by the light emitting element driving circuit for each wavelength, from the relationship, the optimum light emission to determine the respective optimum light emitting device for each of said wavelengths and the element determination means,
(e)前記光電脈波の検出に先立って、前記最適発光素子決定手段により波長毎に決定された最適発光素子を前記発光素子駆動回路に発光させる最適発光素子選択手段とを、含むことにある。 (E) prior to detection of the photoelectric pulse wave, the optimum light emitting element selection means for emitting an optimum light emitting device determined for each wavelength to the light emitting element driving circuit by the optimum light emitting element determination means is to include .

【0008】 [0008]

【第2発明の効果】このようにすれば、発光素子駆動回路により、受光素子との間の距離が漸次異なるようにそれぞれ複数設けられた複数種類の発光素子が順次発光させられると、受光素子と発光素子との距離がそれぞれ異なることにより生体中の異なる深度で散乱された射出光が受光素子により受光される。 If [the second Effect of the Invention] Thus, the light emitting element driving circuit, the plurality of types of light emitting elements distance is provided with a plurality each of progressively differently between the light receiving element is caused to emit light sequentially, the light-receiving element emitted light which distance is scattered at different depths of a living body by different respective light-emitting element is received by the light receiving element and. 受光された射出光は、交直成分比算出手段において交流成分と直流成分の比が算出され、最適発光素子決定手段において、その交流成分と直流成分の比の、発光素子と受光素子との距離に対する変化曲線に基づいて最適発光素子が決定される。 Emitted light received is calculated the ratio of the DC component and an AC component in the AC-DC component ratio calculating means, the optimum light emitting element determination means, the ratio of the direct current component and alternating current component thereof, to the distance between the light emitting element and the light receiving element optimum light emitting device is determined based on the change curve. 生体情報を測定するために光電脈波が検出される状態では、 In a state in which the photoelectric pulse wave is detected in order to measure biological information,
最適発光素子選択手段により選択された最適発光素子が発光させられる。 Optimal light emitting element selecting means by the selected optimum light emitting element is caused to emit light. 交流成分と直流成分の比の、発光素子と受光素子との距離に対する変化曲線は、散乱光が散乱される深度における末梢血管の密度に関連して変化する。 Of the AC component and the DC component ratio, change curve with respect to the distance between the light emitting element and the light receiving element, the scattered light varies with respect to the density of the peripheral blood vessels in the depth to be scattered. 従って、その変化曲線に基づいて受光素子との間の距離が最適となる発光素子を決定することにより、生体に照射され、生体中で散乱されて受光素子により受光される複数種類の波長の散乱光が散乱される深度をそれぞれ最適な深度に自動的に揃えることができ、反射型光電脈波検出装置の測定精度が向上する。 Therefore, by determining the light-emitting element in which the distance between the light receiving element based on the change curve is optimal, is irradiated to the living body, the scattering of a plurality of kinds of wavelengths to be received by the light receiving element is scattered in the living body light can be automatically align the depth to be scattered to the optimum depth respectively, to improve the measurement accuracy of the reflection-type photoelectric pulse-wave detecting device.

【0009】 [0009]

【発明の他の態様】ここで、好適には、上記第1発明の最適発光強度決定手段は、前記交直成分比算出手段により算出された交流成分と直流成分の比の、前記発光素子駆動回路によって変化させられた発光素子の発光強度に対する増加率を示す曲線すなわち上記交流成分と直流成分の比と、上記発光強度との関係の変化曲線を発光強度について微分した一次微分曲線を求め、その一次微分曲線の最大値を示す発光強度よりも強い発光強度の範囲において、増加率が一定値以下となる発光強度に基づいて最適発光強度を決定するものである。 [Another embodiment of the invention] Here, preferably, the optimum light emission intensity determining means in the first invention, the ratio of the direct current component and the calculated AC component by said AC to DC component ratio calculating means, the light emitting element driving circuit determined curve that is, the AC component shows an increase of the emitted light intensity of the light-emitting elements was varied and the ratio of the DC component, the first derivative curve of the change curve of the relationship obtained by differentiating the emission intensity of the emission intensity by primary its in the context of strong emission intensity than the light emission intensity corresponding to the maximum differential curve in which the increase rate to determine the optimal emission intensity based on the light emission intensity as a certain value or less. このようにすれば、前記一次微分曲線の最大値は、発光素子から発せられた光の散乱光が末梢血管の密度が急に濃くなっている深度での散乱であることを示し、その一次微分曲線の増加率が一定値以下となる点は、発光素子から発せられた光の散乱光が末梢血管の密度が十分濃くなった深度での散乱であることを示しているので、生体に照射され、生体中で散乱されて受光素子により受光される複数種類の波長の散乱光が散乱される深度をそれぞれ最適な深度に自動的に揃えることができ、反射型光電脈波検出装置の測定精度が向上する。 Thus, the maximum value of said first derivative curve shows that the scattered light of the light emitted from the light emitting element is scattered in the depth density of peripheral vascular becomes suddenly deeper, its first derivative the point at which the rate of increase in the curve is equal to or less than a predetermined value, the scattered light of the light emitted from the light emitting element is the density of the peripheral blood vessels are shown to be scattered in a sufficiently dense since depth, is irradiated to the living body , are scattered in the body can be automatically align the depth scattered light is scattered in the wavelength of the plurality of types of light received by the light receiving element to an optimum depth respectively, the measurement accuracy of the reflection-type photoelectric pulse-wave detecting device improves.

【0010】また、好適には、上記第1発明の最適発光強度決定手段は、前記交直成分比算出手段により算出された交流成分と直流成分の比と、前記発光素子駆動回路によって変化させられた発光素子の発光強度との関係の変化曲線を求め、その変化曲線の変曲点に基づいて最適発光強度を決定するものである。 Further, preferably, the optimum light emission intensity determining means of the first invention, the ratio of the direct current component and the calculated AC component by said AC to DC component ratio calculating means, was varied by the light emitting element driving circuit determine the change curve of the relationship between the emission intensity of the light emitting element is to determine the optimal emission intensity based on the inflection point of the variation curve. このようにすれば、変化曲線の変曲点は、発光素子から発せられた光の散乱光が末梢血管の密度が急に濃くなっている深度での散乱であることを示しているので、生体に照射され、生体中で散乱されて受光素子により受光される複数種類の波長の散乱光が散乱される深度をそれぞれ最適な深度に自動的に揃えることができ、反射型光電脈波検出装置の測定精度が向上する。 Thus, the inflection point of the variation curve, since the scattered light of the light emitted from the light emitting element indicates that the scattering in the depth density of peripheral vascular becomes suddenly darker, biological to be irradiated, is scattered in the living body can be automatically aligned with the respective optimal depth plurality of types of the depth scattered light is scattered in the wavelength received by the light receiving element, the reflection-type photoelectric pulse-wave detecting device measurement accuracy is improved.

【0011】また、好適には、上記第2発明の最適発光素子決定手段は、前記交直成分比算出手段により算出された交流成分と直流成分の比の、前記発光素子駆動回路によって選択させられた発光素子と受光素子との距離に対する増加率を示す曲線すなわち上記交流成分と直流成分の比と、上記発光素子と受光素子間の距離との関係の変化曲線を発光素子と受光素子との距離について微分した一次微分曲線を求め、その一次微分曲線の最大値を示す発光素子よりも発光素子と受光素子との距離が遠い範囲において、増加率が基準値以下となる発光素子と受光素子との距離に基づいて最適発光素子を決定するものである。 Further, preferably, the optimum light emitting element determination means of the second invention, the ratio of the direct current component and the calculated AC component by said AC to DC component ratio calculating means and allowed to select by the light emitting element driving circuit a light emitting element and a curve that is, the AC component indicates the increase rate for the distance between the light receiving elements and the ratio of the DC component, the distance of the change curve of the relationship between the distance between the light emitting element and the light receiving element and the light emitting element and the light receiving element seek obtained by differentiating the primary differential curve, the distance in a long distance range and the light emitting element than the light emitting device indicating the maximum value of the first derivative curve and the light receiving element, a light-emitting device increase rate is equal to or less than the reference value and the light receiving element it is to determine the optimum light emitting element based on. このようにすれば、前記一次微分曲線の最大値は、発光素子から発せられた光の散乱光が末梢血管の密度が急に濃くなっている深度での散乱であることを示し、その一次微分曲線の増加率が基準値以下となる点は、発光素子から発せられた光の散乱光が末梢血管の密度が十分濃くなった深度での散乱であることを示しているので、生体に照射され、生体中で散乱されて受光素子により受光される複数種類の波長の散乱光が散乱される深度をそれぞれ最適な深度に自動的に揃えることができ、反射型光電脈波検出装置の測定精度が向上する。 Thus, the maximum value of said first derivative curve shows that the scattered light of the light emitted from the light emitting element is scattered in the depth density of peripheral vascular becomes suddenly deeper, its first derivative the point at which the rate of increase in the curve is equal to or less than the reference value, since the scattered light of the light emitted from the light emitting element is the density of the peripheral blood vessels are shown to be scattered in a sufficiently dense since depth, is irradiated to the living body , are scattered in the body can be automatically align the depth scattered light is scattered in the wavelength of the plurality of types of light received by the light receiving element to an optimum depth respectively, the measurement accuracy of the reflection-type photoelectric pulse-wave detecting device improves.

【0012】また、好適には、上記第2発明の最適発光素子決定手段は、前記交直成分比算出手段により算出された交流成分と直流成分の比と、前記発光素子駆動回路によって選択させられた発光素子の受光素子との距離との関係の変化曲線を求め、その変化曲線の変曲点に基づいて最適発光素子を決定するものである。 Further, preferably, the optimum light emitting element determination means of the second invention, the ratio of the direct current component and the calculated AC component by said AC to DC component ratio calculating means and allowed to select by the light emitting element driving circuit determine the change curve of the relationship between the distance between the light receiving elements of the light emitting element, and determining an optimum light-emitting element based on the inflection point of the variation curve. このようにすれば、変化曲線の変曲点は、発光素子から発せられた光の散乱光が末梢血管の密度が急に濃くなっている深度での散乱であることを示しているので、生体に照射され、 Thus, the inflection point of the variation curve, since the scattered light of the light emitted from the light emitting element indicates that the scattering in the depth density of peripheral vascular becomes suddenly darker, biological is irradiated to,
生体中で散乱されて受光素子により受光される複数種類の波長の散乱光が散乱される深度をそれぞれ最適な深度に自動的に揃えることができ、反射型光電脈波検出装置の測定精度が向上する。 Is scattered in the living body can be automatically align the depth scattered light is scattered in the wavelength of the plurality of types of light received by the light receiving element to an optimum depth respectively, improve the measurement accuracy of the reflection-type photoelectric pulse-wave detecting device to.

【0013】 [0013]

【発明の好適な実施の形態】以下、本発明の第1発明についての一実施例を図面に基づいて詳細に説明する。 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Hereinbelow, the present invention is described in detail with reference to an embodiment of the first aspect of the present invention with reference to the drawings.

【0014】図1は、反射型光電脈波検出装置である反射型プロ−ブ10を備えた反射型オキシメ−タすなわち酸素飽和度測定装置の構成を示している。 [0014] Figure 1 is a reflection type photoelectric pulse-wave detecting device in which reflective pro - shows the structure of data i.e. oxygen saturation measuring apparatus - Bed 10 reflective Okishime equipped. 図1において、反射型プロ−ブ10は、たとえば生体の末梢血管の密度が比較的高い額、指等の体表面12に密着した状態で装着される。 In Figure 1, the reflective pro - Bed 10 is, for example density is relatively high amount of peripheral vascular biological, it is mounted in close contact with the body surface 12 of the finger or the like. この反射型プロ−ブ10は、比較的浅い有底円筒状のハウジング14と、体表面下で散乱を受けて発光素子側へ出てくる後方散乱光を検知するためにそのハウジング14の底部内面の中央部に設けられ、ホトダイオ−ド或いはホトトランジスタ等から成る受光素子16と、ハウジング14の底部内面の受光素子16を中心とする同一半径rの円周上において所定間隔毎に交互に設けられたLED等からなる複数個(本実施例では8 The reflective pro - Bed 10 is relatively shallow bottomed cylindrical housing 14, the bottom inner surface of the housing 14 in order to detect the backscattered light emerging to the light emitting element side by receiving scattered under the body surface provided in the central portion, Hotodaio - a light receiving element 16 consisting of de or phototransistor, etc., provided alternately at predetermined intervals on the circumference of the same radius r around the light-receiving element 16 of the bottom internal surface of the housing 14 8 is a plurality (in this embodiment consisting of LED or the like has
個)の第1発光素子18および第2発光素子20と、ハウジング14内に一体的に設けられ受光素子16および発光素子18、20を保護するためにそれを覆う透明樹脂22と、ハウジング14内において受光素子16と発光素子18、20との間に設けられ、発光素子18、2 A first light emitting element 18 and the second light emitting element 20 of the individual), the transparent resin 22 covering it to protect the light-receiving element 16 and the light emitting element 18 and 20 provided integrally with the housing 14, the housing 14 It provided between the light receiving element 16 and the light emitting element 18 and 20 in the light-emitting element 18,2
0から照射された光の体表面12から受光素子16へ向かう反射光を遮光する円環状の遮光壁24とを備えて構成されている。 0 is configured by a light shielding wall 24 of the annular shields the reflected light toward the light receiving element 16 from the light of the body surface 12 irradiated from.

【0015】また、ハウジング14にはそのハウジング14の外周面および底部外面を覆うようにキャップ状のゴム部材58が一体的に設けられている。 Further, the rubber member 58 cap-shaped as the housing 14 covers the outer peripheral surface and the outer bottom surface of the housing 14 is integrally provided. このゴム部材58は、たとえばクロロプレンゴム等を原料としてスポンジ状に構成されており、好適な断熱性を備えている。 The rubber member 58 is composed of, for example, a sponge-like chloroprene rubber or the like as a raw material, and a suitable thermal insulation.
そして、このゴム部材58のハウジング14外周側に位置する部分が両面粘着シ−ト60を介して体表面12に固着されることにより、ハウジング14の開口端面および遮光壁24の先端面が体表面12に密着する状態でプロ−ブ10が体表面12に装着されている。 Then, part double-sided adhesive sheet that is located in the housing 14 outer periphery of the rubber member 58 - by being fixed to the body surface 12 through the door 60, the distal end surface is the body surface of the opening end face and the light-shielding wall 24 of the housing 14 Bed 10 is attached to the body surface 12 - professional in a state of close contact with the 12. なお、図1 It should be noted that, as shown in FIG. 1
において、両面粘着シ−ト60は便宜上実際より大幅に厚く描かれている。 In double-sided pressure-sensitive adhesive sheet - DOO 60 is for convenience drawn actually more significantly thicker.

【0016】上記第1発光素子18は、酸素飽和度によりヘモグロビンの吸光係数が影響される第1波長λ 1たとえば660nm程度の波長の赤色光を発光し、第2発光素子20は、酸素飽和度によりヘモグロビンの吸光係数が影響されない第2波長λ [0016] The first light emitting element 18 emits the red light of the first wavelength lambda 1 for example, a wavelength of about 660nm which extinction coefficient of hemoglobin by oxygen saturation is affected, the second light emitting element 20, oxygen saturation the second wavelength λ of extinction coefficient of hemoglobin is not affected by 2たとえば910nm程度の波長の赤外光を発光するものである。 2 such as those emitting infrared light having a wavelength of about 910 nm. なお、上記第1 It is to be noted that the first
波長λ 1および第2波長λ 2は、必ずしもこれらの波長に限定されるものではなく、酸素化ヘモグロビンの吸光係数と無酸素化ヘモグロビンの吸光係数とが大きく異なる波長と、それら両吸光係数が略同じとなる波長に設定される。 Wavelength lambda 1 and the second wavelength lambda 2 is not necessarily limited to these wavelengths, the extinction coefficient of oxygenated hemoglobin and the absorption coefficient of the oxygen-free hemoglobin and significantly different wavelengths, substantially they both extinction coefficient It is set to a wavelength having the same.

【0017】上記第1発光素子18および第2発光素子20は、光源として機能するものであって、発光素子駆動回路30により数百Hz乃至数kHz程度の比較的高い周波数で一定時間幅づつ交互に駆動されることによりそれぞれ発光させられる。 [0017] The first light emitting element 18 and the second light emitting element 20 is for functioning as a light source, the light emitting element driving circuit 30 by several hundred Hz to a predetermined time width at a time alternately at a relatively high frequency of several kHz It is caused to emit light respectively by being driven. この発光素子駆動回路30 The light emitting element driving circuit 30
は、上記第1発光素子18および第2発光素子20へ供給する駆動電流すなわちそれら第1発光素子18および第2発光素子20の発光強度を、後述の演算制御回路4 Is the light emission intensity of the first light emitting element 18 and the second drive current supplied to the light emitting element 20 that is, they first light emitting element 18 and the second light emitting element 20, the arithmetic control circuit to be described later 4
2からの指令に基づいて調節する機能を備えている。 And a function of adjusting based on a command from 2. それら第1発光素子18および第2発光素子20から体表面12直下の生体組織(血管床)へ向かって第1波長λ First wavelength toward therefrom first light emitting element 18 and the second light emitting element 20 to the body surface 12 directly under the body tissue (vascular beds) lambda
1の光および第2波長λ 2の光が交互に照射されると、 When one of the light and the second wavelength lambda 2 of light is irradiated alternately,
生体組織の毛細血管内血液に含まれる血球などにより散乱を受けた後方散乱光が反射光として体表面12から射出されるので、その後方散乱光すなわち生体組織(血管床)内からの反射光が共通の光センサとして機能する受光素子16によりそれぞれ受光され、第1波長λ 1の散乱光を示す第1光信号SV Rおよび第2波長λ 2の散乱光を示す第2光信号SV IRが出力されるようになっている。 Since backscattered light received and the scattering blood cells contained in the capillaries in the blood of the living tissue is emitted from the body surface 12 as reflected light, the reflected light from the backscattered light i.e. biological tissue (vascular beds) within the respectively received by the light receiving element 16 that serves as a common optical sensor, the second optical signal SV IR showing a first optical signal SV R and the second wavelength lambda 2 of the scattered light of a first wavelength lambda 1 of the scattered light output It is adapted to be. これら第1光信号SV Rおよび第2光信号SV The first optical signal SV R and the second optical signal SV
IRは、図2に例示するように直流(DC)成分と、心拍数に同期して変動する交流(AC)成分とを含んでいる。 IR includes a direct current (DC) component as illustrated in FIG. 2, an alternating current (AC) component varying in synchronization with the heart rate.

【0018】発光強度E 1 、E 2すなわち生体の体表面12に照射される光の強度が異なると、その照射された光の生体中への浸透深度が異なり、弱い光が照射されると比較的体表面12に近い(浅い)深度までしか浸透しないが、強い光が照射されると比較的体表面12から遠い(深い)部位まで浸透して散乱される。 [0018] intensity of the emission intensity E 1, E 2 namely light emitted to the body surface 12 of the living body are different, different penetration depth of the the irradiated light in a biological, a weak light is irradiated compared specifically the body surface 12 close to (shallow) only to a depth not penetrate, intense light is scattered to penetrate to relatively far from the body surface 12 (deep) site when irradiated. 発光素子駆動回路30により変化させられる第1発光素子18および第2発光素子20の発光強度E 1 、E 2の範囲は、個体差や反射型プロ−ブ10が装着される部位により表皮および真皮の厚さが異なっても、照射される光が毛細血管が多く存在する真皮あるいは皮下組織で主として散乱されることとなる発光強度を十分に含む範囲となるように、予め実験的に決定される。 Range of emission intensity E 1, E 2 of the light-emitting element driving circuit 30 first light-emitting element 18 and the second light emitting element 20 is changed by the individual differences and the reflection-type pro - epidermis site where Bed 10 is mounted and dermis It is different thickness of, so that the light emitted is in a range sufficiently including a light emitting intensity that would be mainly scattered in the dermis or subcutaneous tissue that there are many capillaries, is determined experimentally in advance .

【0019】上記受光素子16は、第1波長λ 1の後方散乱光を示す第1光信号SV Rと第2波長λ 2の後方散乱光を示す第2光信号SV IRとを含む光信号SVを増幅器32を介してローパスフィルタ34へ出力する。 [0019] The light-receiving element 16, an optical signal SV and a second optical signal SV IR indicating a first optical signal SV R indicating the first wavelength lambda 1 of the backscattered light and the second wavelength lambda 2 of the backscattered light and outputs to the low pass filter 34 via an amplifier 32. ローパスフィルタ34は入力された光信号SVから脈波の周波数よりも高い周波数を有するノイズを除去し、そのノイズが除去された光信号SVをデマルチプレクサ36へ出力する。 Low-pass filter 34 removes noise having a frequency higher than the frequency of the pulse wave from the input optical signal SV, and outputs an optical signal SV which the noise has been removed to the demultiplexer 36. なお、上記第1光信号SV Rおよび第2光信号SV IRは、体表面12の下の血管床における血液容積の脈動に対応して周期的に変化する光信号であるので、 Since the first optical signal SV R and the second optical signal SV IR is a light signal which periodically changes corresponding to the pulsation of the blood volume in the vascular bed beneath the body surface 12,
所謂容積脈波信号あるいは光電脈波信号ともいう。 Also referred to as a so-called volume pulse signal or the photoelectric pulse wave signal.

【0020】デマルチプレクサ36は後述の切換信号S [0020] The demultiplexer 36 is switching signal S which will be described later
Cにより第1発光素子18および第2発光素子20の発光に同期して切り換えられることにより、第1波長λ 1 By being switched in synchronization with the emission of the first light emitting element 18 and the second light emitting element 20 by C, the first wavelength lambda 1
の赤色光である第1光信号SV Rをサンプルホールド回路38およびA/D変換器40を介して演算制御回路4 First optical signal SV R a sample-and-hold circuit 38 and A / D converter 40 calculation control circuit 4 through a red light
2内のI/Oポート44へ逐次供給するとともに、第2 With sequentially supplied to the I / O port 44 in the 2, second
波長λ 2の赤外光である第2光信号SV IRをサンプルホールド回路46およびA/D変換器48を介してI/O A second optical signal SV IR is infrared light having a wavelength lambda 2 via a sample-and-hold circuit 46 and A / D converter 48 I / O
ポート44へ逐次供給する。 Sequentially supplied to the port 44. サンプルホールド回路3 Sample-and-hold circuit 3
8、46は、入力された光信号SV R 、SV IRをA/D 8, 46 is inputted optical signal SV R, the SV IR A / D
変換器40、48へ逐次出力する際に、前回出力した光信号SV R 、SV IRについてのA/D変換器40、48 When sequentially output to the converter 40 and 48, the optical signal SV R outputted last time, A / D converter for SV IR 40, 48
における変換作動が終了するまで次に出力する各光信号SV R 、SV IRをそれぞれ保持するためのものである。 Is for holding each conversion operation the optical signal SV R to be next output until the end, the SV IR in.

【0021】上記I/Oポート44は、データバスラインを介してCPU50、ROM52、RAM54、表示器56とそれぞれ接続されている。 [0021] The I / O port 44 via the data bus line CPU 50, ROM 52, RAM 54, are connected to the display device 56. CPU50は、RA CPU50 is, RA
M54の記憶機能を利用しつつROM52に予め記憶されたプログラムに従って第1発光素子18および第2発光素子20の最適発光強度決定動作および酸素飽和度測定測定動作を実行する。 Accordance M54 program stored in advance in ROM52 while utilizing a memory function of performing an optimum luminous intensity determination operation and oximetry measurement operation of the first light emitting element 18 and the second light emitting element 20. すなわち、演算制御装置42 That is, the arithmetic and control unit 42
は、図示しない起動釦が操作された場合には、まず以下の動作により第1発光素子18の最適発光強度AE 1および第2発光素子20の最適発光強度AE 2を決定する。 , When the start button not shown is operated, first to determine the optimum luminous intensity AE 2 of the optimum luminous intensity AE 1 and the second light emitting element 20 of the first light emitting element 18 by the following operation.

【0022】演算制御装置42は、I/Oポート44から発光素子駆動回路30へ駆動指令信号SLDを出力することにより、第1発光素子18および第2発光素子2 The arithmetic and control unit 42, I / O by outputting a drive command signal SLD to the light emitting element driving circuit 30 from the port 44, the first light emitting element 18 and the second light-emitting element 2
0を数百Hz乃至数kHz程度の比較的高い周波数で一定時間幅づつ交互に発光させ、さらに脈波の交流成分および直流成分を算出するため、脈拍の1拍分あるいは数拍分として予め設定される時間T 0毎に、発光素子駆動回路30から第1発光素子18および第2発光素子20 0 light is emitted in a predetermined time width at a time alternately at a relatively high frequency of several hundred Hz to several kHz, and for further calculating the AC component and the DC component of the pulse wave, preset as one beat or several beats of the pulse every time T 0 which is the first from the light emitting element driving circuit 30 light-emitting element 18 and the second light emitting element 20
へ出力される電流を漸次増加させ、第1発光素子18および第2発光素子20の発光強度E 1 、E 2を漸次変化させる。 Gradually increasing the current output to gradually vary the luminous intensity E 1, E 2 of the first light emitting element 18 and the second light emitting element 20. また、それら第1発光素子18および第2発光素子20の発光に同期して切換信号SCを出力してデマルチプレクサ36を切り換えることにより、第1光信号SV Rをサンプルホールド回路38へ、第2光信号SV Further, by switching them first light emitting element 18 and the second demultiplexer 36 outputs a switching signal SC in synchronization with the light emission of the light emitting element 20, the first optical signal SV R to a sample-and-hold circuit 38, the second light signal SV
IRをサンプルホールド回路46へそれぞれ振り分ける。 It distributes each IR to the sample-and-hold circuit 46.

【0023】また、演算制御装置42により、発光強度の変化の影響を受けた第1光信号SV Rおよび第2光信号SV IRから、予め記憶されたプログラムに従って、第1発光素子18の最適発光強度AE 1および第2発光素子20の最適発光強度AE 2が決定される。 Further, the arithmetic and control unit 42, from the first optical signal SV R and the second optical signal SV IR affected by changes in the emission intensity, in accordance with a program stored in advance, optimum emission of the first light emitting element 18 optimum luminous intensity AE 2 intensity AE 1 and the second light emitting element 20 is determined.

【0024】続いて、以下の酸素飽和度測定動作が実行される。 [0024] Subsequently, following the oxygen saturation measuring operation is performed. すなわち、I/Oポ−ト44から発光素子駆動回路30に駆動指令信号SLDが出力されることにより、発光素子駆動回路30から第1発光素子18および第2発光素子20へ最適発光強度AE 1 、AE 2を発光するための電流が出力され、第1発光素子18および第2発光素子20が数百Hz乃至数kHz程度の比較的高い周波数で一定時間幅づつ交互に発光させられる。 That, I / O ports - by driving command signal SLD to the light emitting element driving circuit 30 from preparative 44 is output, the optimum light emission intensity AE 1 from the light emitting element driving circuit 30 to the first light emitting element 18 and the second light emitting element 20 , is output current for emitting AE 2, the first light emitting element 18 and the second light emitting element 20 is caused to emit light for a predetermined time width at a time alternately at a relatively high frequency of several hundred Hz to several kHz. 受光素子16により受光される光信号SVは最適発光強度決定動作の場合と同様にしてI/Oポート44へ入力される。 Optical signal SV is received by the light receiving element 16 is inputted in the same manner as the optimum luminous intensity determination operation to the I / O port 44.

【0025】CPU50は、予め記憶されたプログラムに従って前記第1光信号SV Rおよび第2光信号SV IR The CPU50, the first optical signal SV R and the second optical signal SV IR according to a program stored in advance
がそれぞれ表す光電脈波形に基づいて末梢血管を流れる血液中の酸素飽和度SaO 2を決定し且つその決定した酸素飽和度SaO 2を表示器56に表示させる。 There is displayed on the display unit 56 the oxygen saturation SaO 2 was determined and the determined oxygen saturation SaO 2 in the blood flowing through the peripheral blood vessels based on the light Denmyaku waveforms representing respectively.

【0026】図3は、上記演算制御装置42の制御機能の要部を説明する機能ブロック線図である。 [0026] FIG. 3 is a functional block diagram illustrating portions of control functions of the arithmetic and control unit 42. 図3において発光強度変化手段62は、発光素子駆動回路30に駆動指令信号SLDを出力することにより、発光素子駆動回路30から第1発光素子18および第2発光素子20 Emission intensity varying means 3 62, the light emitting element by outputting a drive command signal SLD to the drive circuit 30, the light emitting element driving the circuit 30 first light-emitting element 18 and the second light emitting element 20
に出力される電流を漸次変化させ、第1発光素子18の発光強度E 1および第2発光素子20の発光強度E 2を変化させつつ、それら第1発光素子18および第2発光素子20を数百Hz乃至数kHz程度の比較的高い周波数で一定時間幅づつ交互に発光させる。 Gradually changing the current output, the number of emission intensity E 1 and while changing the emission intensity E 2 of the second light emitting element 20, which first light emitting element 18 and the second light emitting element 20 of the first light emitting element 18 hundred Hz to emit light in a predetermined time width at a time alternately at a relatively high frequency of several kHz.

【0027】周波数解析手段64は、高速フ−リエ変換法を利用した周波数解析を予め設定された所定の区間に施すことにより、受光素子16から出力された第1光信号SV Rおよび第2光信号SV IRから、その所定区間毎の第1光信号SV Rの交流成分AC Rおよび直流成分D The frequency analysis unit 64, a high speed off - by performing a frequency analysis using Fourier transform method previously set predetermined interval, the first optical signal SV R and the second light output from the light receiving element 16 from the signal SV IR, the alternating current component AC R and DC components D of the first optical signal SV R for each the predetermined interval
Rと第2光信号SV IRの交流成分AC IRおよび直流成分DC IRとをそれぞれ逐次決定する。 C R and the second optical signal SV IR alternating current component AC IR and DC component DC IR and the sequentially determined respectively. 上記交流成分AC The AC component AC
RおよびAC IRは、生体の脈拍数PR(1/分)すなわち脈拍周波数PF(Hz)に相当する周波数成分の信号電力(ワット)として得られ、上記直流成分DC RおよびD R and AC IR is obtained as a signal power of a frequency component corresponding to the biological pulse rate PR (1 / min) or pulse frequency PF (Hz) (watts), the direct current component DC R and D
IRは、直流に相当する周波数成分の信号電力(ワット)として得られる。 C IR is obtained as a signal power of a frequency component corresponding to a direct current (watts). 図4には、上記周波数解析によってえられた第1光信号SV R或いは第2光信号SV IRの周波数スペクトルの例が示されている。 Figure 4 shows an example of the frequency spectrum of the first optical signal SV R or the second optical signal SV IR which is example by the frequency analysis are shown.

【0028】交直成分比算出手段66は、受光素子16 The AC-DC component ratio calculating means 66, the light receiving element 16
により検出された射出光の交流成分AC R 、AC IRと直流成分DC R 、DC IRの比を波長λ 1 、λ 2毎にそれぞれ算出する。 Calculating respective alternating current component AC R of the detected emitted light, and AC IR DC component DC R, the ratio of the DC IR wavelengths lambda 1, every lambda 2 by. すなわち、上記周波数解析手段64により決定された第1光信号SV Rの交流成分AC Rおよび直流成分DC Rと第2光信号SV IRの交流成分AC IRおよび直流成分DC IRとから、その第1光信号SV Rの交直成分比(AC R /DC That is, from the first optical signal SV R alternating current component AC R and the direct current component DC R and alternating current component AC IR and DC component DC IR of the second optical signal SV IR of which is determined by the frequency analyzing means 64, a first AC-DC component ratio of the optical signal SV R (AC R / DC R )と、第2光信号SV IRの交直成分比(AC IR /DC IR )とをそれぞれ算出する。 And R), is calculated AC-DC component ratio of the second optical signal SV IR and (AC IR / DC IR), respectively. ところで、末梢血管は表皮にはほとんど存在せず、その下層の真皮およびさらにその下層にある皮下組織に集中している。 However, peripheral vascular hardly present in the epidermis, are concentrated in the underlying dermis and more subcutaneous tissue below it. 入射した光が真皮あるいは皮下組織で主として散乱されることにより、受光素子16に受光される散乱光が末梢血管の血液成分の影響を受ける場合は、散乱光の強度は末梢血管の脈動に対応して変化するため、光信号SV R 、SV IRは交流成分の割合が相対的に大きくなる。 By incident light is mainly scattered in the dermis or subcutaneous tissue, when the scattered light received by the light receiving element 16 is influenced by the blood components of peripheral blood vessels, the intensity of the scattered light corresponds to the pulsation of peripheral vascular to change Te, the optical signal SV R, SV IR percentage of the AC component is relatively large.

【0029】最適発光強度決定手段67は、交直成分比算出手段66により算出された2つの波長λ 1 、λ 2の射出光の交流成分AC R 、AC IRと直流成分DC R 、D The optimum luminous intensity determination unit 67, the two wavelengths lambda 1 calculated by the AC to DC component ratio calculation unit 66, the AC component AC R of lambda 2 of the emitted light, the AC IR DC component DC R, D
IRの比と発光素子駆動回路30によって駆動される発光素子18、20の発光強度との関係を波長毎にそれぞれ求め、その関係から、波長毎にそれぞれ最適発光強度AE 1 、AE 2を決定する。 Respectively determined the relationship between the emission intensity of the light emitting elements 18 and 20 which are driven as the ratio of C IR by a light emitting element driving circuit 30 for each wavelength, determined from the relation, respectively for each wavelength the optimum luminous intensity AE 1, AE 2 to. すなわち、交直成分比算出手段66により逐次算出された第1光信号SV Rの交直成分比(AC R /DC R )から、図5に示すように交直成分比(AC R /DC R )を縦軸とし、発光強度E 1を横軸とする二次元座標系において描かれる曲線C 1を酸素飽和度SaO 2の測定に先立って求め、その曲線C 1 That is, the vertical AC to DC component ratio of the first optical signal SV R which is sequentially calculated by the AC-DC component ratio calculating means 66 from the (AC R / DC R), AC-DC component ratio as shown in FIG. 5 (AC R / DC R) an axis, determined by the curve C 1 depicted in a two-dimensional coordinate system in which the emission intensity E 1 and the horizontal axis prior to the measurement of oxygen saturation SaO 2, the curve C 1
の変曲点i 1に基づいて最適発光強度AE 1を決定する。 To determine the optimal emission intensity AE 1 based on the inflection point i 1 of. たとえば、変曲点i 1を示す発光強度より予め設定された一定量aだけ強い発光強度を最適発光強度AE 1 For example, optimal strong luminescence intensity by a predetermined amount a previously set than the emission intensity of the peak indicating inflection point i 1 luminous intensity AE 1
として決定する。 It is determined as. さらに、同様にして、第2光信号SV Further, similarly, the second optical signal SV
IRの交直成分比(AC IR /DC IR )から曲線C 2を求め、その曲線C 2の変曲点i 2に基づいて最適発光強度AE 2を決定する。 Determine the curve C 2 from the AC-DC component ratio of IR (AC IR / DC IR) , to determine the optimal emission intensity AE 2 based on the inflection point i 2 of the curve C 2. たとえば、変曲点i 2を示す発光強度より予め設定された一定量aだけ強い発光強度を最適発光強度AE 2として決定する。 For example, to determine the strong luminescence intensity by a predetermined amount a previously set than the emission intensity of the peak indicating inflection point i 2 as an optimum luminous intensity AE 2.

【0030】変曲点i 1 、i 2は、受光素子16により受光される散乱光が、末梢血管の密度が急に濃くなる深度での散乱によるものであることを示し、一定量aは、 The inflection point i 1, i 2, the scattering light received by the light receiving element 16 indicates that the density of peripheral vessels is due to scattering in the suddenly darker depth, a certain amount a,
その深度よりもさらに少し深い深度である末梢血管の密度がほぼ一定となる深度での散乱光を受光するために予め実験的に求められるものである。 Are those previously determined experimentally for the density of peripheral vascular a little further deeper depth than the depth to receive scattered light at a substantially constant and becomes depth.

【0031】最適発光強度調節手段68は、酸素飽和度SaO 2を得るための光電脈波の検出に先立って、最適発光強度決定手段67により決定された最適発光強度A The optimum luminous intensity adjusting means 68, prior to detection of the photoelectric pulse wave for obtaining the oxygen saturation SaO 2, the optimum was determined by the optimum luminous intensity determination unit 67 emission intensity A
1 、AE 2となるように前記発光素子駆動回路30に第1発光素子18および第2発光素子20をそれぞれ発光させ、その発光強度を保持させる。 E 1, the light emitting element driving circuit 30 so that the AE 2 is emitting a first light emitting element 18 and the second light emitting element 20, respectively, to retain its emission intensity. 酸素飽和度算出手段69では、最適発光強度調節手段68により最適発光強度AE 1 、AE 2で第1発光素子18および第2発光素子20がそれぞれ発光させられている状態で、第1光信号SV Rの交直成分比(AC R /DC R )と第2光信号SV IRの交直成分比(AC IR /DC IR )との比R〔= In the oxygen saturation calculating unit 69, in a state where the optimum luminous intensity adjusting means 68 best luminous intensity AE 1, the first light emitting element in AE 2 18 and the second light emitting element 20 by is caused to emit light, respectively, the first optical signal SV the ratio R of the AC-DC component ratio R (AC R / DC R) and AC-DC component ratio of the second optical signal SV IR (AC IR / DC IR ) [=
(AC R /DC R )/(AC IR /DC IR )〕を逐次算出し、たとえば図6に示す予め記憶された関係から、実際の比Rに基づいて酸素飽和度SaO 2を一拍あるいは数拍毎に逐次算出し、表示器56に表示させる。 (AC R / DC R) / (AC IR / DC IR) ] sequentially calculates, for example, from a pre-stored relationship shown in FIG. 6, one heartbeat or several oxygen saturation SaO 2 based on the actual ratio R sequentially calculated for each beat, and displays on the display unit 56.

【0032】図7は、前記演算制御回路42の制御作動の最適発光強度AE 1 、AE 2を決定する動作の要部を説明するフロ−チャ−トである。 [0032] Figure 7 is flow illustrating a major part of the operation of determining the optimum emission intensity AE 1, AE 2 of control operation of the arithmetic and control circuit 42 - a DOO - tea. 図7において、SA1 In FIG. 7, SA1
では、図示しない起動ボタンが操作されることによって、測定の起動操作が行われたか否かが判断される。 So, by starting button (not shown) is operated, whether start operation of the measurement is performed or not. このSA1の判断が否定された場合には待機させられるが、肯定された場合には図示しない初期処理ステップにおいて、種々のカウンタやレジスタがクリアされた後、 After it is caused to wait when the determination in SA1 is negative, the initial processing step not shown If so the, the various counters and registers are cleared,
SA2において、発光素子駆動回路30を介して第1発光素子18に入力される電流および第2発光素子20に入力される電流がそれぞれ初期値に決定される。 In SA2, the current input to the light emitting element current is input to the first light emitting element 18 via the drive circuit 30 and the second light emitting element 20 is determined to the initial value, respectively. 次いで、SA3において第1発光素子18および第2発光素子20が、数百Hz乃至数kHz程度の比較的高い周波数で一定期間幅づつ交互に発光させられ、続くSA4では、第1光信号SV Rおよび第2光信号SV IRが読み込まれる。 Then, the first light emitting element 18 and the second light emitting element 20 in SA3, several hundred Hz to a relatively high frequency of several kHz is caused to emit light for a certain period width at a time alternately, in the subsequent SA4, the first optical signal SV R and the second optical signal SV IR are read.

【0033】続くSA5では、タイマカウンタCTの内容に「1」が加算された後、SA6において、タイマカウンタCTの内容が予め設定された判断基準時間T 0以上となったか否かが判断される。 [0033] In subsequent SA5, after "1" is added to the contents of the timer counter CT, in SA6, whether the contents of the timer counter CT reaches a preset determination reference time T 0 or more is determined . この判断基準時間T 0 This criterion time T 0
は、光信号SVの交流成分および直流成分を算出するために脈拍の一拍分あるいは数拍分に設定されている。 It is set to one heartbeat or several beats of the pulse in order to calculate the AC component and the DC component of the optical signal SV.

【0034】当初は上記SA6の判断が否定されるので、SA3以下が繰り返し実行されることにより第1光信号SV Rおよび第2光信号SV IRが連続的に読み込まれる。 [0034] Because initially determines the SA6 is negative, the first optical signal SV R and the second optical signal SV IR are read continuously by being repeatedly performed SA3 less. そして、それら第1光信号SV Rおよび第2光信号SV IRが連続的に読み込まれるうちにSA6の判断が肯定されると、前記周波数解析手段64に対応するSA When they first optical signal SV R and the second optical signal SV IR is SA6 affirmative determination is within the read continuously, corresponding to the frequency analyzing means 64 SA
7において、上記の単位区間内の第1光信号SV Rおよび第2光信号SV IRに対して周波数解析処理がそれぞれ実行されることにより、第1光信号SV Rの交流成分A In 7, by frequency analysis processing is performed respectively for the first light signal SV R and the second optical signal SV IR in said unit sections, the alternating current component A of the first optical signal SV R
R (信号電力値)および直流成分DC R (信号電力値)と、第2光信号SV IRの交流成分AC IR (信号電力値)および直流成分DC IR (信号電力値)とが抽出される。 And C R (signal power value) and the direct current component DC R (signal power value), and is extracted AC component of the second optical signal SV IR AC IR (signal power value) and the direct current component DC IR (signal power value) .

【0035】次いで、前記交直成分比算出手段66に対応するSA8では、上記SA7において抽出された第1 [0035] Next, in SA8 corresponding to the AC-DC component ratio calculating means 66, the first extracted in the SA7
光信号SV Rの交流成分AC Rおよび直流成分DC Rから、その第1光信号SV Rの交直成分比(AC R /DC From the AC component AC R and a DC component DC R of the optical signal SV R, AC-DC component ratio of the first optical signal SV R (AC R / DC
R )が算出されるとともに、SA7において抽出された第2光信号SV IRの交流成分AC IRおよび直流成分DC With R) is calculated, the second optical signal SV IR of the alternating current component AC IR and DC components extracted at SA7
IRから、その第2光信号SV IRの交直成分比(AC IR From IR, AC-DC component ratio of the second optical signal SV IR (AC IR /
DC IR )が算出される。 DC IR) is calculated.

【0036】続く発光強度変化手段62に対応するSA [0036] SA corresponding to the subsequent emission intensity changing means 62
9では、第1発光素子18および第2発光素子20の発光強度E 1 、E 2を変化させるため、発光素子駆動回路30に駆動指令信号SLDを出力することにより、第1 In 9, to vary the luminous intensity E 1, E 2 of the first light emitting element 18 and the second light emitting element 20, by outputting a drive command signal SLD to the light emitting element driving circuit 30, a first
発光素子18および第2発光素子20に入力される電流を一定量だけ増加させる。 The current input to the light emitting element 18 and the second light emitting element 20 is increased by a predetermined amount. 続くSA10では、第1発光素子18および第2発光素子20に入力される電流が予め設定された最適発光強度決定動作の終了電流となったか否が判断される。 In subsequent SA10, whether the current input to the first light emitting element 18 and the second light emitting element 20 becomes a preset termination current optimum luminous intensity determination operation it is determined. なお、SA9において増加される一定量の電流は、電流の変化によって変化する発光強度E Incidentally, a constant amount of current to be increased in SA9, the emission intensity E which changes by a change in current
1 、E 2と、交直成分比(AC R /DC R )、(AC IR 1, and E 2, AC-DC component ratio (AC R / DC R), (AC IR
/DC IR )との関係を示す点をプロットして得られる曲線C 1 、C 2において、変曲点i 1 、i 2を判断するのに十分な点間隔が得られるように設定され、SA10の終了電流も、変曲点i 1 、i 2が得られる、すなわち照射された光が末梢血管の密度が急に濃くなる深度まで浸透する発光強度となるように十分高く設定されている。 / In DC IR) curve C 1 obtained by plotting the point indicating the relationship between, C 2, is set such that a sufficient spacing between points is obtained to determine the inflection point i 1, i 2, SA10 End current also inflection point i 1, i 2 is obtained, i.e. the light emitted is set high enough so that luminous intensity to penetrate to a depth where the density of peripheral vessels become suddenly darker.

【0037】このSA10の判断が否定されるうちは、 [0037] Among the determination of the SA10 is negative,
上記の曲線C 1 、C 2が変曲点i 1 、i 2を得るのに十分な測定点が得られていないので、SA3以降が繰り返されるが、肯定された場合には、続くSA11において、図5に示すような曲線C 1が第1光信号SV Rの交直成分比(AC R /DC R )に基づいて描かれ、曲線C Since sufficient measurement points to above the curve C 1, C 2 to obtain an inflection point i 1, i 2 are not obtained, if it is later SA3 is repeated, that is yes, continues SA11, the curve C 1 shown in FIG. 5 is drawn on the basis of the AC-DC component ratio of the first optical signal SV R (AC R / DC R ), the curve C
2が第2光信号SV IRの交直成分比(AC IR /DC IR 2 AC-DC component ratio of the second optical signal SV IR (AC IR / DC IR )
に基づいて描かれ、その曲線C 1 、C 2の変曲点i 1 Drawn on the basis of, the curve C 1, inflection points i 1 of C 2,
2がそれぞれ求められる。 i 2 are obtained, respectively.

【0038】続くSA12では、SA11で求められた変曲点i 1 、i 2を示す発光強度から所定量aだけ強い発光強度を最適発光強度AE 1 、AE 2として決定する。 [0038] In subsequent SA12, to determine the strong luminescence intensity by a predetermined amount a as the optimum luminous intensity AE 1, AE 2 from the emission intensity of the peak indicating inflection point i 1, i 2 obtained in SA11. 従って、本実施例では、SA11およびSA12が最適発光強度決定手段67に対応している。 Thus, in this embodiment, SA11 and SA12 corresponds to the optimum luminous intensity determination unit 67.

【0039】上述のように本実施例によれば、発光素子駆動回路30により、第1波長λ 1の光を発光する第1 [0039] According to the present embodiment as described above, the light-emitting element driving circuit 30, a first for emitting a first wavelength lambda 1 of the light
発光素子18および第2波長λ 2の光を発光する第2発光素子20の発光強度E 1 、E 2が漸次変化させられて、それら第1発光素子18および第2発光素子20が発光させられ、発光強度E 1 、E 2の変化によって、生体中の異なる深度で散乱を受けた射出光が受光素子16 Emitting element 18 and the light emission intensity E 1, E 2 of the second light emitting element 20 is gradually varied for emitting the second wavelength lambda 2 of light, they first light emitting element 18 and the second light emitting element 20 is caused to emit light , luminous intensity E 1, a change in E 2, emitted light receiving element which receives the scattered at different depths of a living body 16
により検出される。 It is detected by. 受光された散乱光は、交直成分比算出手段66において交直成分比(AC R /DC R )、 Scattered light received is AC to DC component ratio in the AC-DC component ratio calculation unit 66 (AC R / DC R) ,
(AC IR /DC IR )が算出され、最適発光強度決定手段67において、その交直成分比(AC R /DC R )、 Is (AC IR / DC IR) is calculated, the optimum luminous intensity determination unit 67, the AC to DC component ratio (AC R / DC R),
(AC IR /DC IR )の発光強度E 1 、E 2に対する変化曲線C 1 、C 2の変曲点i 1 、i 2に基づいて最適発光強度AE 1 、AE 2が決定される。 Luminous intensity E 1, changes to the E 2 curve C 1, the inflection point of the C 2 i 1, i optimum luminous intensity AE 1 based on 2, AE 2 of (AC IR / DC IR) is determined. 酸素飽和度SaO 2 Oxygen saturation SaO 2
を測定するために光電脈波が検出される状態では、最適発光強度調節手段68により第1発光素子18が最適発光強度AE 1で発光させられ、第2発光素子20が最適発光強度AE 2で発光させられて光電脈波が検出される。 In a state in which the photoelectric pulse wave is detected in order to measure the first light emitting element 18 by the optimum light emission intensity adjusting means 68 is caused to emit light at the optimum light emission intensity AE 1, the second light emitting element 20 at the optimum light emission intensity AE 2 photoelectric pulse wave is to emit light is detected. 上記変化曲線C 1 、C 2は、散乱光が散乱される深度における末梢血管の密度に関連して変化し、変曲点i The change curves C 1, C 2 is varied in relation to the density of the peripheral blood vessels in depth the scattered light is scattered, the inflection point i
1 、i 2は2点とも散乱光が末梢血管の密度が急に濃くなっている深度での散乱であることを示している。 1, i 2 indicates that both two points scattered light is scattered at depths density of peripheral vascular becomes suddenly darker. 従って、生体に照射される2つの波長の光の散乱光が散乱される深度を最適な深度に自動的に揃えることができ、反射型プロ−ブ10の測定精度が向上する。 Therefore, the depth of the scattered light of the light of the two wavelengths is irradiated to the living body is scattered can be automatically aligned with the optimum depth of the reflection-type pro - improves the measurement accuracy of the probe 10.

【0040】次に、第2発明についての一実施例を図面に基づいて詳細に説明する。 Next, it will be described in detail with reference to an embodiment of the second invention with reference to the drawings. 尚、上記実施例と同一の構成を有する部分には同一の符号を付して説明を省略する。 Incidentally, portions having the same structure as the above embodiment will not be described are denoted by the same reference numerals.

【0041】図8は、反射型光電脈波検出装置である反射型プロ−ブ70を備えた反射型オキシメ−タすなわち酸素飽和度測定装置の構成を示している。 [0041] Figure 8, the reflection type photoelectric is pulse-wave detecting device reflective pro - shows the structure of data i.e. oxygen saturation measuring apparatus - reflective with a blanking 70 Okishime. 反射型プロ− Reflective professional -
ブ70は、前述の実施例の反射型プロ−ブ10と同様に、たとえば生体の末梢血管の密度が比較的高い額、指等の体表面12に密着した状態で装着される。 Bed 70 is reflective professional in the illustrated embodiments - is mounted in a state like the Bed 10, for example density is relatively high amount of peripheral vascular biological, in close contact with the body surface 12 of the finger or the like. 反射型プロ−ブ70は、比較的浅い有底角柱状のハウジング72 Reflective pro - Bed 70 is relatively shallow bottomed prismatic housing 72
と、そのハウジング72の底部内面に設けられる前述の実施例と同様の第1発光素子18、第2発光素子20および受光素子16と、ハウジング72内に一体的に設けられ受光素子16および発光素子18、20を保護するためにそれを覆う透明樹脂74と、発光素子18、20 When the first light emitting element 18 similar to the previous embodiments provided in the bottom inner surface of the housing 72, a second light emitting element 20 and the light receiving element 16, the light receiving element 16 and the light-emitting element provided integrally with the housing 72 18, 20 and the transparent resin 74 covering it to protect the light emitting element 18 and 20
からの照射光の一部、照射された光の体表面12から受光素子16へ向かう反射光、および照射された光の生体中で散乱され受光素子16へ向かう散乱光の一部を遮光するためハウジング72内に設けられる遮光壁76とを備えて構成されている。 Some of the light emitted from, for shielding a portion of the scattered light reflected light directed from the body surface 12 of the irradiated light to the light receiving element 16, and is scattered by a biological irradiation light toward the light receiving element 16 It is constituted by a light shielding wall 76 provided in the housing 72.

【0042】図9は、反射型プロ−ブ70を体表面12 [0042] Figure 9 is a reflection-type pro - the blanking 70 body surface 12
に対向する側から見た図である。 It is a view seen from the opposite side to. 図9において、受光素子16はハウジング72の底部内面の長手方向の一端部に固設され、複数個の第1発光素子18および第2発光素子20はそれぞれ受光素子16からの距離が漸次増加するように反射型プロ−ブ70の長手方向に等間隔で固設されている。 9, the light receiving element 16 is fixed to one longitudinal end portion of the inner bottom surface of the housing 72, the distance from the first light emitting element 18 and the second, respectively the light emitting element 20 is a light receiving element 16 of the plurality gradually increases It is fixedly provided at equal intervals in the longitudinal direction of the probe 70 - reflective professional as. 遮光壁76は、受光素子16とそれに最も近い第1発光素子18および第2発光素子20との間、および一組の発光素子18、20と他の一組の発光素子18、20の間毎に設けられている。 Shielding wall 76, between the light receiving element 16 and the nearest first light emitting element 18 and the second light emitting element 20, and each between a pair of light emitting elements 18, 20 and another pair of the light emitting element 18 and 20 It is provided to. なお、本実施例では、第1発光素子18および第2発光素子20は、 In the present embodiment, the first light emitting element 18 and the second light emitting element 20,
作図の便宜上それぞれ6個備えられているが、ハウジング72の底部内面に収容できる範囲で、さらに多くの発光素子18、20が用いられてもよいし、6個よりも少ない数であってもよい。 Although provided for convenience each six drawing, in a range that can be accommodated in the bottom inner surface of the housing 72, it may be many more light-emitting elements 18 and 20 are used, may be fewer than six .

【0043】図8に戻って、図示しない測定起動ボタンが起動されることにより、第1発光素子18および第2 [0043] Returning to FIG. 8, by not shown measurement start button is activated, the first light emitting element 18 and a second
発光素子20は、発光素子駆動回路78により駆動されることにより発光させられる。 Emitting element 20 is caused to emit light by being driven by the light emitting element driving circuit 78. この発光素子駆動回路7 The light emitting element driving circuit 7
8は、それぞれ複数設けられた第1発光素子18および第2発光素子の中から波長λ 1 、λ 2毎に発光させるべき発光素子18、20を選択的に発光させる機能を備えている。 8, respectively provided with a function of selectively emitting the first light emitting element 18 and the wavelength lambda 1, the light emitting element 18, 20 to be lit for each lambda 2 from the second light-emitting element provided with a plurality. すなわち、発光素子駆動回路78は、演算制御回路42からの駆動指令信号SLDにより、先ず第1発光素子18を受光素子16に最も近い側から最も遠い側へと順に、連続的に一定時間T 1づつ発光させ、続いて第2発光素子20を受光素子16に最も近い側から最も遠い側へと順に連続的に一定時間T 1づつ発光させる。 That is, the light-emitting element driving circuit 78, the arithmetic control circuit by the drive command signal SLD from 42, first, the first light emitting element 18 and in order to farthest from the side closest to the light receiving element 16, continuously fixed time T 1 is one by emitting, followed second continuously for a predetermined time T 1 by one light emitting sequentially and the light emitting element 20 to the side farthest from the side closest to the light receiving element 16.
ここでの一定時間T 1は、脈波の交流成分および直流成分を算出するための時間であり、前述の実施例の時間T Here a certain time T 1 of the at is the time for calculating the AC component and the DC component of the pulse wave, the time T in the illustrated embodiments
0と同様に脈拍の一拍分あるいは数拍分に設定される。 0 to be set similarly to one heartbeat or several beats of the pulse.

【0044】それら第1発光素子18および第2発光素子20が発光させられると、生体組織(血管床)内からの散乱光が受光素子16により受光され、第1波長λ 1 [0044] When they first light emitting element 18 and the second light emitting element 20 is caused to emit light, scattered light from the living tissue (vascular bed) is received by the light receiving element 16, the first wavelength lambda 1
の散乱光を示す第1光信号SV Rおよび第2光信号SV First optical signal SV R and the second optical signal SV indicating the scattered light
IRが出力される。 IR is output. 第1光信号SV Rおよび第2光信号S First optical signal SV R and the second optical signal S
IRとを含む光信号SVは、増幅器32、ロ−パスフィルタ34、デマルチプレクサ36、サンプルホ−ルド回路38、46、A/D変換器40、48を介して演算制御回路42内のI/Oポ−ト44へ逐次供給される。 Optical signal SV and a V IR includes an amplifier 32, B - pass filter 34, a demultiplexer 36, a sample-- hold circuit 38, 46, I of the arithmetic and control circuit 42 via the A / D converter 40, 48 / O port - is sequentially supplied to preparative 44.

【0045】ここで、遮光壁76と発光素子18、20 [0045] Here, the light shielding wall 76 light emitting element 18 and 20
との距離および発光素子18、20から受光素子16までの距離と、受光素子16により受光される散乱光の散乱深度との関係について説明する。 The distance to the light receiving element 16 from the distance and the light emitting element 18, 20 and describes the relationship between the scattering depth of the scattered light received by the light receiving element 16. 図10は、図9のA Figure 10, A in FIG. 9
−A線の断面図である。 It is a cross-sectional view of -A line. なお、図10の反射型プロ−ブ70は透明樹脂74を省略して示してある。 The reflection-type pro 10 - Bed 70 is shown by omitting the transparent resin 74. 図10において、交点P 1は、受光素子16に最も近い側に配置されている第1発光素子18から発光された光のうちで、 10, the intersection point P 1 is among the light emitted from the first light emitting element 18 disposed on the side closest to the light receiving element 16,
体表面12から最も近い部位すなわち最も浅い部位で散乱されて、受光素子16により受光される場合の散乱深度を示している。 Are scattered at the site closest i.e. the shallowest part from the body surface 12, it shows the scattering depth when it is received by the light receiving element 16. 同様に交点P 2 、P 3 、P 4 、P 5 Similarly intersection P 2, P 3, P 4 , P 5,
6も、それぞれの第1発光素子18から発光させられた光が体表面12から最も浅い部位で散乱されて、受光素子16により受光される場合の散乱される深度を示している。 P 6 also is scattered light that is caused to emit light from each of the first light-emitting element 18 at the shallowest part from the body surface 12 shows scattered the depth when it is received by the light receiving element 16.

【0046】すなわち、受光素子16に最も近い距離に配置された発光素子18、20により発光された光の散乱光を受光素子16が受光する場合は、体表面12に近い(浅い)部位からの散乱光を多く受光するのに対し、 [0046] That is, when the scattered light of the light emitted by the light emitting element 18 and 20 arranged in the closest distance to the light receiving element 16 is the light receiving element 16 receives is closer to the body surface 12 (shallow) from site while it is receiving a lot of scattered light,
受光素子16から最も遠い距離に配置された発光素子1 Disposed farthest from the light-receiving element 16 the light-emitting element 1
8、20により発光された光の散乱光を受光素子16が受光する場合は、体表面12に近い部位で散乱させられた散乱光は遮光壁76により遮光されるため受光されない。 If the scattered light of the emitted light by 8,20 light receiving element 16 receives is not received for scattered light is be scattered at a near portion to the body surface 12 is shielded by the light shielding wall 76. そのため、体表面12から比較的遠い(深い)部位で散乱された散乱光が相対的に多く受光されることになる。 Therefore, would be relatively remote from the body surface 12 (deep) scattered light scattered at the site is relatively large light receiving.

【0047】受光素子16に受光される光が、体表面1 The light received by the light receiving element 16, the body surface 1
2からどの程度の深度以下からの散乱光であるかは、受光素子16と発光素子18、20との距離、発光素子1 How much if it scattered light from a depth below 2, the distance between the light receiving element 16 and the light emitting element 18, the light-emitting element 1
8、20と遮光壁76との距離あるいは受光素子16と遮光壁76との距離、および遮光壁76の高さすなわち発光素子18、20と体表面12との距離によって決定される。 Distance or distances between the light receiving element 16 and the light shielding wall 76 and 8, 20 and the light shielding wall 76, and is determined by the distance between the height or the light emitting element 18, 20 and the body surface 12 of the light shielding wall 76. これらの受光素子16と発光素子18、20との距離、発光素子18、20と遮光壁76との距離あるいは受光素子16と遮光壁76との距離、および遮光壁76の高さは、散乱光が体表面12下の末梢血管床からの散乱光が十分に検出できるように、たとえば最浅検出深度が0.3mmから2.0mmまでの範囲で変化するように予め実験的に求められる。 The distance between these light-receiving element 16 and the light emitting element 18 and 20, the distance of the distance between the light emitting element 18 and the light shielding wall 76 or the light receiving element 16 and the light shielding wall 76, and the height of the light shielding wall 76, scattered light so light scattered from peripheral vascular bed beneath the body surface 12 can be sufficiently detected, for example, the shallowest detection depth is determined experimentally in advance so as to vary in the range from 0.3mm to 2.0 mm.

【0048】それぞれ受光素子16から異なる距離において発光させられた第1波長λ 1の光および第2波長λ The first wavelength lambda 1 of light and the second wavelength lambda which are respectively made to emit light at different distances from the light receiving element 16
2の光の生体中からの散乱光を示す第1光信号SV Rおよび第2光信号SV IRがI/Oポ−ト44へ出力されると、演算制御装置42において、予め記憶されたプログラムに従って、第1発光素子18および第2発光素子2 First optical signal SV R and the second optical signal SV IR showing the scattered light from in the second optical vivo I / O port - the output to preparative 44, the arithmetic and control unit 42, a program stored in advance accordingly the first light emitting element 18 and the second light-emitting element 2
0の最適発光素子がそれぞれ決定される。 0 of optimum light emitting device is determined, respectively.

【0049】続いて、発光素子駆動回路78へ駆動指令信号SLDを出力して最適発光素子として決定された第1発光素子18および同じく最適発光素子として決定された第2発光素子20を数百Hz乃至数kHz程度の比較的高い周波数で一定時間幅づつ交互に発光させることにより、最適な深度での散乱光に基づいて酸素飽和度が連続的に決定され、且つその決定した酸素飽和度SaO [0049] Subsequently, the second light emitting device 20 hundreds Hz, which is determined as the first light emitting element 18 and also the optimum light-emitting element is determined as the optimum light emitting element outputs a drive command signal SLD to the light emitting element driving circuit 78 by emitting a predetermined time width at a time alternately at a relatively high frequency of several kHz to, oxygen saturation on the basis of the scattered light at an optimum depth is continuously determined, and the determined oxygen saturation SaO
2を表示器56に表示させる。 Display 2 on the display 56.

【0050】図11は、上記演算制御装置42の制御機能の要部を説明する機能ブロック線図である。 [0050] Figure 11 is a functional block diagram illustrating portions of control functions of the arithmetic and control unit 42. 図11において発光素子選択手段80は発光素子駆動回路78に駆動指令信号SLDを出力し、発光素子駆動回路78 Emitting element selection means 80 outputs a drive command signal SLD to the light emitting element driving circuit 78 in FIG. 11, the light emitting element drive circuit 78
は、その駆動指令信号SLDに基づいて、第1発光素子18を受光素子16に最も近い側から最も遠い側へ順に連続的に一定時間T 1づつ発光させ、次いで第2発光素子20を受光素子16に最も近い側から最も遠い側へ順に連続的に一定時間T 1づつ発光させる。 , Based on the drive command signal SLD, the first light-emitting element 18 continuously for a predetermined time T 1 at a time emission in order to farthest from the side closest to the light receiving element 16, then the second light emitting element 20 light-receiving element 16 continuously for a predetermined time T 1 at a time emission in order to farthest from the side closest to the. なお、受光素子16と発光素子18、20との間の距離が遠くなるにつれて、受光素子16に受光される光量は減少するので、受光素子16から遠くなるほど発光強度が強くなるように設定されてもよい。 Incidentally, as the distance between the light emitting element 18 and the light receiving element 16 becomes longer, the amount of light received by the light receiving element 16 is so reduced, is set such as luminous intensity becomes farther from the light receiving element 16 is increased it may be.

【0051】受光素子16により散乱光が受光されることにより、受光素子16から出力された第1光信号SV [0051] By the scattered light by the light receiving element 16 is received, the first optical signal SV outputted from the light receiving element 16
R 、第2光信号SV IRは、前述の実施例と同様に、周波数解析手段64において、交流成分AC R 、AC IRおよび直流成分DC R 、DC IRが決定され、交直成分比算出手段66において、第1光信号SV Rの交直成分比(A R, the second optical signal SV IR, like the above-described embodiment, the frequency analysis means 64, the alternating current component AC R, AC IR and DC component DC R, DC IR is determined, in AC-DC component ratio calculating means 66 , AC to DC component ratio of the first optical signal SV R (a
R /DC R )と、第2光信号SV IRの交直成分比(A And C R / DC R), AC-DC component ratio of the second optical signal SV IR (A
IR /DC IR )が算出される。 C IR / DC IR) is calculated.

【0052】最適発光素子決定手段82は、交直成分比算出手段66により算出された交直成分比(AC R /D [0052] Optimal emitting element determination means 82, AC to DC component ratio calculated by the AC to DC component ratio calculation unit 66 (AC R / D
R )、(AC IR /DC IR )と発光素子駆動回路78により選択される発光素子18、20の受光素子16との距離との関係を波長λ 1 、λ C R), (AC IR / DC IR) light-emitting element wavelength lambda 1 the relationship between the distance between the light receiving element 16 of the light emitting element 18, 20 is selected by the drive circuit 78, lambda 2毎に求め、その関係から、波長λ 1 、λ 2毎にそれぞれ最適発光素子を決定する。 Calculated every two, from the relationship, the wavelength lambda 1, to determine the respective optimum light emitting device for each lambda 2. すなわち、最適発光素子決定手段82では、図12 That is, the optimum light emitting element determination means 82, FIG. 12
(a)に示されているように、交直成分比算出手段66 As shown (a), the AC-DC component ratio calculating means 66
により逐次算出された第1光信号SV Rの交直成分比(AC R /DC R )あるいは第2光信号SV IRの交直成分比(AC IR /DC AC-DC component ratio of the first optical signal SV R which is sequentially calculated by (AC R / DC R) or AC-DC component ratio of the second optical signal SV IR (AC IR / DC IR )の、発光素子18、20と受光素子16との間の距離に対する増加率を示す曲線C 3が予め算出され、その曲線C 3の最大値を示す発光素子1 Of IR), the curve C 3 showing the increase rate is calculated in advance with respect to the distance between the light emitting element 18 and the light receiving element 16, the light emitting device 1 showing the maximum value of the curve C 3
8、20と受光素子16との距離よりも受光素子16との距離が遠い範囲において、増加率が予め定められた基準値Bとなる発光素子18、20と受光素子16との距離Dを求め、増加率が基準値B以下となる範囲で受光素子16との距離が距離Dに最も近い発光素子18、20 In a long distance range and the light-receiving element 16 than the distance 8,20 and the light receiving element 16 obtains a distance D between the light emitting element 18 and the light receiving element 16 increase rate is a predetermined reference value B , closest emitting element distance between the light receiving element 16 to the extent that the increase rate is less than the reference value B to the distance D 18, 20
を最適発光素子としてそれぞれ決定する。 Determining respectively as the optimum light-emitting element.

【0053】上記基準値Bは、照射された光が散乱される深度が、末梢血管の密度がほぼ一定となる深度であることを判断するために比較的低い値として予め実験的に決定される。 [0053] The reference value B, the depth of light emitted is scattered is determined experimentally in advance as a relatively low value in order to determine the density of the peripheral vessels is approximately constant to become depth . なお、図12(b)は、交直成分比(AC Incidentally, FIG. 12 (b), AC-DC component ratio (AC
R /DC R )、(AC IR /DC IR )と、発光素子18、 R / DC R), and (AC IR / DC IR), light emitting element 18,
20と受光素子16との距離との関係を示す曲線であり、図12(a)は図12(b)の曲線を発光素子1 20 is a curve showing the relationship between the distance between the light receiving element 16, FIG. 12 (a) FIG. 12 (b) of the light emitting curve element 1
8、20と受光素子16との距離について微分した一次微分曲線としても求められる。 8,20 and is also required as a primary differential curve obtained by differentiating the distance between the light receiving element 16.

【0054】最適発光素子選択手段83は、酸素飽和度SaO 2の検出のための光電脈波の採取に先立って、最適発光素子決定手段82において最適発光素子が決定された後に、発光素子駆動回路78に駆動指令信号SLD [0054] Optimal emitting element selection means 83, prior to collection of the photoelectric pulse wave for the detection of oxygen saturation SaO 2, after the optimum light-emitting element is determined at the optimum light-emitting element determining unit 82, the light emitting element driving circuit 78 to the drive command signal SLD
を出力することにより、連続的に数百Hz乃至数kHz By outputting continuously several hundred Hz to several kHz
程度の比較的高い周波数で一定期間幅づつその最適発光素子として決定された第1発光素子18および第2発光素子20を発光させる。 Emit first light emitting element 18 and the second light emitting element 20 as determined at a relatively high frequency on the order as given period width increments the optimum light-emitting element. 酸素飽和度算出手段69は、最適発光素子選択手段83により第1発光素子18および第2発光素子20の最適発光素子が発光させられている状態で、交直成分比算出手段66において算出される第1光信号SV Rの交直成分比(AC R /DC R )と第2 Oxygen saturation calculating unit 69 is in a state in which the optimum light-emitting element selection means 83 best light emitting device of the first light emitting element 18 and the second light emitting element 20 is caused to emit light, the calculated in AC to DC component ratio calculating means 66 AC-DC component ratio of the first optical signal SV R and (AC R / DC R) second
光信号SV IRの交直成分比(AC IR /DC IR )との比R The ratio R of the AC-DC component ratio of the optical signal SV IR (AC IR / DC IR )
〔=(AC R /DC R )/(AC IR /DC IR )〕に基づいて、たとえば図6に示す予め記憶された関係から、実際の比Rに基づいて酸素飽和度SaO 2を逐次算出し、 [= (AC R / DC R) / (AC IR / DC IR) ] on the basis of, for example, from a pre-stored relationship shown in FIG. 6, sequentially calculates the oxygen saturation SaO 2 based on the actual ratio R ,
表示器56に表示させる。 On the display unit 56.

【0055】図13は、本実施例の演算制御回路42の制御作動のうち、最適発光素子を決定する動作の要部を説明するフロ−チャ−トである。 [0055] Figure 13, of the control operation of the arithmetic and control circuit 42 of the present embodiment, flow illustrating a major part of the operation of determining the optimum light emitting device - a DOO - tea. SB1では、SA1と同様に、起動操作がされたか否かが判断され、この判断が否定された場合には待機させられるが、肯定された場合には、SA1と同様の初期処理が実行された後、続くSB2において、演算制御回路42からの発光素子駆動回路78へ駆動指令信号SLDが出力されることにより、受光素子16に最も近い側の第1発光素子18が一定時間T 1だけ連続的に発光させられ、SB3において、第1光信号SV In SB1, as with SA1, whether or not a startup operation is determined, but is made to wait if the judgment is negative, the If so, the same initial process as SA1 is executed after followed in SB2, by driving command signal SLD to the light emitting element driving circuit 78 from the arithmetic control circuit 42 is output, the nearest first light emitting element 18 is fixed time side T 1 only continuously receiving element 16 It allowed to emit light, at SB3, the first optical signal SV Rが読み込まれる。 R is loaded.

【0056】続くSB4では、SB2において発光させられた第1発光素子18が、受光素子16から最も遠い側の第1発光素子18であったか否かが判断される。 [0056] In subsequent SB4, the first light emitting element 18 which is caused to emit light at SB2, whether a first light emitting element 18 farthest from the light receiving element 16 is determined. 当初は、この判断が否定されるので、SB5において発光させられる第1発光素子18が切換られた後にSB2以降が繰り返される。 Initially, since this determination is negative, the first light emitting element 18 is caused to emit light in SB5 is repeated SB2 later after being switched. すなわち、SB5において、次回発光させられる第1発光素子18が、前回SB2において発光させられた第1発光素子18より一つ受光素子16 That is, in SB5, the first light emitting element 18 is caused next light emission is found one light receiving element 16 than the first light-emitting element 18 which is caused to emit light at the previous SB2
から遠い側に配置されている第1発光素子18に設定された後に、SB2以降が繰り返される。 After being set to the first light emitting element 18 disposed on the side far from, SB2 subsequent steps are repeated.

【0057】しかし、このSB4の判断が肯定された場合には、すべての第1発光素子18が発光させられたこととなるので、続くSB6からSB9において、SB2 [0057] However, if the determination in SB4 is positive, because all of the first light emitting element 18 is that it has been caused to emit light in the subsequent SB6 SB9, SB2
からSB5までと同様の動作が、第2発光素子20について行われる。 Similar to the to SB5 of operation is performed for the second light emitting element 20. すなわち、SB6において、受光素子1 That is, in SB6, the light receiving element 1
6に最も近い側の第2発光素子20が一定時間T 1発光させられ、SB7において、第2光信号SV IRが読み込まれる。 6 the second light emitting device 20 nearest the side is allowed to a certain time T 1 emits, at SB7, the second optical signal SV IR are read. そして、続くSB8において、SB6における第2発光素子20の位置が受光素子16から最も遠い側の第2発光素子20であるかが判断され、このSB8の判断が否定された場合には、SB9において発光させられる素子が受光素子16から一つ遠い側へ切り換えられ、SB6以降が繰り返される。 Then, in the subsequent SB8, or the position of the second light emitting element 20 is a second light emitting element 20 farthest from the light receiving element 16 is determined in SB6, if the determination in SB8 is no, SB9 element is to emit light is switched to the one farther from the light receiving element 16, are repeated after SB6. 本実施例では、SB In this embodiment, SB
2、SB4、SB5、SB6、SB8、SB9が発光素子選択手段80に対応している。 2, SB4, SB5, SB6, SB8, SB9 corresponds to the light-emitting element selection means 80.

【0058】しかし、このSB8の判断が肯定された場合には、すべての第2発光素子20が発光させられたこととなるので、続く周波数解析手段64に対応するSB [0058] However, if the determination in SB8 is positive, because all of the second light emitting element 20 is that it has been caused to emit light, corresponds to the frequency analysis means 64 followed SB
10において、SA7と同様にして、それぞれの発光素子18、20毎に、第1光信号SV Rの交流成分AC R In 10, in the same manner as in SA7, for each of the light emitting elements 18 and 20, the alternating current component AC R of the first optical signal SV R
および直流成分DC Rと、第2光信号SV IRの交流成分AC IRおよび直流成分DC IRとが抽出される。 And a direct current component DC R, and the alternating current component AC IR and DC component DC IR of the second optical signal SV IR is extracted. 続く交直成分比算出手段66に対応するSB11では、SA8と同様にして第1光信号SV Rの交直成分比(AC R /D In SB11 corresponds to the subsequent AC-DC component ratio calculating means 66, AC-DC component ratio of the first optical signal SV R in the same manner as SA8 (AC R / D
R )および第2光信号SV IRの交直成分比(AC IR C R) and AC-DC component ratio of the second optical signal SV IR (AC IR /
DC IR )が算出される。 DC IR) is calculated.

【0059】続くSB12では、図12(a)に示すように、SB11において算出された第1光信号SV Rの交直成分比(AC R /DC R )の第1発光素子18と受光素子16との間の距離に対する増加率を示す曲線、および第2光信号SV IRの交直成分比(AC IR /DC IR [0059] In subsequent SB12, as shown in FIG. 12 (a), a first light emitting element 18 and the light receiving element 16 of the AC-DC component ratio of the first optical signal SV R calculated in SB11 (AC R / DC R) curves, and AC-DC component ratio of the second optical signal SV IR showing the increase rate relative to the distance between the (AC IR / DC IR)
の第2発光素子20と受光素子16との間の距離に対する増加率を示す曲線がそれぞれ算出され、続くSB13 Curve showing the increase rate relative to the distance between the second light emitting element 20 and the light-receiving element 16 are calculated each, followed by SB13
において、そのそれぞれ算出された増加率曲線において、最大値を示す発光素子18、20と受光素子16との距離よりも受光素子16との距離が遠い範囲で、増加率が基準値Bとなる発光素子18、20と受光素子16 In its at increasing rate curve calculated respectively, at a long distance range and the light-receiving element 16 than the distance between the light emitting element 18 and 20 indicating the maximum value and the light receiving element 16, emission increase rate is the reference value B element 18, 20 and the light-receiving element 16
との距離Dをそれぞれ決定する。 Determining respective distances D between.

【0060】続くSB14では、SB13においてそれぞれ決定された距離Dに基づいて、第1発光素子18の最適発光素子および第2発光素子20の最適発光素子を決定する。 [0060] In subsequent SB 14, based on the distance D determined respectively in SB13, to determine the optimum light-emitting element of the optimum light emitting element and the second light emitting element 20 of the first light emitting element 18. たとえば、増加率が基準値B以下となる範囲で受光素子16との距離が距離Dに最も近い発光素子1 For example, the nearest light-emitting element distance between the light receiving element 16 to the extent that the increase rate is less than the reference value B is a distance D 1
8、20を最適発光素子としてそれぞれ決定する。 Respectively determined as the optimum light-emitting device 8 and 20. 従って、本実施例では、SB12、SB13、SB14が最適発光素子決定手段82に対応している。 Thus, in this embodiment, SB12, SB13, SB 14 corresponds to the optimum light emitting element determination means 82.

【0061】上述のように、本実施例によれば、発光素子駆動回路78により、受光素子16との間の距離が漸次異なるようにそれぞれ複数設けられた2種類の発光素子18、20が順次発光させられると、受光素子16と発光素子18、20との距離がそれぞれ異なることにより、生体中の異なる深度で散乱された射出光が受光素子16により受光される。 [0061] As described above, according to this embodiment, the light-emitting element drive circuit 78, two types of light-emitting elements 18, 20 distance is provided with a plurality each of progressively differently between the light receiving element 16 is sequentially When used to emit light, the distance between the light receiving element 16 and the light emitting element 18, 20 by different respectively, emitted light scattered at different depths of a living body is received by the light receiving element 16. 受光された射出光は、交直成分比算出手段66において交流成分AC R 、AC IRと直流成分DC R 、DC IRの比(AC R /DC R )、(AC IR Emitted light received, the AC to DC component ratio alternating current component AC R in the calculation unit 66, and DC AC IR component DC R, the ratio of the DC IR (AC R / DC R ), (AC IR
/DC IR )が算出され、最適発光素子決定手段82において、その交流成分と直流成分の比(AC R /D / DC IR) is calculated, the optimum light emitting element determination means 82, the ratio (AC R / D of the DC component and the AC component
R )、(AC IR /DC IR )の、発光素子18、20と受光素子16との距離に対する変化曲線の一次微分曲線である、交直成分比(AC R /DC R )、(AC IR /D C R), (the AC IR / DC IR), a first derivative curve of change curve with respect to the distance between the light emitting element 18 and the light receiving element 16, AC-DC component ratio (AC R / DC R), (AC IR / D
IR )の、発光素子18、20と受光素子16との距離に対する増加率を示す曲線を求め、その一次微分曲線の最大値を示す発光素子18、20と受光素子16との距離よりも受光素子16との距離が遠い範囲で、増加率が基準値B以下となる発光素子18、20と受光素子16 The C IR), obtains a curve showing the increase rate for the distance between the light emitting element 18 and the light receiving element 16, the light receiving than the distance between the light emitting element 18 and 20 indicating the maximum value of the first derivative curve and the light receiving element 16 in a long distance range of the device 16, the light emitting element 18 and 20 increase rate is less than the reference value B light-receiving element 16
との距離に基づいて最適発光素子が決定されていた。 Optimal light emitting element based on the distance between has been determined.

【0062】従って、前記一次微分曲線の最大値は、発光素子18、20から発せられた光の散乱光が末梢血管の密度が急に濃くなっている深度での散乱であることを示し、その一次微分曲線の増加率が基準値以下となる点は、発光素子18、20から発せられた光の散乱光が末梢血管の密度が十分に濃くなった深度での散乱であることを示しているので、生体に照射され、生体中で散乱されて受光素子により受光される2種類の波長の光の散乱光が散乱される深度をそれぞれ最適な深度に自動的に揃えることができ、反射型プロ−ブ10の測定精度が向上する。 [0062] Therefore, the maximum value of said first derivative curve shows that the scattered light of the light emitted from the light emitting element 18, 20 is scattered at depths density of peripheral vascular becomes suddenly darker, its the point at which the rate of increase in first derivative curve is equal to or less than the reference value, indicating that the scattered light of the light emitted from the light emitting element 18, 20 the density of peripheral vascular are scattered in a sufficiently dense since the depth because, is irradiated to the living body, is scattered in the living body can be automatically align the depth scattered light is scattered light of the two wavelengths received by the light receiving element to an optimum depth respectively, the reflection-type pro - measurement accuracy of the probe 10 is improved.

【0063】以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様においても適用される。 [0063] While an embodiment of the present invention has been described with reference to the drawings, the invention is also applicable in other manners.

【0064】たとえば、前述の第1発明に対する図1の実施例において、最適発光強度AE [0064] For example, in the embodiment of FIG. 1 with respect to the first invention described above, the optimum light emission intensity AE 1 、AE 2を求める場合に、発光強度E 1 、E 2と交直成分比(AC R /D 1, when obtaining the AE 2, the emission intensity E 1, E 2 and AC-DC component ratio (AC R / D
R )、(AC IR /DC IR )との関係曲線C 1 、C 2を算出し、その曲線C 1 、C 2の変曲点i 1 、i 2に基づいて最適発光強度AE 1 、AE 2がそれぞれ決定されていたが、第2発明に対する実施例で最適発光素子が決定されたと同様に、交直成分比(AC R /DC R )、(A C R), (AC IR / DC IR) relationship between the curve C 1, C 2 to calculate the optimum luminous intensity AE 1 on the basis of the curve C 1, the inflection point of the C 2 i 1, i 2, AE Although 2 has been determined, respectively, as well as the optimum light-emitting element is determined by the embodiment for the second invention, AC-DC component ratio (AC R / DC R), (a
IR /DC IR )と発光強度E 1 、E 2との関係の変化曲線の一次微分曲線すなわち交直成分比(AC R /D C IR / DC IR) and first derivative curve i.e. AC-DC component ratio of the change curve of the relationship of the luminous intensity E 1, E 2 (AC R / D
R )、(AC IR /DC IR )の発光強度E 1 、E 2に対する増加率を示す曲線に基づいて最適発光強度がそれぞれ決定されてもよい。 C R), (optimum luminous intensity based on the curve showing the increase of the emitted light intensity E 1, E 2 of the AC IR / DC IR) may be determined, respectively.

【0065】また、前述の第2発明に対する図8の実施例において、交直成分比(AC R /DC R )、(AC IR [0065] Further, in the embodiment of FIG. 8 with respect to the second invention described above, the AC-DC component ratio (AC R / DC R), (AC IR
/DC IR )の、発光素子18、20と受光素子16との距離に対する増加率を示す曲線C 3に基づいて最適発光素子がそれぞれ決定されていたが、第1発明に対する実施例で最適発光強度が決定されたと同様に、交直成分比(AC R /DC R )、(AC IR /DC IR )と、発光素子18、20と受光素子16との距離との関係曲線を算出し、その曲線の変曲点に基づいて最適発光素子がそれぞれ決定されてもよい。 / A DC IR), the optimum light emitting element based on the curve C 3 showing the increase rate for the distance between the light emitting element 18 and the light receiving element 16 has been determined, respectively, the optimum light emission intensity in Example with respect to the first invention similar to but determined, AC to DC component ratio (AC R / DC R), and (AC IR / DC IR), to calculate the relationship curve between the light emitting element 18, 20 and the distance between the light receiving element 16, of the curve optimum light emitting device may be determined respectively based on the inflection point.

【0066】また、前述の第1発明に対する図1の実施例において、最適発光強度決定手段68では、変曲点i [0066] Further, in the embodiment of FIG. 1 with respect to the first invention described above, the optimum light emission intensity determining unit 68, the inflection point i
1 、i 2を示す発光強度E 1 、E 2より一定量aだけ強い発光強度を最適発光強度AE 1 、AE 2として決定していたが、変曲点i 1 、i 2を示す発光強度E 1 、E 2 1, i 2 emission intensity E 1 showing a has been determined a strong emission intensity by a predetermined amount a from E 2 as an optimum luminous intensity AE 1, AE 2, the emission intensity E showing the inflection point i 1, i 2 1, E 2
が最適発光強度AE 1 、AE 2として決定されてもよい。 It may be determined as the optimum luminous intensity AE 1, AE 2.

【0067】また、前述の2つの実施例では、反射型プロ−ブ10、70が酸素飽和度測定に用いられていたが、ヘマトクリット値を測定するヘマトクリット値測定装置に用いられてもよい。 [0067] In the two embodiments described above, the reflection-type pro - but Bed 10,70 have been used in oximetry, may be used in hematocrit value measuring device for measuring the hematocrit value.

【0068】また、前述の2つの実施例では、2種類の発光素子18、20から発光された光の散乱光が、共通の受光素子16により受光されていたが、単一の波長のみを受光する受光素子がそれぞれの波長に対応して設けられてもよい。 [0068] In the two embodiments described above, two types of scattered light of the light emitted from the light emitting element 18, 20 has been received by the common light receiving element 16, receiving only a single wavelength receiving element for may be provided corresponding to the respective wavelengths. この場合は、第1発光素子18および第2発光素子20は交互に発光させられる必要はなく、同時に発光させられてもよい。 In this case, the first light emitting element 18 and the second light-emitting element 20 need not be made to emit light alternately, may be caused to emit light simultaneously.

【0069】また、前述の第2発明に対する図8の実施例では、演算制御回路42からの駆動指令信号SLDを受けた発光素子駆動回路78により、第1発光素子18 [0069] In the embodiment of FIG. 8 with respect to the second invention described above, the light emitting element driving circuit 78 having received the driving command signal SLD from the arithmetic control circuit 42, the first light emitting element 18
が受光素子16に最も近い側から最も遠い側へと順に発光させられ、さらに第2発光素子20が受光素子16に最も近い側から最も遠い側へと順に発光させられていたが、発光素子18、20の受光素子16との距離と交直成分比(AC R /DC There is caused to emit light in order to farthest from the side closest to the light receiving element 16, but further second light emitting element 20 has been caused to emit light in order to farthest from the side closest to the light receiving element 16, the light emitting element 18 , distance and AC-DC component ratio between the light receiving element 16 of the 20 (AC R / DC R )、(AC IR /DC IR )が明確であれば、その他の順で発光させられてもよい。 R), (if AC IR / DC IR) is a clear, may be made to emit light in the other order.

【0070】また、前述の第2発明に対する図8の実施例において、反射型プロ−ブ70には、受光素子16からの距離が漸次異なるように、長手状に第1発光素子1 [0070] Further, in the embodiment of FIG. 8 with respect to the second invention described above, the reflection-type pro - the blanking 70, as the distance from the light receiving element 16 are different progressively, first light emitting element in a longitudinal shape 1
8および第2発光素子20が配置されていたが、受光素子16を中心として、同心円状に複数の遮光壁が設けられ、その複数設けられた遮光壁と遮光壁との間に、発光素子18、20が環状に設けられることにより、受光素子16からの距離が漸次異なるように配置されてもよい。 8 and the second is the light emitting element 20 has been arranged, around the light-receiving element 16, a plurality of light shielding wall is provided concentrically, between the plurality was shielding wall and the light shielding wall, the light emitting element 18 by 20 is provided in the annular, distance from the light-receiving element 16 may be arranged progressively different.

【0071】また、前述の第2発明に対する図8の実施例では、一組の発光素子18、20毎に遮光壁76が配置されていたが、受光素子16と、受光素子16と最も近い発光素子18、20との間に比較的大きい遮光壁8 [0071] In the embodiment of FIG. 8 with respect to the second invention described above, although the light shielding wall 76 has been arranged for each pair of light-emitting elements 18 and 20, closest to the light emitting and light receiving element 16, and a light receiving element 16 relatively large light shielding wall between the elements 18 and 20 8
4が設けられることによって、受光素子16に受光される散乱光の散乱深度が変化させられるものであってもよく、たとえば、図14に示すような反射型プロ−ブ86 4 By is provided, may be one scattering depth of the scattered light received by the light receiving element 16 is changed, for example, reflection-type pro as shown in FIG. 14 - Bed 86
が用いられてもよい。 It may also be employed. 図14は、反射型プロ−ブ86の図9のA−A線と同様の線での断面図を示している。 Figure 14 is a reflection-type pro - shows a cross-sectional view of the same line as line A-A of FIG. 9 of the probe 86. この反射型プロ−ブ86の場合は、前述の実施例の反射型プロ−ブ70と同様の検出範囲を得ようとすると、プロ−ブ86全体は大きくなるが、遮光壁84が一つで済むので、プロ−ブ86の構造が簡単となる利点がある。 The reflective pro - For Bed 86, reflective professional in the illustrated embodiments - an attempt to obtain a similar detection range as Bed 70, pro - Bed 86 the whole becomes large, the light shielding wall 84 at one because need, pro - there is an advantage that the structure of the probe 86 can be simplified. また、この場合、受光素子16から最も遠い側の発光素子18、20からの光の散乱光が、最も体表面12から浅い部位からの散乱光を含んでいる。 In this case, the scattered light of the light from the light emitting element 18 and 20 farthest from the light receiving element 16 includes the scattered light from a shallow part from the most body surface 12.

【0072】その他、本発明はその主旨を逸脱しない範囲において種々変更が加えられ得るものである。 [0072] In addition, the present invention is capable various changes are made without departing from the scope and spirit thereof.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第1発明の一実施例である反射型プロ−ブを備えた酸素飽和度測定装置の構成を示すブロック図である。 The first reflective which is an embodiment of the invention of the present invention; FIG Pro - is a block diagram showing the structure of an oxygen saturation measuring apparatus equipped with a drive.

【図2】受光素子により検出される光電脈波信号の周期的な変動を例示する図である。 2 is a diagram illustrating a periodic variation of the photoelectric pulse wave signal detected by the light receiving element.

【図3】図1の実施例の演算制御装置の制御機能の要部を説明する機能ブロック線図である。 3 is a functional block diagram for explaining essential control functions of the arithmetic and control unit of the embodiment of FIG.

【図4】図3の周波数解析手段において解析された第1 [4] first analyzed in the frequency analyzing means in FIG. 3
光信号SV R或いは第2光信号SV IRの交流成分AC R Optical signal SV R or AC component AC R of the second optical signal SV IR
或いはAC IRおよび直流成分DC R或いはDC IRを示す図である。 Or is a diagram showing an AC IR and DC component DC R or DC IR.

【図5】図3の最適発光強度決定手段において求められる発光強度と交直成分比との関係曲線を示す図である。 5 is a diagram showing a relationship curve of the emission intensity and the AC-DC component ratio obtained at the optimum light emission intensity determining unit of FIG.

【図6】図3の酸素飽和度算出手段において用いられる関係を示す図である。 6 is a diagram showing a relationship used in the oxygen saturation calculating unit of FIG.

【図7】図1の実施例の演算制御装置の制御作動のうち最適発光強度を決定する動作の要部を説明するフローチャートである。 7 is a flowchart illustrating a major part of the operation of determining the optimum light emission intensity of the control operation of the arithmetic and control unit of the embodiment of FIG.

【図8】本発明の第2発明の一実施例である反射型プロ−ブを備えた酸素飽和度測定装置の構成を示すブロック図である。 It is a block diagram showing the structure of an oxygen saturation measuring apparatus equipped with a blanking - 8 reflective pro which is an embodiment of the second aspect of the present invention.

【図9】図8の反射型プロ−ブを生体の体表面に対向する側から見た図である。 It is a diagram of the blanking viewed from the side facing the body surface of the living - 9 reflective professional FIG.

【図10】図8の実施例の第1発光素子と受光素子との距離と、受光素子により受光される射出光の散乱深度との関係を示す図である。 [10] The first light-emitting element of the embodiment of FIG. 8 and the distance between the light receiving element is a diagram showing the relationship between the scattering depth of the exit light received by the light receiving element.

【図11】図8の実施例の演算制御装置の制御機能の要部を説明する機能ブロック線図である。 11 is a functional block diagram for explaining essential control functions of the arithmetic and control unit of the embodiment of FIG.

【図12】図11の最適発光素子決定手段において求められる交直成分比の、発光素子と受光素子との距離に対する増加率を示す図である。 In Figure 12 the optimum light emitting element AC-DC component ratio obtained in the determination means 11 is a diagram illustrating an increase rate with respect to the distance between the light emitting element and the light receiving element.

【図13】図8の実施例の演算制御装置の制御作動のうち最適発光素子を決定する動作の要部を説明するフローチャートである。 13 is a flowchart illustrating a major part of the operation of determining the optimum light emitting element of the control operation of the arithmetic and control unit of the embodiment of FIG.

【図14】第2発明の他の実施例である反射型プロ−ブの、図9のA−A線と同様の線での断面図を示す図である。 [Figure 14] is another embodiment reflective professional second aspect - of the probe is a diagram showing a sectional view of the same line as line A-A of FIG.

【符合の説明】 Description of the sign]

10、70、86:反射型プロ−ブ(反射型光電脈波検出装置) 16:受光素子 18:第1発光素子 20:第2発光素子 24、76、84:遮光壁 30、78:発光素子駆動回路 62:発光強度変化手段 66:交直成分比算出手段 67:最適発光強度決定手段 68:最適発光強度調節手段 80:発光素子選択手段 82:最適発光素子決定手段 83:最適発光素子選択手段 10,70,86: reflective pro - Bed (reflective photoelectric-pulse-wave detecting device) 16: light receiving elements 18: the first light emitting device 20: the second light emitting element 24,76,84: shielding wall 30,78: the light emitting element drive circuit 62: light emission intensity changing means 66: AC-DC component ratio calculation unit 67: the optimum luminous intensity determination unit 68: the optimum light emission intensity adjusting unit 80: light-emitting element selection means 82: optimal light-emitting element determining unit 83: the optimum light-emitting element selection means

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 ハウジングと、該ハウジングに収容されて生体の表皮に向かって複数種類の波長の光を照射する複数種類の発光素子と、該ハウジング内において遮光壁を介して該発光素子から所定距離離れた位置に収容され、該複数種類の発光素子からの光が該生体表皮下で散乱を受けて体表面から射出される複数種類の波長の光を受光する受光素子とを備え、該複数種類の波長の射出光に基づいて生体情報を得るための光電脈波をそれぞれ検出する反射型光電脈波検出装置であって、 前記複数種類の発光素子に順次駆動電流を供給し、且つ該発光素子のそれぞれの発光強度を調節することが可能な発光素子駆動回路と、 前記受光素子により検出された射出光の交流成分と直流成分の比を前記波長毎にそれぞれ算出する交直成分比算出手段と 1. A housing and, given a plurality of types of light emitting elements for emitting light of a plurality of types of wavelengths are accommodated in the housing towards the skin of a living body, from the light emitting element via the light shielding wall within said housing distance is housed in a remote location, and a light receiving element for receiving light of a plurality of kinds of wavelengths which light is emitted from the body surface by receiving scattered under biological epidermis from the plurality several light emitting elements, said plurality of a type reflective photoelectric pulse-wave detecting device which detects respective photoelectric pulse wave for obtaining biological information based on the emitted light of a wavelength of, successively supplying driving current to the plurality of types of light emitting elements, and light emitting each light emitting element driving circuit capable of adjusting the light emission intensity of the device, the AC to DC component ratio calculating means for calculating each ratio of the AC component and the DC component of the emitted light detected by the light receiving element for each of the wavelength 前記受光素子により検出された射出光から前記交直成分比算出手段により算出された交流成分と直流成分の比と前記発光素子駆動回路によって駆動される発光素子の発光強度との関係を波長毎に求め、その関係から、前記波長毎にそれぞれ最適発光強度を決定する最適発光強度決定手段と、 前記光電脈波の検出に先立って、該最適発光強度決定手段により決定された最適発光強度で前記発光素子駆動回路に前記複数種類の発光素子をそれぞれ発光させる最適発光強度調節手段とを、含むことを特徴とする反射型光電脈波検出装置。 Obtained relation between the emission intensity of light emitting elements driven by the calculated AC component and the ratio of the DC component the light-emitting element driving circuit by the AC-DC component ratio calculating means from the emitted light detected by the light receiving element for each wavelength from this relationship, and the optimum light emission intensity determining means for determining respective optimum light emission intensity for each of the wavelength, prior to detection of the photoelectric pulse wave, the optimum light emission intensity determined by the determining means optimum luminous intensity in the light emitting element wherein the drive circuit a plurality of types of the optimum luminous intensity adjusting means for emitting an emission element, reflection-type photoelectric pulse-wave detecting device which comprises.
  2. 【請求項2】 生体の表皮に向かって複数種類の波長の光を照射する複数種類の発光素子と、該発光素子から所定距離離れた位置に収容され、該複数種類の発光素子からの光が該生体表皮下で散乱を受けて体表面から射出される複数種類の波長の射出光を受光する受光素子とを備え、該複数種類の波長の光に基づいて生体情報を得るための光電脈波をそれぞれ検出する反射型光電脈波検出装置であって、 前記複数種類の発光素子と受光素子とが相互間に遮光壁が介在させられた状態で収容され、且つ複数種類の波長毎に設けられた複数の発光素子が、前記受光素子との間の距離が漸次異なるようにそれぞれ設られたハウジングと、 該ハウジング内にそれぞれ複数設けられた複数種類の発光素子の中から波長毎に発光させるべき発光素子を選択 Wherein a plurality of types of light emitting elements for emitting light of a plurality of types of wavelengths towards the skin of the living body, is accommodated in a position at a predetermined distance from the light emitting element, the light from the plurality several light emitting element and a light receiving element receives scattered under biological epidermis receives light emitted plurality of wavelengths emitted from the body surface, the photoelectric pulse wave for obtaining biological information based on the light of the plurality several wavelengths a reflection type photoelectric pulse-wave detecting device which detects each, and the plurality of types of light emitting element and a light receiving element is accommodated in a state in which the light shielding wall was interposed therebetween, and is provided for each of a plurality kinds of wavelengths a plurality of light emitting device comprises a housing distance was gradually differently each set between the light receiving element, to emit light for each wavelength from the plurality of types of light-emitting elements provided in plural, respectively in the housing select a light-emitting element に発光させることが可能な発光素子駆動回路と、 前記受光素子により検出された射出光の交流成分と直流成分の比を前記波長毎にそれぞれ算出する交直成分比算出手段と、 前記受光素子により検出された射出光から前期交直成分比算出手段により算出された交流成分と直流成分の比と前記発光素子駆動回路により選択される発光素子の前記受光素子との距離との関係を波長毎に求め、その関係から、前記波長毎にそれぞれ最適発光素子を決定する最適発光素子決定手段と、 前記光電脈波の検出に先立って、前記最適発光素子決定手段により波長毎に決定された最適発光素子を前記発光素子駆動回路に発光させる最適発光素子選択手段とを、 Detecting a light emitting element driving circuit capable of emitting, and AC-DC component ratio calculating means for calculating each ratio of the AC component and the DC component of the emitted light detected by the light receiving element for each of the wavelength, by the light receiving element has been determined the relationship between the distance between the light receiving elements of the light emitting element selected by the calculated AC component and the ratio of the DC component the light-emitting element driving circuit by year AC-DC component ratio calculating means for each wavelength from the emitted light, from this relationship, and the optimum light-emitting element determination means for determining respective optimum light emitting elements for each said wavelength, prior to detection of the photoelectric pulse wave, the optimum light emitting device determined for each wavelength by the optimum light emitting element determination means the optimum light-emitting element selection means for emitting to the light emitting element driving circuit,
    含むことを特徴とする反射型光電脈波検出装置。 Reflective photoelectric pulse-wave detecting device which comprises.
JP29828097A 1997-10-30 1997-10-30 Reflective photoelectric-pulse-wave detecting device Expired - Lifetime JP3790030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29828097A JP3790030B2 (en) 1997-10-30 1997-10-30 Reflective photoelectric-pulse-wave detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29828097A JP3790030B2 (en) 1997-10-30 1997-10-30 Reflective photoelectric-pulse-wave detecting device

Publications (2)

Publication Number Publication Date
JPH11128184A true true JPH11128184A (en) 1999-05-18
JP3790030B2 JP3790030B2 (en) 2006-06-28

Family

ID=17857597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29828097A Expired - Lifetime JP3790030B2 (en) 1997-10-30 1997-10-30 Reflective photoelectric-pulse-wave detecting device

Country Status (1)

Country Link
JP (1) JP3790030B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034134A (en) * 1998-07-16 2000-02-02 Ohara Inc Lithium ion conductive glass ceramics and cell or battery and gas sensor using the same
JP2004344668A (en) * 2003-05-21 2004-12-09 Asulab Sa Portable measuring instrument measuring physiological numerical value and including device irradiating surface of organic tissue
US7252639B2 (en) 2003-02-28 2007-08-07 Denso Corporation Method and apparatus for measuring biological condition
JP2011530351A (en) * 2008-08-07 2011-12-22 ユニバーシティ オブ マサチューセッツ Spectroscopic sensor
JP2013063203A (en) * 2011-09-20 2013-04-11 Rohm Co Ltd Pulse wave sensor
JP2013150708A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Method for mounting semiconductor element
JP2013150707A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Pulse wave measurement device and signal processor
JP2013153845A (en) * 2012-01-27 2013-08-15 Seiko Epson Corp Pulse wave measuring device and detection device
JP2016052503A (en) * 2014-09-02 2016-04-14 アップル インコーポレイテッド Multiple light paths architecture and obscuration methods for signal and perfusion index optimization

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034134A (en) * 1998-07-16 2000-02-02 Ohara Inc Lithium ion conductive glass ceramics and cell or battery and gas sensor using the same
US7252639B2 (en) 2003-02-28 2007-08-07 Denso Corporation Method and apparatus for measuring biological condition
JP2004344668A (en) * 2003-05-21 2004-12-09 Asulab Sa Portable measuring instrument measuring physiological numerical value and including device irradiating surface of organic tissue
JP4580684B2 (en) * 2003-05-21 2010-11-17 アスラブ・エス アーAsulab Societa Anonyme Portable instrument for measuring a physiological numerical comprising a device for irradiating the surface of the organic tissue
JP2011530351A (en) * 2008-08-07 2011-12-22 ユニバーシティ オブ マサチューセッツ Spectroscopic sensor
US9095291B2 (en) 2008-08-07 2015-08-04 University Of Massachusetts Spectroscopic sensors
JP2013063203A (en) * 2011-09-20 2013-04-11 Rohm Co Ltd Pulse wave sensor
JP2013150708A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Method for mounting semiconductor element
JP2013150707A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Pulse wave measurement device and signal processor
JP2013153845A (en) * 2012-01-27 2013-08-15 Seiko Epson Corp Pulse wave measuring device and detection device
JP2016052503A (en) * 2014-09-02 2016-04-14 アップル インコーポレイテッド Multiple light paths architecture and obscuration methods for signal and perfusion index optimization

Also Published As

Publication number Publication date Type
JP3790030B2 (en) 2006-06-28 grant

Similar Documents

Publication Publication Date Title
US8788003B2 (en) Monitoring blood constituent levels in biological tissue
US6516209B2 (en) Self-calibrating optical imaging system
US5551422A (en) Method and apparatus for analytical determination of glucose in a biological matrix
US5575285A (en) Apparatus for measuring oxygen saturation
US20100222652A1 (en) Diagnostic sensor unit
US5222495A (en) Non-invasive blood analysis by near infrared absorption measurements using two closely spaced wavelengths
US20080077022A1 (en) Method and apparatus for detection of venous pulsation
US6031603A (en) Sensor, method and device for optical blood oximetry
US7251518B2 (en) Blood optode
US5222496A (en) Infrared glucose sensor
US5690104A (en) Apparatus and method for measuring oxygen saturation in blood and apparatus and method for measuring concentration of light-absorbing materials in blood
US20040260186A1 (en) Monitoring physiological parameters based on variations in a photoplethysmographic signal
US20050168722A1 (en) Device and method for measuring constituents in blood
US4908762A (en) Oximeter with system for testing transmission path
US5490506A (en) Peripheral blood flow evaluating apparatus
US5492118A (en) Determining material concentrations in tissues
US5553613A (en) Non invasive blood analyte sensor
US5830148A (en) System and method for evaluating the autonomic nervous system of a living subject
US20080275317A1 (en) Medical Measuring Device
US4901238A (en) Oximeter with monitor for detecting probe dislodgement
US5746206A (en) Isolated layer pulse oximetry
US5497769A (en) Photosensor with multiple light sources
US20070123787A1 (en) Pulse wave data analyzing method, system, and program product
EP0829227A2 (en) Blood pressure monitor apparatus
JP3124073B2 (en) Blood oxygen saturation monitoring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

EXPY Cancellation because of completion of term