JPH0524006U - Reflective oximeter probe - Google Patents

Reflective oximeter probe

Info

Publication number
JPH0524006U
JPH0524006U JP8382091U JP8382091U JPH0524006U JP H0524006 U JPH0524006 U JP H0524006U JP 8382091 U JP8382091 U JP 8382091U JP 8382091 U JP8382091 U JP 8382091U JP H0524006 U JPH0524006 U JP H0524006U
Authority
JP
Japan
Prior art keywords
light
receiving element
light emitting
light receiving
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8382091U
Other languages
Japanese (ja)
Other versions
JP2555833Y2 (en
Inventor
寛 酒井
Original Assignee
コーリン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーリン電子株式会社 filed Critical コーリン電子株式会社
Priority to JP8382091U priority Critical patent/JP2555833Y2/en
Publication of JPH0524006U publication Critical patent/JPH0524006U/en
Application granted granted Critical
Publication of JP2555833Y2 publication Critical patent/JP2555833Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

(57)【要約】 【目的】 被測定者の個人差や測定部位の相違に拘らず
酸素飽和度を精度良く測定し得かつ末梢循環の低下に拘
らず酸素飽和度を測定精度良く且つ安定して測定し得る
反射型オキシメータ用プローブを提供する。 【構成】 発光素子18,20を、受光素子16との間
の距離が漸次異なるように受光素子16の周りに交互に
配列する。
(57) [Summary] [Purpose] Oxygen saturation can be measured accurately regardless of individual differences of measurement subjects and differences in measurement sites, and oxygen saturation can be measured accurately and stably regardless of a decrease in peripheral circulation. Provided is a probe for a reflection-type oximeter that can be measured. [Structure] The light emitting elements 18 and 20 are alternately arranged around the light receiving element 16 so that the distance between the light emitting element 18 and the light receiving element 16 gradually differs.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は反射型オキシメータに用いられるプローブに関するものである。 The present invention relates to a probe used in a reflection oximeter.

【0002】[0002]

【従来の技術】[Prior Art]

複数種類の発光素子から互いに波長の異なる複数種類の光を生体の表面に順次 照射してその生体からの反射光を共通の受光素子にてそれぞれ検出し、その反射 光の強度を表す光電脈波信号に基づいて血液中の酸素飽和度を測定する反射型オ キシメータが知られている。たとえば、本出願人が先に出願して公開された特開 平2−111344号公報に記載されたものがそれであり、かかる反射型オキシ メータによる酸素飽和度の測定は皮膚の一部を構成する真皮内の血管床において 行われるのが普通である。 A photoelectric pulse wave that represents the intensity of the reflected light from multiple types of light-emitting elements that sequentially irradiate multiple types of light with different wavelengths on the surface of the living body and detects the reflected light from the living body with a common light-receiving element. Reflection oximeters are known that measure oxygen saturation in blood based on signals. For example, the one described in Japanese Patent Application Laid-Open No. 2-111344, which was previously filed by the applicant of the present application, is that, and the measurement of the oxygen saturation by such a reflection type oximeter constitutes a part of the skin. It is usually done in the vascular bed within the dermis.

【0003】 上記公報に記載の反射型オキシメータは、受光素子を中心とする所定半径の円 周上に発光波長の異なる2種類の発光素子が所定間隔毎に全周に亘って交互に配 列され、かつ発光素子から体表面で反射して受光素子に向かう光を遮光するため の円筒状の遮光部材が受光素子と発光素子との間に設けられたプローブを備えて おり、受光素子にて検出される反射光の強度を表す光電脈波信号が大きく得られ るのに加えて、血管床の組成が不均一である場合やプローブの姿勢が傾いた場合 においても酸素飽和度を精度良く且つ安定して測定できる等の利点を有している 。また、上記公報に記載の反射型オキシメータにおいては、光電脈波信号の交流 成分と直流成分との比に基づいて酸素飽和度が決定されるようになっている。In the reflection type oximeter described in the above publication, two kinds of light emitting elements having different emission wavelengths are alternately arranged on the circumference of a predetermined radius centered on the light receiving element over a whole circumference at predetermined intervals. In addition, a cylindrical light-shielding member for shielding the light reflected from the light emitting element to the light receiving element toward the light receiving element is provided with a probe provided between the light receiving element and the light emitting element. In addition to obtaining a large photoelectric pulse wave signal that represents the intensity of the reflected light that is detected, the oxygen saturation can be accurately measured even when the composition of the vascular bed is non-uniform or the probe is tilted. It has advantages such as stable measurement. Further, in the reflection type oximeter described in the above publication, the oxygen saturation is determined based on the ratio between the AC component and the DC component of the photoelectric pulse wave signal.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、上記公報に記載の反射型オキシメータのプローブにおいても未 だ解決すべき問題を有している。すなわち、受光素子と各発光素子との間の距離 が一定であるために、生体内からの反射光の強度が充分大きく得られる生体表面 からの深さを表す最適検出深度の幅が狭くなることから、被測定者の個人差や測 定部位の相違により生体表面からの血管床の深さ位置がばらつくと、光電脈波信 号の大きさが低下して酸素飽和度を精度良く測定できなくなるおそれがあるとと もに、生体に加えられたショック等により末梢循環が低下して血管床のより深い 位置からしか反射光が検出されなくなると、光電脈波信号の大きさが低下して酸 素飽和度を測定精度良く且つ安定して測定できなくなるおそれがあるのである。 However, the probe of the reflection type oximeter described in the above publication still has a problem to be solved. That is, since the distance between the light receiving element and each light emitting element is constant, the width of the optimum detection depth, which represents the depth from the surface of the living body where the intensity of the reflected light from the living body is sufficiently large, becomes narrow. Therefore, if the depth position of the blood vessel bed from the surface of the living body varies due to individual differences of the subject and differences in the measurement site, the size of the photoelectric pulse wave signal decreases and it becomes impossible to measure the oxygen saturation accurately. In addition, if the peripheral circulation is reduced due to a shock applied to the living body and reflected light is detected only from a deeper position in the vascular bed, the magnitude of the photoelectric pulse wave signal decreases and the There is a possibility that the elementary saturation cannot be measured accurately and stably.

【0005】 本考案は以上の事情を背景にして為されたものであって、その目的とするとこ ろは、被測定者の個人差や測定部位の相違に拘らず酸素飽和度を精度良く測定し 得かつ末梢循環の低下に拘らず酸素飽和度を測定精度良く且つ安定して測定し得 る反射型オキシメータ用プローブを提供することにある。The present invention has been made in view of the above circumstances, and its purpose is to accurately measure oxygen saturation regardless of individual differences of measurement subjects and differences in measurement sites. It is another object of the present invention to provide a reflection-type oximeter probe that can measure oxygen saturation with good accuracy and stability regardless of a decrease in peripheral circulation.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するための本考案の要旨とするところは、複数種類の発光素子 から互いに波長の異なる複数種類の光を生体の表面に順次照射してその生体から の反射光を共通の受光素子にてそれぞれ検出し、その反射光の強度を表す光電脈 波信号に基づいて血液中の酸素飽和度を測定する反射型オキシメータにおいて、 前記発光素子が各種類毎に前記受光素子の周りに複数配列されるとともに、それ ら発光素子と受光素子との間に、その発光素子から前記生体の表面で反射してそ の受光素子へ向かう光を遮光する環状の遮光部材が設けられた形式のプローブで あって、前記発光素子を、前記受光素子との間の距離が漸次異なるようにその受 光素子の周りに設けたことにある。 The gist of the present invention for achieving the above-mentioned object is to sequentially irradiate the surface of a living body with a plurality of types of light having different wavelengths from a plurality of types of light emitting elements and to use a common light receiving element for the reflected light from the body. In the reflection-type oximeter that measures the oxygen saturation in blood based on the photoelectric pulse signal that indicates the intensity of the reflected light, each of the light-emitting elements has a plurality of light-receiving elements around the light-receiving element. A probe of a type in which an annular light-shielding member is arranged between the light-emitting element and the light-receiving element and that blocks the light reflected from the light-emitting element on the surface of the living body and traveling toward the light-receiving element. The light emitting element is provided around the light receiving element so that the distance between the light emitting element and the light receiving element gradually differs.

【0007】[0007]

【作用および考案の効果】[Effect of action and device]

かかる構成の反射型オキシメータ用プローブによれば、複数種類の波長の光を 発光し且つ各種類毎に複数設けられた発光素子が、共通の受光素子の周りにその 受光素子との間の距離が漸次異なるように配列されるので、反射光の最適検出深 度の幅が広く得られることとなる。これにより、被測定者の個人差や測定部位の 相違により生体表面からの血管床の深さ位置がばらついても光電脈波信号の大き さが充分に得られて酸素飽和度を精度良く測定し得るとともに、末梢循環が低下 して血管床のより深い位置からしか反射光が検出されなくなっても光電脈波信号 の大きさが充分に得られて酸素飽和度を測定精度良く且つ安定して測定し得る。 According to the probe for a reflection-type oximeter having such a configuration, a plurality of light-emitting elements that emit light of a plurality of types of wavelengths are provided around a common light-receiving element and the distance between the light-receiving elements and the common light-receiving element. Since they are arranged so as to be gradually different, a wide range of optimum detection depth of reflected light can be obtained. As a result, even if the depth position of the vascular bed from the surface of the living body varies due to individual differences in measurement subjects and differences in measurement sites, the magnitude of the photoelectric pulse wave signal can be sufficiently obtained and oxygen saturation can be accurately measured. In addition, even if the peripheral circulation decreases and reflected light is detected only from a deeper position in the vascular bed, the magnitude of the photoelectric pulse wave signal is sufficiently obtained to measure oxygen saturation accurately and stably. You can

【0008】 好適には、受光素子にてそれぞれ検出される発光素子毎の反射光の生体表面か らの各最小検出深度は、その生体の皮膚の一部を構成する表皮の厚さ以上となる ように決定される。このように、受光素子と各発光素子との間の距離が異なって いても発光素子毎の最小検出深度が表皮の厚さ以上とされることにより、血管が 存在しない表皮からの反射光が受光素子にて検出されるのを好適に回避し得るた め、光電脈波信号の交流成分と直流成分との比を大きく確保し得て酸素飽和度の 測定精度を一層向上させ得る。[0008] Preferably, each minimum detection depth of the reflected light of each light emitting element detected by the light receiving element from the surface of the living body is equal to or more than the thickness of the epidermis constituting a part of the skin of the living body. Is decided. Thus, even if the distance between the light receiving element and each light emitting element is different, the minimum detection depth for each light emitting element is set to be equal to or greater than the thickness of the epidermis, so that the reflected light from the epidermis where blood vessels do not exist is received. Since it can be suitably avoided from being detected by the element, a large ratio of the AC component and the DC component of the photoelectric pulse wave signal can be secured, and the measurement accuracy of oxygen saturation can be further improved.

【0009】[0009]

【実施例】【Example】

以下、本考案の一実施例を図面に基づいて詳細に説明する。 An embodiment of the present invention will be described below in detail with reference to the drawings.

【0010】 図2は本考案が適用されたプローブを備えた反射型オキシメータの一構成例を 示す図であって、プローブ10は、たとえば生体の指等の体表面12に密着した 状態で装着される。プローブ10は、図1および図2に示すように、一方向にお いて開口する容器状のハウジング14と、そのハウジング14の底部内面の外周 側に位置する部分において所定間隔毎に交互に且つ環状に配列され、LED等か ら成るたとえば9個づつの第1発光素子18および第2発光素子20と、それら 第1発光素子18および第2発光素子20の内周側においてハウジング14の底 部内面に設けられ、ホトダイオードやホトトランジスタ等から成る受光素子16 と、ハウジング14内に一体的に設けられ、受光素子16および発光素子18, 20を覆う透明な樹脂22と、ハウジング14内において受光素子16と発光素 子18,20との間に設けられ、発光素子18,20から照射された光の体表面 12から受光素子16に向かう反射光を遮光する環状の遮光部材24とを備えて 構成されている。FIG. 2 is a view showing an example of the configuration of a reflection oximeter including a probe to which the present invention is applied. The probe 10 is attached in a state of being in close contact with a body surface 12 such as a finger of a living body. To be done. As shown in FIGS. 1 and 2, the probe 10 includes a container-shaped housing 14 that is open in one direction, and a portion of the housing 14 that is located on the outer peripheral side of the inner surface of the bottom of the housing 14 alternately and annularly at predetermined intervals. For example, nine first light emitting elements 18 and second light emitting elements 20 each composed of LEDs and the like, and a bottom inner surface of the housing 14 on the inner peripheral side of the first light emitting element 18 and the second light emitting element 20. And a transparent resin 22 that is integrally provided in the housing 14 and covers the light receiving element 16 and the light emitting elements 18 and 20, and the light receiving element 16 in the housing 14. Is provided between the light emitting element 18 and the light emitting element 20, and the light emitted from the light emitting elements 18 and 20 travels from the body surface 12 toward the light receiving element 16. It is constituted by an annular light shielding member 24 for blocking light.

【0011】 上記第1発光素子18はたとえば660nm程度の波長の赤色光を発光し、第 2発光素子20はたとえば800nm程度の波長の赤外光を発光するものである が、必ずしもこれらの波長に限定されるものではなく、ヘモグロビンの吸光係数 と酸化ヘモグロビンの吸光係数とが大きく異なる波長の光と、それら両吸光係数 が略同じとなる波長の光とを発光するものであればよい。これら第1発光素子1 8および第2発光素子20は一定時間づつ順番に所定周波数で発光させられると ともに、両発光素子18,20から照射された光の体表面12下の血管床、すな わち皮膚の一部を構成する真皮内において細い血管が密集している部分からの反 射光は共通の受光素子16によりそれぞれ受光される。The first light emitting element 18 emits red light having a wavelength of, for example, about 660 nm, and the second light emitting element 20 emits infrared light having a wavelength of, for example, about 800 nm. There is no limitation, and any light having a wavelength at which the absorption coefficient of hemoglobin and the absorption coefficient of oxyhemoglobin differ greatly and light at a wavelength at which the absorption coefficients of both are substantially the same may be emitted. The first light-emitting element 18 and the second light-emitting element 20 are caused to sequentially emit light at a predetermined frequency for a certain period of time, and the light emitted from both the light-emitting elements 18 and 20 forms a vascular bed under the body surface 12, that is, That is, the reflected light from the portion where the thin blood vessels are densely arranged in the dermis that constitutes a part of the skin is received by the common light receiving element 16.

【0012】 受光素子16は、その受光量に対応した大きさの電気信号SVを増幅器30を 介してローパスフィルタ32へ出力する。この電気信号SVは、動脈の脈動によ る変動成分を含んでいる。ローパスフィルタ32は入力された電気信号SVから 脈波の周波数よりも高い周波数を有するノイズを除去し、そのノイズが除去され た信号SVをデマルチプレクサ34へ出力する。デマルチプレクサ34は後述の 切換信号SCにより第1発光素子18および第2発光素子20の発光に同期して 切り換えられることにより、赤色光による電気信号SVR をサンプルホールド回 路36およびA/D変換器38を介してI/Oポート40へ逐次供給するととも に、赤外光による電気信号SVIRをサンプルホールド回路42およびA/D変換 器44を介してI/Oポート40へ逐次供給する。サンプルホールド回路36, 42は、入力された電気信号SVR ,SVIRをA/D変換器38,44へ逐次出 力する際に、前回出力した電気信号SVR ,SVIRについてのA/D変換器38 ,44における変換作動が終了するまで次に出力する電気信号SVR ,SVIRを それぞれ保持するためのものである。The light receiving element 16 outputs an electric signal SV having a magnitude corresponding to the amount of received light to the low pass filter 32 via the amplifier 30. This electric signal SV contains a fluctuation component due to the pulsation of the artery. The low-pass filter 32 removes noise having a frequency higher than the frequency of the pulse wave from the input electrical signal SV, and outputs the noise-removed signal SV to the demultiplexer 34. By demultiplexer 34 is switched in synchronism with the emission of the first light emitting element 18 and the second light emitting element 20 by switching signal SC will be described later, the electrical signal SV R by the red light sample hold circuits 36 and A / D converter The electric signal SV IR by infrared light is sequentially supplied to the I / O port 40 via the sampler circuit 38 and the I / O port 40 via the sample / hold circuit 42 and the A / D converter 44. The sample hold circuits 36 and 42, when sequentially outputting the input electric signals SV R and SV IR to the A / D converters 38 and 44, A / D the previously output electric signals SV R and SV IR. The electric signals SV R and SV IR to be output next are held respectively until the conversion operations of the converters 38 and 44 are completed.

【0013】 上記I/Oポート40は、データバスラインを介してCPU46,ROM48 ,RAM50,表示器52とそれぞれ接続されている。CPU46は、RAM5 0の記憶機能を利用しつつROM48に予め記憶されたプログラムに従って測定 動作を実行し、I/Oポート40から駆動回路54へ照射信号SLDを出力して 第1発光素子18および第2発光素子20を順番に所定の周波数で一定時間づつ 発光させる一方、それら第1発光素子18および第2発光素子20の発光に同期 して切換信号SCを出力してデマルチプレクサ34を切り換えることにより、前 記電気信号SVR をサンプルホールド回路36へ、前記電気信号SVIRをサンプ ルホールド回路42へそれぞれ振り分ける。また、CPU46は、予め記憶され たプログラムに従って前記電気信号SVR および電気信号SVIRがそれぞれ表す 光電脈波形に基づいて血液中の酸素飽和度を決定し且つその決定した酸素飽和度 を表示器52に表示させる。なお、この酸素飽和度の決定方法は、たとえば、本 出願人が先に出願して公開された特開平3−15440号公報に記載された決定 方法と同様であり、数式1に示す比と酸素飽和度との間の予め求められた関係か ら実際の比に基づいて酸素飽和度が決定される。The I / O port 40 is connected to the CPU 46, the ROM 48, the RAM 50, and the display 52 via a data bus line. The CPU 46 executes the measurement operation according to the program stored in the ROM 48 while utilizing the storage function of the RAM 50, and outputs the irradiation signal SLD from the I / O port 40 to the drive circuit 54 to output the irradiation signal SLD to the first light emitting element 18 and the first light emitting element 18. By causing the two light emitting elements 20 to sequentially emit light at a predetermined frequency for a certain period of time, the switching signal SC is output in synchronization with the light emission of the first light emitting element 18 and the second light emitting element 20 to switch the demultiplexer 34. the pre-Symbol electrical signal SV R to a sample-and-hold circuit 36 distributes each said electrical signal SV IR to sump Ruhorudo circuit 42. Further, CPU 46 may display the electrical signal SV R and the electric signal SV IR is based on the photoelectric pulse waveform representing respectively determining the oxygen saturation in the blood and the determined oxygen saturation according to a program stored in advance 52 To display. The method of determining the oxygen saturation is similar to the method of determining the oxygen saturation described in Japanese Patent Application Laid-Open No. 3-15440, which was filed by the applicant of the present application and published, for example. The oxygen saturation is determined on the basis of the actual ratio from the previously determined relationship with the saturation.

【0014】[0014]

【数1】 [Equation 1]

【0015】 上記数式1において、VdR,VSRはそれぞれ赤色光による光電脈波形の上ピー ク値,下ピーク値であり、VdIR ,VSIR はそれぞれ赤外光による光電脈波形の 上ピーク値,下ピーク値である。また、VdR−VSRおよびVdIR −VSIR は各光 電脈波形の交流成分の振幅をそれぞれ表しており、VdR+VSRおよびVdIR +V SIR は各光電脈波形の直流成分を2倍したものをそれぞれ表している。In the above formula 1, VdR, VSRAre the upper peak value and the lower peak value of the photoelectric pulse waveform due to red light, respectively.dIR, VSIRAre the upper and lower peak values of the photoelectric pulse waveform due to infrared light, respectively. Also, VdR-VSRAnd VdIR-VSIRRepresents the amplitude of the AC component of each photoelectron pulse waveform, and VdR+ VSRAnd VdIR+ V SIR Indicates that the DC component of each photoelectric pulse waveform is doubled.

【0016】 ここで、本実施例においては、更に、ハウジング14の周壁および遮光部材2 4はそれぞれ長円形状を成しているとともに、受光素子16は遮光部材24の内 周側の一端部側に偏った位置に設けられている。これにより、各発光素子18, 20は、受光素子16との間の距離が漸次異なるように受光素子16の周りに設 けられていることから、生体内からの反射光の強度が充分大きく得られる体表面 12からの深さを表す最適検出深度dsuitの幅が広く得られることとなる。図3 は、牛乳等の懸濁液56が入った容器58の底に反射鏡60を配置して成る生体 モデルを用いてプローブ10の反射光検出特性を試験する場合の一状態を示して おり、懸濁液56内においてプローブ10と反射鏡60との間の距離dmodel ( 生体内からの反射光の検出深度に相当)を漸次変えて発光素子18,20から反 射鏡60に向かって光を照射すると、受光素子16にて検出される反射光の強度 がたとえば図4に示すように変化し、反射鏡60からの反射光強度が最も大きく 得られる最適検出距離の幅Wが広く得られた。これにより、プローブ10を体表 面12に装着した場合においても前記最適検出深度dsuitの幅が広く得られるも のと推定される。Here, in this embodiment, further, the peripheral wall of the housing 14 and the light shielding member 24 each have an oval shape, and the light receiving element 16 has one end portion side on the inner peripheral side of the light shielding member 24. It is provided at a position biased to. As a result, the light emitting elements 18 and 20 are provided around the light receiving element 16 such that the distances between the light emitting element 18 and the light receiving element 16 are gradually different. Therefore, the intensity of the reflected light from the living body can be sufficiently high. The width of the optimum detection depth d suit representing the depth from the body surface 12 to be obtained is wide. FIG. 3 shows a state in which the reflected light detection characteristics of the probe 10 are tested using a biological model in which a reflecting mirror 60 is placed on the bottom of a container 58 containing a suspension 56 of milk or the like. In the suspension 56, the distance d model (corresponding to the detection depth of the reflected light from the living body) between the probe 10 and the reflecting mirror 60 is gradually changed from the light emitting elements 18 and 20 toward the reflecting mirror 60. When the light is irradiated, the intensity of the reflected light detected by the light receiving element 16 changes as shown in FIG. 4, for example, and the intensity of the reflected light from the reflecting mirror 60 is maximized. Was given. Therefore, it is estimated that the optimum detection depth d suit can be wide even when the probe 10 is attached to the body surface 12.

【0017】 また、受光素子16と発光素子18,20との間の距離が大きくなる程、遮光 部材24の受光素子16と各発光素子18,20とを結ぶ直線上における厚さt が、たとえば図1においてt1 乃至t4 にて示すように漸次大きくされている。 これにより、受光素子16にてそれぞれ検出される発光素子18,20毎の反射 光の体表面12からの各最小検出深度dmin は、たとえば図5乃至図8に示すよ うに各発光素子18,20において互いに同一とされ且つたとえば0.35mmに それぞれ決定されている。Further, as the distance between the light receiving element 16 and the light emitting elements 18 and 20 increases, the thickness t 2 of the light shielding member 24 on the straight line connecting the light receiving element 16 and the light emitting elements 18 and 20 becomes, for example, It is gradually increased as indicated by t 1 to t 4 in FIG. As a result, the minimum detection depth d min of the reflected light from each of the light emitting elements 18 and 20 detected by the light receiving element 16 from the body surface 12 is, for example, as shown in FIGS. At 20 they are identical to each other and are determined to be, for example, 0.35 mm.

【0018】 このように、本実施例によれば、各発光素子18,20が受光素子16との間 の距離が漸次異なるように受光素子16の周りに設けられることにより反射光の 最適検出深度dsuitの幅が広く得られるため、被測定者の個人差や測定部位の相 違により体表面12からの血管床の深さ位置がばらついても光電脈波信号(SV R ,SVIR)の大きさが充分に得られて酸素飽和度を精度良く測定できるととも に、メスや薬物等により生体にショックが加えられることにより末梢循環が低下 して血管床のより深い位置からしか反射光が検出されなくなっても光電脈波信号 の大きさが充分に得られて酸素飽和度を測定精度良く且つ安定して測定すること ができる。As described above, according to this embodiment, the light emitting elements 18 and 20 are provided around the light receiving element 16 such that the distances between the light emitting elements 18 and 20 are gradually different, so that the optimum detection depth of the reflected light is obtained. dsuitSince a wide range can be obtained, the photoelectric pulse wave signal (SV R , SVIR) Is sufficient to measure oxygen saturation with high accuracy, and shock is applied to the living body by a scalpel or drug, which reduces peripheral circulation and causes reflection only from a deeper position in the vascular bed. Even if the light is not detected, the magnitude of the photoelectric pulse wave signal is sufficiently obtained, and the oxygen saturation can be measured accurately and stably.

【0019】 ところで、人体の表皮の厚さは、足底などを除く殆どの部位の皮膚において0 .3mm以下であることが知られているが、本実施例によれば、発光素子18,2 0毎の最小検出深度dmin はその殆どの部位の表皮の最高厚である0.3mmより 僅かに大きい0.35mmにそれぞれ決定されているので、血管が存在しない表皮 からの反射光が受光素子16にて検出されることが確実に回避される。これによ り、光電脈波形の交流成分と直流成分との比、すなわち(VdR−VSR)/(VdR +VSR)や(VdIR −VSIR )/(VdIR +VSIR )が大きく確保されて酸素飽 和度の測定精度が一層向上することとなる。By the way, the thickness of the epidermis of the human body is 0. Although it is known to be 3 mm or less, according to the present embodiment, the minimum detection depth d min for each of the light emitting elements 18 and 20 is slightly smaller than 0.3 mm which is the maximum thickness of the skin of most of the parts. Since it is determined to be 0.35 mm, which is large, it is possible to surely prevent the light receiving element 16 from detecting the reflected light from the epidermis where the blood vessel does not exist. As a result, the ratio between the AC component and the DC component of the photoelectric pulse waveform, that is, (V dR −V SR ) / (V dR + V SR ) and (V dIR −V SIR ) / (V dIR + V SIR ) is large. As a result, the measurement accuracy of oxygen saturation is further improved.

【0020】 なお、前記実施例では、発光素子18,20毎の最小検出深度dmin は0.3 5mmにて同一に決定されているが、必ずしもその必要はなく、たとえば、人体の 殆どの部位の表皮の最高厚である0.3mm以上の種々の値に決定されていても前 記実施例と略同様の効果を得ることができる。In the above embodiment, the minimum detection depth d min for each of the light emitting elements 18 and 20 is determined to be 0.35 mm, but this is not always necessary. For example, most parts of the human body Even if the maximum thickness of the skin is 0.3 mm or more, it is possible to obtain substantially the same effect as that of the above-mentioned embodiment.

【0021】 また、前記実施例において、最小検出深度dmin が被測定者の表皮の厚さより 小さい場合においても、発光素子18,20が受光素子16との間の距離が漸次 異なるように受光素子16の周りに配列されていることにより、被測定者の個人 差や測定部位の相違に拘らず酸素飽和度を精度良く測定し得かつ末梢循環の低下 に拘らず酸素飽和度を測定精度良く且つ安定して測定し得るという本考案の効果 が得られる。Further, in the above-described embodiment, even when the minimum detection depth d min is smaller than the thickness of the skin of the measurement subject, the distance between the light emitting elements 18 and 20 and the light receiving element 16 is gradually different from each other. By arranging around 16, the oxygen saturation can be measured accurately regardless of the individual difference of the subject and the difference of the measurement site, and the oxygen saturation can be measured with high accuracy regardless of the decrease of the peripheral circulation. The effect of the present invention that stable measurement can be obtained.

【0022】 また、前記実施例では、受光素子16は長円形状の環状を成す遮光部材24の 内周側の一端部側に偏った位置に設けられているが、その遮光部材24の内周側 の中央部分に設けられている場合や円筒状の遮光部材が用いられている場合にお いても、本考案の効果を得ることができる。Further, in the above-described embodiment, the light receiving element 16 is provided at a position that is biased toward one end portion side on the inner peripheral side of the light shielding member 24 having an oval annular shape. The effect of the present invention can be obtained even when it is provided in the central portion on the side or when a cylindrical light shielding member is used.

【0023】 また、前記実施例では、発光素子18,20は配列形状が長円形状となるよう に配列されているが、必ずしもその必要はなく、たとえば、菱形形状や円形状に 配列されてもよい。発光素子18,20が円形状に配列される場合には、その円 周内の偏心した位置に受光素子16が配置されることとなる。要するに、発光素 子は受光素子との間の距離が漸次異なるようにその受光素子の周りに設けられて おればよいのである。Further, in the above-mentioned embodiment, the light emitting elements 18 and 20 are arranged so that the arrangement shape is an elliptical shape, but this is not always necessary, and for example, they may be arranged in a rhombic shape or a circular shape. Good. When the light emitting elements 18 and 20 are arranged in a circular shape, the light receiving element 16 is arranged at an eccentric position within the circumference. In short, the light emitting element may be provided around the light receiving element so that the distance between the light emitting element and the light receiving element gradually differs.

【0024】 また、前記実施例では、波長の異なる2種類の光を発光する第1発光素子18 および第2発光素子20が交互に配列されているが、必ずしもその必要はなく、 たとえば、波長の異なる3種類以上の光を発光する3種類以上の発光素子が各種 類が全周に亘って略均等に分散するように複数づつ配列されてもよい。Further, in the above-described embodiment, the first light emitting element 18 and the second light emitting element 20 which emit two kinds of light having different wavelengths are alternately arranged, but this is not always necessary. A plurality of three or more types of light emitting elements that emit three or more different types of light may be arranged in a plurality such that the various types are substantially evenly distributed over the entire circumference.

【0025】 その他、本考案はその趣旨を逸脱しない範囲において種々変更が加えられ得る ものである。Besides, the present invention can be variously modified without departing from the spirit thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】図2のプローブをそのハウジングの開口側から
見た図であって、拡大して示す図である。
FIG. 1 is an enlarged view of the probe of FIG. 2 viewed from the opening side of its housing.

【図2】本考案の一実施例であるプローブを備えた反射
型オキシメータの一構成例を示すブロック線図である。
FIG. 2 is a block diagram showing a configuration example of a reflection oximeter including a probe according to an embodiment of the present invention.

【図3】懸濁液内に反射鏡を有する生体モデルを用いて
図2のプローブの反射光検出特性を試験する場合の一状
態を示す図である。
FIG. 3 is a diagram showing a state in which a reflected light detection characteristic of the probe of FIG. 2 is tested using a biological model having a reflecting mirror in suspension.

【図4】図3の生体モデルを用いて求められた図2のプ
ローブの反射光検出特性の一例を示す図である。
FIG. 4 is a diagram showing an example of reflected light detection characteristics of the probe of FIG. 2 obtained using the biological model of FIG.

【図5】図1の遮光部材の厚さt1 の部分における反射
光の最小検出深度dmin を示す図である。
5 is a diagram showing a minimum detection depth d min of reflected light in a portion having a thickness t 1 of the light shielding member in FIG.

【図6】図1の遮光部材の厚さt2 の部分における反射
光の最小検出深度dmin を示す図である。
FIG. 6 is a diagram showing a minimum detection depth d min of reflected light at a thickness t 2 portion of the light shielding member in FIG.

【図7】図1の遮光部材の厚さt3 の部分における反射
光の最小検出深度dmin を示す図である。
7 is a diagram showing a minimum detection depth d min of reflected light in a portion of the light shielding member having a thickness t 3 in FIG.

【図8】図1の遮光部材の厚さt4 の部分における反射
光の最小検出深度dmin を示す図である。
FIG. 8 is a diagram showing a minimum detection depth d min of reflected light at a thickness t 4 portion of the light shielding member in FIG.

【符号の説明】[Explanation of symbols]

10 プローブ 12 体表面 16 受光素子 18 第1発光素子 20 第2発光素子 24 遮光部材 10 probe 12 body surface 16 light receiving element 18 first light emitting element 20 second light emitting element 24 light shielding member

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 複数種類の発光素子から互いに波長の異
なる複数種類の光を生体の表面に順次照射して該生体か
らの反射光を共通の受光素子にてそれぞれ検出し、該反
射光の強度を表す光電脈波信号に基づいて血液中の酸素
飽和度を測定する反射型オキシメータにおいて、前記発
光素子が各種類毎に前記受光素子の周りに複数配列され
るとともに、該発光素子と該受光素子との間に、該発光
素子から前記生体の表面で反射して該受光素子へ向かう
光を遮光する環状の遮光部材が設けられた形式のプロー
ブであって、 前記発光素子を、前記受光素子との間の距離が漸次異な
るように該受光素子の周りに設けたことを特徴とする反
射型オキシメータ用プローブ。
1. The intensity of the reflected light is obtained by sequentially irradiating the surface of a living body with a plurality of types of light having different wavelengths from a plurality of types of light emitting elements and detecting the reflected light from the living body with a common light receiving element. In a reflection-type oximeter for measuring oxygen saturation in blood based on a photoelectric pulse wave signal that represents, a plurality of light emitting elements are arranged around the light receiving element for each type, and the light emitting element and the light receiving element are arranged. A probe of a type in which an annular light shielding member that shields the light reflected from the light emitting element on the surface of the living body toward the light receiving element is provided between the light emitting element and the light receiving element. A probe for a reflection-type oximeter, characterized in that it is provided around the light-receiving element so that the distance between and is gradually different.
【請求項2】請求項1に記載の反射型オキシメータ用プ
ローブにおいて、受光素子にてそれぞれ検出される発光
素子毎の反射光の生体表面からの各最小検出深度を、該
生体の皮膚の一部を構成する表皮の厚さ以上としたこと
を特徴とする反射型オキシメータ用プローブ。
2. The reflection type oximeter probe according to claim 1, wherein the minimum detection depth from the living body surface of the reflected light for each light emitting element detected by the light receiving element is defined as one of the skins of the living body. A reflection type oximeter probe, characterized in that the thickness is equal to or greater than the thickness of the skin constituting the part.
JP8382091U 1991-09-17 1991-09-17 Reflective oximeter probe Expired - Fee Related JP2555833Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8382091U JP2555833Y2 (en) 1991-09-17 1991-09-17 Reflective oximeter probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8382091U JP2555833Y2 (en) 1991-09-17 1991-09-17 Reflective oximeter probe

Publications (2)

Publication Number Publication Date
JPH0524006U true JPH0524006U (en) 1993-03-30
JP2555833Y2 JP2555833Y2 (en) 1997-11-26

Family

ID=13813332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8382091U Expired - Fee Related JP2555833Y2 (en) 1991-09-17 1991-09-17 Reflective oximeter probe

Country Status (1)

Country Link
JP (1) JP2555833Y2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317295A (en) * 1992-05-26 1993-12-03 Omron Corp Probe for measuring oxygen of living body tissue
JPH0928696A (en) * 1995-07-21 1997-02-04 Hitachi Ltd Photomeasuring instrument and photomeasurement
JPH10216115A (en) * 1997-02-06 1998-08-18 Nippon Colin Co Ltd Highly accurate reflection type degree of oxygen saturation measuring apparatus
JPH10216114A (en) * 1997-02-06 1998-08-18 Nippon Colin Co Ltd Degree of oxygen saturation measuring apparatus
JPH10337282A (en) * 1997-02-06 1998-12-22 Nippon Colin Co Ltd Reflection type oxygen saturation degree measuring device
JPH11128184A (en) * 1997-10-30 1999-05-18 Nippon Colin Co Ltd Reflection type photoelectric pulse wave detection device
JP2014121605A (en) * 2012-12-20 2014-07-03 Amorepacific Corp Method of determining skin type
JP2017176266A (en) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 Biological information measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317295A (en) * 1992-05-26 1993-12-03 Omron Corp Probe for measuring oxygen of living body tissue
JPH0928696A (en) * 1995-07-21 1997-02-04 Hitachi Ltd Photomeasuring instrument and photomeasurement
JPH10216115A (en) * 1997-02-06 1998-08-18 Nippon Colin Co Ltd Highly accurate reflection type degree of oxygen saturation measuring apparatus
JPH10216114A (en) * 1997-02-06 1998-08-18 Nippon Colin Co Ltd Degree of oxygen saturation measuring apparatus
JPH10337282A (en) * 1997-02-06 1998-12-22 Nippon Colin Co Ltd Reflection type oxygen saturation degree measuring device
JPH11128184A (en) * 1997-10-30 1999-05-18 Nippon Colin Co Ltd Reflection type photoelectric pulse wave detection device
JP2014121605A (en) * 2012-12-20 2014-07-03 Amorepacific Corp Method of determining skin type
JP2017176266A (en) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 Biological information measurement device

Also Published As

Publication number Publication date
JP2555833Y2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
US5203329A (en) Noninvasive reflectance oximeter sensor providing controlled minimum optical detection depth
EP1322216B1 (en) A pulse oximeter and a method of its operation
CA2221968C (en) Sensor, method and device for optical blood oximetry
US6363269B1 (en) Synchronized modulation/demodulation method and apparatus for frequency division multiplexed spectrophotometric system
JP3789487B2 (en) False signal detection method in pulse oximetry
US6754515B1 (en) Stabilization of noisy optical sources in photoplethysmography
AU2009298937B2 (en) System and method for photon density wave pulse oximetry and pulse hemometry
US20020173706A1 (en) Oxygen-saturation measuring apparatus
JP2004135854A (en) Reflection type photoelectric pulse wave detector and reflection type oxymeter
JPH10216115A (en) Highly accurate reflection type degree of oxygen saturation measuring apparatus
US8433382B2 (en) Transmission mode photon density wave system and method
JP3790030B2 (en) Reflective photoelectric pulse wave detector
JP2007083021A (en) Apparatus and method for measuring oxygen saturation in blood
JPH10337282A (en) Reflection type oxygen saturation degree measuring device
US5513642A (en) Reflectance sensor system
JPH0549625A (en) Sensor for bloodless reflection type oximeter which can control optical detection depth
JPH0524006U (en) Reflective oximeter probe
JPH10216114A (en) Degree of oxygen saturation measuring apparatus
JP3705667B2 (en) Heart failure monitoring device
JP3738335B2 (en) Peripheral circulation state measurement device
JPH09215664A (en) Evaluator of autonomic nerve function
JP2688508B2 (en) Reflective oximeter
JPH0415046A (en) Measuring method for blood circulating movement
JP2555828Y2 (en) Reflective oximeter probe
JPH02111345A (en) Reflecting oxymeter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees