JPH0549625A - Sensor for bloodless reflection type oximeter which can control optical detection depth - Google Patents

Sensor for bloodless reflection type oximeter which can control optical detection depth

Info

Publication number
JPH0549625A
JPH0549625A JP24058591A JP24058591A JPH0549625A JP H0549625 A JPH0549625 A JP H0549625A JP 24058591 A JP24058591 A JP 24058591A JP 24058591 A JP24058591 A JP 24058591A JP H0549625 A JPH0549625 A JP H0549625A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
end
light
skin
shielding wall
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24058591A
Other languages
Japanese (ja)
Inventor
Pii Ieebu Jiyonasan
Eru Buranzutetsutaa Ronarudo
Setsuo Takatani
ジヨナサン・ピー・イエーブ
ロナルド・エル・ブランズテツター
節雄 高谷
Original Assignee
Colleen Denshi Kk
コーリン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE:To optimize the range of the detection depth in the skin by setting the min. detection depth between the intersected point of a straight line connecting the 1st end of a light emitting chip and the 1st end of a light shielding wall and a straight line connecting the 2nd end of the light shielding wall and the 2nd end of a light receiving chip and the top face of the shielding wall larger than the skin thickness of the patient's skin. CONSTITUTION:A 1st ray 30 emitted from the upper left end of the light emitting chip 12 passes the upper left end of the light shielding wall 16 and is then partially reflected in the position of 0.35mm depth within the skin 18. The 1st reflected ray 32 passes the upper right end of the upper part of the light shielding wall 16 and is then received at the upper right end of the light receiving chip 10. This 0.35mm distance regulates the min. detection depth D which is the bottom end of the detection depth range 6. The 2nd ray 34 emitted from the upper right end of the light emitting chip 12 passes the upper left end of the light shielding wall 16 and is then partially reflected in the position of 0.70mm depth within the skin 18. The 2nd reflected ray 36 passes the upper right end of the light shielding wall 16 and is then received at the upper left end of the light receiving chip 10. This 0.79mm distance regulates the upper end M.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は動脈血の酸素飽和度の測定に使用され得るモニタ装置に関し、特に、組織における血中酸素飽和度を高い精度で測定するために光学的検出深度を調節することが可能な幾何学的構成を含むオキシメータ用センサに関する。 The present invention relates to an monitor unit that can be used to measure oxygen saturation of arterial blood, particularly, adjusting the optical detection depth for measuring blood oxygen saturation in tissue with high precision It relates to a sensor for oximeter comprising the possible geometric configurations.

【0002】 [0002]

【従来の技術】パルスオキシメータは、動脈血中のヘモグロビンの酸素飽和度を測定する装置である。 BACKGROUND ART pulse oximeter is a device for measuring the oxygen saturation of hemoglobin in arterial blood. 近年の装置には、測定に用いられる非観血的センサに光学的技法が採用される。 The recent devices, optical techniques are employed in non-invasive sensor used in the measurement. オキシメータのセンサは良く灌流される組織の一部を少なくとも2種類の異なる波長の光で照射する。 Sensor oximeter irradiates a portion of tissue to be well perfused with at least two different wavelengths of light. 照射された光は赤血球中に含まれるヘモグロビンに達し、その一部がそのヘモグロビンによって吸収される。 The irradiated light reaches the hemoglobin contained in red blood cells, a portion is absorbed by the hemoglobin. 吸収される光の量は照射された光の波長およびヘモグロビンの酸化の程度によって決まる。 The amount of absorbed light is determined by the degree of oxidation of the wavelength and hemoglobin irradiated light. 従って、使用された光の波長と吸収された光の相対量とを知ることにより、血中酸素飽和度を算定することができる。 Thus, by knowing the relative amount of light absorbed to the wavelength of light used, it is possible to calculate the blood oxygen saturation.

【0003】血中酸素飽和度の測定に光学的手法を採用する現在入手可能なオキシメータの殆どは、透過型測定法である。 [0003] Most currently available oximeter employing the optical method to measure blood oxygen saturation is a transmission measurement. これらの装置は、少なくとも2種類の波長の光を、指ないし耳たぶ等の生体の突起部を透過させる。 These devices, light of at least two wavelengths, and transmits the projections of living body such as a finger or ear lobe.
その突起部の一方の側に透過した光の特徴とそれと反対の側で検出された光の特徴とを比較することにより、酸素飽和度を算出することができる。 By comparing the characteristics of light transmitted to one side of the protrusion it and the features of the detected light on the opposite side, it is possible to calculate the oxygen saturation. 透過型測定法の大きな問題は、光の透過を許容する程に充分に薄い生体部分でしか使用できないことである。 Major problem of transmission measurement is that it can only be used in sufficiently thin biological portion enough to allow transmission of light. 更に、患者がショック状態に陥ったような場合には生体の末端部分が最初に血流を失い、酸素飽和度を測定することができなくなるという点もある。 Furthermore, when the patient as fallen into a state of shock the terminal parts of the body are initially lose blood flow, also that it becomes impossible to measure oxygen saturation.

【0004】最近、少なくとも2種類の波長の反射光を利用して酸素飽和度を測定することができるオキシメータの開発に関心が集まっている。 Recently, there has been interest in developing oximeter capable of measuring the oxygen saturation by using the reflected light of at least two wavelengths. この装置では、光源と光検出器とは組織の同じ側に配置され、光検出器はそれ自身の方向に反射してきた光だけを受光する。 In this apparatus, the light source and the light detector are arranged on the same side of the tissue, the photodetector receives only the light reflected on its own direction.

【0005】 [0005]

【発明が解決しようとする課題】反射型オキシメータは、透過型の測定に適さない生体部分においても酸素飽和度を測定することができる点で有利である。 Reflective oximeter [SUMMARY OF THE INVENTION] is advantageous in that it is possible to measure the oxygen saturation even in a biological moiety that is not suitable for the measurement of the transmission type. 従来の反射型センサは、反射光信号が透過光信号よりも微弱である一方、皮膚の表面に接近する部位程反射強度が大きいのであるが、皮膚の表面に位置する表皮は角質化していて毛細血管網が殆どないため、そこからの反射光には脈動成分が含まれない。 Conventional reflective sensor, one reflected optical signal is weak than the transmitted light signal, although the reflection intensity as sites close to the surface of the skin is great, the skin located on the surface of the skin capillary have keratinized because vascular network little, does not include the ripple components in the light reflected therefrom. このため、血中酸素飽和度の測定精度が充分に得られなかった。 Therefore, the measurement accuracy of the blood oxygen saturation is not obtained sufficiently.

【0006】本発明は、既存のオキシメータ用センサの問題点を克服するものである。 [0006] The present invention overcomes the problems of the sensor existing oximeter. 従って本発明の目的は、 An object of the present invention, therefore,
皮膚内での検出深度範囲が最適化された反射型オキシメータ用センサを提供することである。 Detection depth range in the skin is to provide a sensor for optimized reflective oximeter.

【0007】 [0007]

【課題を解決するための手段】斯かる目的を達成するための本発明の要旨とするところは、患者の皮膚内において、調節された光検出深度範囲を有する反射型オキシメータ用センサであって、(a) 第1端部及びそれと反対側に位置する第2端部を有し、その第1端部から第2端部までの間から所定の波長の光を出力する発光チップと、 It is a gist of the present invention for achieving the such objects SUMMARY OF THE INVENTION, in the skin of a patient, a sensor for reflective oximeter with adjustable light detected depth range a light emitting chip for outputting (a) a second end located at the first end and its opposite, light of a predetermined wavelength from between from the first end to the second end,
(b) その発光チップ側の第1端部およびそれと反対側に位置する第2端部を有し、前記皮膚によって反射された光をその第1端部及び第2端部の間で受光する受光チップと、(c) 前記発光チップ側の第1端部と前記受光チップ側の第2端部とを備えて、それら発光チップと受光チップとの間に配置された遮光壁と、を備え、前記発光チップの前記第1端部と前記遮光壁の第1端部とを結ぶ直線と上記遮光壁の第2端部と前記受光チップの第2端部とを結ぶ直線との交点と、遮光壁の頂面との間の最小検出深度が、前記患者の皮膚の表皮厚みよりも大きく設定されていることにある。 (B) a second end located opposite the first end portion of the light emitting chip side and its therewith, receives the light reflected by the skin between the first and second end portions comprising a receiving chip, and a light shielding wall positioned between the (c) the provided first end of the light emitting chip side and the light receiving chip side second end of their light emitting chip and the light receiving chip the intersection of the straight line connecting the second end of the second end of the straight line and the shielding wall connecting the first end portion of the shielding wall and the first end portion of the light emitting chip and the receiving chip, minimum detection depth between the top surface of the shielding wall is in is set to be larger than the skin thickness of skin of the patient.

【0008】 [0008]

【作用および発明の効果】このようにすれば、最小検出深度が、皮膚の厚み異常に設定されているので、皮膚内からの反射光には、反射強度が大きく且つ脈動成分が含まれない表皮からの反射光が含まれないので、S/N比が高められて測定精度が好適に高められる。 If [Function and Effect of the Invention] Thus, the minimum detectable depth, because it is thick abnormally setting of the skin, the light reflected from the skin, the reflection intensity does not contain large and pulsation component epidermis since not include the reflected light from the measurement accuracy suitably elevated enhanced S / N ratio.

【0009】ここで、上記のように、皮膚内での光の検出深度範囲は反射型の測定を考慮する場合に重要なパラメータであり、たとえば、皮膚内0.35〜0.70m [0009] Here, as described above, the detection depth range of the light in the skin is an important parameter when considering the measurement of a reflection type, for example, intradermal 0.35~0.70m
mの深さ以上の検出範囲が最適と考えられる。 The depth over the detection range of m is considered optimal.

【0010】 [0010]

【実施例】以下、本発明の実施例を図面に基づいて詳細に説明する。 EXAMPLES The following be described in detail with reference to embodiments of the present invention with reference to the drawings.

【0011】図1には、本発明の一実施例としてのオキシメータ用センサの図示の構成によって規定された検出深度範囲6が示されている。 [0011] Figure 1, the detection depth range 6 is shown which is defined by the configuration of the illustrated sensor oximeter as an embodiment of the present invention. LED等の発光チップ12 Emitting chip such as an LED 12
は各辺が約0.5mmの矩形断面を有する。 Each edge has a rectangular cross section of about 0.5 mm. 遮光壁16 The light shielding wall 16
が発光チップ12に近接して配置され、その幅は約0. There is arranged close to the light emitting chip 12, its width is about 0.
75mm、高さは1.9mmである。 75mm, the height is 1.9mm. また、受光チップ10が遮光壁16に近接して配置され、その高さは約0.5mm、幅は2.0mmであり、本装置(センサ) Further, disposed proximate the light-receiving chip 10 is a light shielding wall 16, its height is about 0.5 mm, width 2.0 mm, the device (sensor)
の中心を中心とする幅約1.0mmの感光部を有する。 Around a photosensitive portion of the width of about 1.0mm centered on the.
発光チップ12と受光チップ10のそれぞれの中心間の距離は約3.0mmであり、遮光壁16と受光チップ1 The distance between the centers of the light emitting chip 12 and the light receiving chip 10 is about 3.0 mm, and the light shielding wall 16 receiving chip 1
0の中心間距離は約2.0mmである。 Center distance of 0 is approximately 2.0 mm.

【0012】図1において、発光チップ12の上部左端から出た第1の光線30は遮光壁16の上部左端を通過した後、皮膚18内の深さ0.35mmの位置で部分的に反射される。 [0012] In FIG. 1, a first light beam 30 exiting from the top left end of the light-emitting chip 12 passes through the upper left end of the shielding wall 16 is partially reflected at the position of depth 0.35mm in the skin 18 that. この反射による第1の反射光線32は遮光壁16の上部右端を通過した後、受光チップ10の上部右端で受光される。 After the first reflected ray 32 by the reflection that has passed through the upper right end of the shielding wall 16, and is received by the top right corner of the light receiving chip 10. この0.35mmの距離が検出深度範囲6の下端、すなわち最小検出深度Dを規定する。 The lower end of the distance of the 0.35mm detection depth range 6, i.e. defining the minimum detection depth D.

【0013】発光チップ12の上部右端から出た第2の光線34は遮光壁16の上部左端を通過した後、皮膚1 [0013] After the second light beam 34 emitted from the top right corner of the light-emitting chip 12 which has passed through the upper left end of the shielding wall 16, the skin 1
8内の深さ0.70mmの位置で部分的に反射される。 Partially reflected at the position of depth 0.70mm in 8.
この反射による第2の反射光線36は遮光壁16の上部右端を通過した後、受光チップ10の上部左端で受光される。 After the second reflected ray 36 by the reflection that has passed through the upper right end of the shielding wall 16, and is received by the upper left end of the light-receiving chip 10. この0.70mmの距離が検出深度範囲6の上端Mを規定する。 Distance this 0.70mm defines the upper end M of the detection depth range 6.

【0014】図1には発光チップ12のLEDが例示として1つだけ図示されているが、当業者には周知のように、反射型パルスオキシメータには異なる波長の光を発する少なくとも2種類の光源が必要である。 [0014] Although FIG. 1 is shown only one as exemplified LED of the light emitting chip 12 is, as is well known to those skilled in the art, at least two types that emit light of different reflection type oximeter wavelength light source is required. 第2の光源もまた上記の幾何学関係を有するように配置される。 The second light source is also arranged to have the geometrical relationships. 例えば、遮光壁16は受光チップ10の回りに設けられた直円柱状円筒部材であってよく、異なる波長の少なくとも2つの光源が、遮光壁16の外側であって受光チップ10に関し対向する位置に設けられてよい。 For example, the light shielding wall 16 may be a straight cylindrical cylindrical member provided around the light-receiving chip 10, at least two light sources of different wavelengths, in a position facing relates receiving chip 10 an outer light barriers 16 it may be provided.

【0015】本発明は2個の光源を使用する場合に限定されない。 [0015] The present invention is not limited to the case of using two light sources. それ以上の数の光源を使うことが望ましい場合には、図2に示されるように、それらの光源は円筒状の遮光壁16の外側に円を描くように配置され得る。 In the case it is desired to use more number of light sources, as shown in FIG. 2, these light sources may be arranged in a circle on the outside of the cylindrical light shielding wall 16. 例えば、第1の所定の波長で発光する第1群の発光チップ12(LED)がこの円周上に等間隔で配置され、第2 For example, the first of the first group of light emitting chips 12 to emit light at a predetermined wavelength (LED) are arranged at equal intervals on the circumference, the second
の所定の波長で発光する第2群の発光チップ14(LE The light emitting chip 14 of the second group of light emitting at a given wavelength (LE
D)が、同一の円周上でかつ同様に等間隔で、それぞれ第1群の各発光チップ12に隣接して配置される。 D) is the same on a and likewise equally spaced circumferentially, disposed adjacent to the light emitting chip 12 of the first group, respectively. このように、所望のすべての波長の光源が同一円周上で交互に配置されるまで、第3、第4の波長の光源15,17 Thus, until the desired source of all wavelengths are alternately arranged on the same circumference, third, light source 15 and 17 of the fourth wavelength
(LED)が同様に設けられる。 (LED) is provided as well. 図2の実施例では4種類の波長の各々について4個のLEDが使用され、合計16個の光源が同一円周上に設置されている。 Four LED for each of the four types of wavelengths in the embodiment of FIG. 2 are used, a total of 16 light source is disposed on the same circumference. もっとも、所望の検出深度範囲を得るための前記幾何学関係が確保される限り、図2の実施例とは使用する光源の数ないし波長の種類の数を変えて実施することができる。 However, it can be implemented by changing the number of desired detection as long as the geometrical relationship for obtaining the depth range is ensured, the number or types of the wavelength of the light source used is the embodiment of FIG.

【0016】図3は、皮膚18と受光チップ10との位置関係、並びに、発光チップ12と受光チップ10とを保護するために設けられた光学的に透き通りかつ力学的に固い材料からなる保護部材20の位置を示す。 [0016] Figure 3, the positional relationship between the skin 18 and the light receiving chip 10, and, Sukitori optically provided to protect the light-emitting chip 12 and the light receiving chip 10 and protection consisting of mechanically stiff material indicating the position of the member 20.

【0017】ところで、皮膚18は、表面が角質化している表皮、この表皮の下にある強い繊維性結合組織である真皮、この真皮の下において皮膚脂肪を網目に保持する皮下組織などにより構成されており、動脈は皮下組織と真皮の境および真皮内で動脈血管網を作り、乳頭へは毛細血管となって係蹄状に曲がって入り、静脈に移る。 [0017] Incidentally, the skin 18, the skin surface is keratinized dermal are strong fibrous connective tissue underlying the epidermis, the skin fat is configured of a subcutaneous tissue to hold the mesh in under this dermis and, arteries making arterial vascular network within the boundary and dermis subcutaneous tissue and dermis, is the papilla enters bent snare shape becomes capillaries, moves to veins.
静脈は真皮内および真皮と皮下組織の境で静脈網を作り、その一部は動脈に沿う深静脈に、他の一部は皮静脈に入る。 Veins make venous plexus at the boundary between the dermis and in the dermis and subcutaneous tissue, some of the deep vein along the artery, the other part into the skin veins. 毛のうおよび汗腺のまわりには特に密な毛細血管網がある。 There is a particularly dense capillary network around the hair sac and sweat glands. また、酸素飽和度の測定に際しては、ヘモグロビンによって反射される反射光に脈動成分(AC成分)が含まれることが前提とされており、その脈動成分は直流成分に比較して微弱であるため、測定精度を維持する上でその脈動成分を明確に検出することが必要であり、このため、動脈網の存在する部分である真皮および皮下組織からの反射光を検出することが望まれる。 Further, since when the oxygen saturation measurements, hemoglobin has been that it is premised to include pulsating component of the reflected light that is reflected (AC component) by the pulsating component is weak as compared to a direct current component, and the pulsating component is necessary to clearly detected in maintaining the measurement accuracy, and therefore, it is desired to detect light reflected from the portion at which the dermis and subcutaneous tissue present in the arterial network. しかし、皮膚18内からの反射光は、表面から深い部分からのものとなる程指数函数的に減少し、血管網のない表皮からの反射光が最も強いので、従来では反射信号のAD However, light reflected from inside the skin 18 is reduced and extent exponential function manner comprising those from the deep portion from the surface, because the strongest reflected light from a non-vascular network epidermis, AD of the conventional reflection signal
/DC比が充分に得られず、酸素飽和度の精度が維持され難い場合があった。 / DC ratio can not be obtained sufficiently, oxygen saturation accuracy in some cases difficult to be maintained.

【0018】本実施例では前述のように、最小検出深度Dが少なくとも皮膚18の表皮厚みより大きい0.35 [0018] As described above, in this embodiment, the skin thickness greater than 0.35 of the minimum detection depth D of at least the skin 18
mmに設定されており、反射光のAD/DC比が高くされている。 Is set to mm, AD / DC ratio of the reflected light is high. 人間では足底や手掌などの特別に厚い部分を除くと、表皮は0.1〜0.3(平凡社世界大百科事典) Excluding the special thick part such as plantar and palmar In humans, skin is 0.1 to 0.3 (Heibonsha World Encyclopedia)
であり、酸素飽和度を測定する部位では0.35mm以下である。 , And the in site to measure oxygen saturation is 0.35mm or less. また、表皮と真皮との境界付近では血管網の密度が低く且つ血管が細いので、上記最小検出深度Dは、 Also, since the epidermis and and vascular thin density of vascular network is low in the vicinity of the boundary between the dermis, the minimum detection depth D is
望ましくは0.5mm以上、更に望ましくは1.2mm以上、特に成人に限定すると1.5mm付近に限定すると一層AD/DC比の高い反射光が得られる。 Desirably 0.5mm or more, more preferably 1.2mm or more, a high reflected light of more AD / DC ratio as limiting the vicinity 1.5mm is obtained especially limited to adults.

【0019】以上の記載から明らかなように、本発明によれば、前記検出深度範囲は所望の深度および厚さで得られ得る。 [0019] As apparent from the above description, according to the present invention, the detection depth range may be obtained at the desired depth and thickness. 発光チップ12と受光チップ10の間の距離、発光チップ12と受光チップ10のそれぞれの高さ、遮光壁16の高さと幅等が、皮膚18内での検出深度範囲の諸公称値を規定することが理解される。 The distance between the light emitting chip 12 and the light receiving chip 10, the respective heights of the light emitting chip 12 and the light receiving chip 10, the height and width of the light shielding wall 16, defines various nominal value of the detection depth range of within the skin 18 it is to be understood.

【0020】また以上の開示および教示から、本発明の他の態様ないし変更が当業者には容易に理解されるであろう。 [0020] From the above disclosure and teachings will other aspects or variations of the present invention will be readily apparent to those skilled in the art. 即ち、本発明はその技術的範囲内において以上の記載以外にも実施され得ることが理解されるべきである。 That is, the present invention should be understood that the same may be practiced otherwise than the above description within the scope. 本発明は、上記詳述された特定の実施例以外にも、 The present invention, in addition to the specific embodiments that have been described in detail above,
その精神および範囲を逸脱しない限り、種々の変更が可能である。 Without departing from the spirit and scope, various modifications are possible.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明が適用された光源,遮光壁および光検出器によって規定された検出深度範囲の幾何学的説明図である。 [1] a light source to which the present invention is applied, the geometric illustration of a detection depth range defined by the light-shielding wall and the photodetector.

【図2】本発明の反射型オキシメータ用センサの一実施例の平面図である。 2 is a plan view of one embodiment of the sensor reflection type oximeter of the present invention.

【図3】図2の実施例の線A−Aによる断面図である。 3 is a sectional view according to the line A-A of the embodiment of FIG.

【符号の説明】 6:検出深度範囲 10:光検出器 12:発光チップ 14:発光チップ 16:遮光壁 30:第1の光線 32:第1の反射光線 34:第2の光線 36:第2の反射光線 [Description of Reference Numerals] 6: Detection depth range 10: light detector 12: light-emitting chip 14: the light emitting chip 16: shielding wall 30: first ray 32: first reflected ray 34: second light beam 36: second reflected ray of

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ロナルド・エル・ブランズテツター アメリカ合衆国 テキサス州 78240 サ ン・アントニオ トレース・バツクル 7226 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Ronald El Brands Tetsu Tha United States, Texas 78240 Sa emissions Antonio trace Batsukuru 7226

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 患者の皮膚内において、調節された光検出深度範囲を有する反射型オキシメータ用センサであって、 第1端部及びそれと反対側に位置する第2端部を有し、 1. A in the skin of the patient, a sensor for reflective oximeter with adjustable light detection depth range, a second end located at the first end and its opposite,
    該第1端部から第2端部までの間から所定の波長の光を出力する発光チップと、 該発光チップ側の第1端部およびそれと反対側に位置する第2端部を有し、前記皮膚によって反射された光を該第1端部及び第2端部の間で受光する受光チップと、 前記発光チップ側の第1端部と前記受光チップ側の第2 Has a light emitting chip for outputting a predetermined light wavelength from between the first end to the second end, a second end located in the first end portion and therewith the opposite side of the light emitting chip side, a receiving chip for receiving light reflected by the skin between the first end and a second end, wherein the first end of the light emitting chip side receiving chip side of the second
    端部とを備えて、それら発光チップと受光チップとの間に配置された遮光壁と、 を備え、前記発光チップの前記第1端部と前記遮光壁の第1端部とを結ぶ直線と該遮光壁の第2端部と前記受光チップの第2端部とを結ぶ直線との交点と、該遮光壁の頂面との間の最小検出深度が、前記患者の皮膚の表皮厚みよりも大きく設定されていることを特徴とする反射型オキシメータ用センサ。 And a end portion, a straight line and a deployed shielding wall between them emitting chip and the light receiving chip, connecting the first end portion of the shielding wall and the first end portion of the light emitting chip an intersection between the second end of the light blocking wall and a straight line connecting the second end of the receiving chip, minimum detection depth between the top surface of the light shielding wall, than the skin thickness of skin of the patient reflective oxy sensor meter, characterized in that set to be larger.
JP24058591A 1991-08-27 1991-08-27 Sensor for bloodless reflection type oximeter which can control optical detection depth Pending JPH0549625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24058591A JPH0549625A (en) 1991-08-27 1991-08-27 Sensor for bloodless reflection type oximeter which can control optical detection depth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24058591A JPH0549625A (en) 1991-08-27 1991-08-27 Sensor for bloodless reflection type oximeter which can control optical detection depth

Publications (1)

Publication Number Publication Date
JPH0549625A true true JPH0549625A (en) 1993-03-02

Family

ID=17061705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24058591A Pending JPH0549625A (en) 1991-08-27 1991-08-27 Sensor for bloodless reflection type oximeter which can control optical detection depth

Country Status (1)

Country Link
JP (1) JPH0549625A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8319401B2 (en) 2010-04-30 2012-11-27 Nellcor Puritan Bennett Llc Air movement energy harvesting with wireless sensors
US8428676B2 (en) 2010-03-31 2013-04-23 Covidien Lp Thermoelectric energy harvesting with wireless sensors
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US8874180B2 (en) 2010-02-28 2014-10-28 Covidien Lp Ambient electromagnetic energy harvesting with wireless sensors
US9078610B2 (en) 2010-02-22 2015-07-14 Covidien Lp Motion energy harvesting with wireless sensors
KR20150118557A (en) * 2014-04-14 2015-10-22 크루셜텍 (주) Mobile flash module device having healthcare function
JP5817943B1 (en) * 2015-01-05 2015-11-18 セイコーエプソン株式会社 Biological information measuring module, and the biological information measuring device
JP2016123715A (en) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 Biological information measurement module, and biological information measurement device
JP2016123846A (en) * 2015-09-18 2016-07-11 セイコーエプソン株式会社 Biological information measurement sensor, and biological information measurement device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US9078610B2 (en) 2010-02-22 2015-07-14 Covidien Lp Motion energy harvesting with wireless sensors
US8874180B2 (en) 2010-02-28 2014-10-28 Covidien Lp Ambient electromagnetic energy harvesting with wireless sensors
US8428676B2 (en) 2010-03-31 2013-04-23 Covidien Lp Thermoelectric energy harvesting with wireless sensors
US8319401B2 (en) 2010-04-30 2012-11-27 Nellcor Puritan Bennett Llc Air movement energy harvesting with wireless sensors
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
KR20150118557A (en) * 2014-04-14 2015-10-22 크루셜텍 (주) Mobile flash module device having healthcare function
JP5817943B1 (en) * 2015-01-05 2015-11-18 セイコーエプソン株式会社 Biological information measuring module, and the biological information measuring device
JP2016123715A (en) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 Biological information measurement module, and biological information measurement device
JP2016123846A (en) * 2015-09-18 2016-07-11 セイコーエプソン株式会社 Biological information measurement sensor, and biological information measurement device

Similar Documents

Publication Publication Date Title
Schmitt et al. Multilayer model of photon diffusion in skin
Nitzan et al. The variability of the photoplethysmographic signal-a potential method for the evaluation of the autonomic nervous system
US8720249B2 (en) Non-invasive sensor calibration device
US4494550A (en) Measuring apparatus for the non-invasive detection of venous and arterial blood flow and drainage disorders
US6104938A (en) Procedure, apparatus and detector for the determination of fractional oxygen saturation
US7047054B2 (en) Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation monitoring
US6757554B2 (en) Measurement of cardiac output and blood volume by non-invasive detection of indicator dilution
US6611320B1 (en) Method and apparatus
US5370114A (en) Non-invasive blood chemistry measurement by stimulated infrared relaxation emission
US6802812B1 (en) Noninvasive optical sensor for measuring near infrared light absorbing analytes
US6615064B1 (en) Non-invasive blood component analyzer
US5431159A (en) Pulse oximetry
US6026314A (en) Method and device for noninvasive measurements of concentrations of blood components
US6675031B1 (en) Method and circuit for indicating quality and accuracy of physiological measurements
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US6088607A (en) Low noise optical probe
US7010337B2 (en) Method and apparatus for monitoring blood condition and cardiopulmonary function
US4796636A (en) Noninvasive reflectance oximeter
US6754515B1 (en) Stabilization of noisy optical sources in photoplethysmography
US6526300B1 (en) Pulse oximeter probe-off detection system
US5357954A (en) Optical blood oxygen saturation probe for insertion into the esophagus
US5482034A (en) Method and apparatus for spectrophotometric cerebral oximetry and the like
US20020165439A1 (en) Method and apparatus for improving the accuracy of noninvasive hematocrit measurements
US5299570A (en) System for measuring the saturation of at least one gas, particularly the oxygen saturation of blood
US5222495A (en) Non-invasive blood analysis by near infrared absorption measurements using two closely spaced wavelengths