JP2555833Y2 - Reflective oximeter probe - Google Patents

Reflective oximeter probe

Info

Publication number
JP2555833Y2
JP2555833Y2 JP8382091U JP8382091U JP2555833Y2 JP 2555833 Y2 JP2555833 Y2 JP 2555833Y2 JP 8382091 U JP8382091 U JP 8382091U JP 8382091 U JP8382091 U JP 8382091U JP 2555833 Y2 JP2555833 Y2 JP 2555833Y2
Authority
JP
Japan
Prior art keywords
light
receiving element
emitting element
living body
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8382091U
Other languages
Japanese (ja)
Other versions
JPH0524006U (en
Inventor
寛 酒井
Original Assignee
日本コーリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本コーリン株式会社 filed Critical 日本コーリン株式会社
Priority to JP8382091U priority Critical patent/JP2555833Y2/en
Publication of JPH0524006U publication Critical patent/JPH0524006U/en
Application granted granted Critical
Publication of JP2555833Y2 publication Critical patent/JP2555833Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は反射型オキシメータに用
いられるプローブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe used for a reflection type oximeter.

【0002】[0002]

【従来の技術】複数種類の発光素子から互いに波長の異
なる複数種類の光を生体の表面に順次照射してその生体
からの反射光を共通の受光素子にてそれぞれ検出し、そ
の反射光の強度を表す光電脈波信号に基づいて血液中の
酸素飽和度を測定する反射型オキシメータが知られてい
る。たとえば、本出願人が先に出願して公開された特開
平2−111344号公報に記載されたものがそれであ
り、かかる反射型オキシメータによる酸素飽和度の測定
は皮膚の一部を構成する真皮内の血管床において行われ
るのが普通である。
2. Description of the Related Art A plurality of types of light emitting elements are sequentially irradiated with a plurality of types of light having different wavelengths from each other on the surface of a living body, and reflected light from the living body is detected by a common light receiving element. There is known a reflection oximeter that measures oxygen saturation in blood based on a photoplethysmographic signal representing the following equation. For example, Japanese Unexamined Patent Application Publication No. 2-111344, which was filed by the applicant of the present invention, has been disclosed. The measurement of oxygen saturation using such a reflection oximeter is based on the dermis constituting a part of the skin. It is usually done in the inner vascular bed.

【0003】上記公報に記載の反射型オキシメータは、
受光素子を中心とする所定半径の円周上に発光波長の異
なる2種類の発光素子が所定間隔毎に全周に亘って交互
に配列され、かつ発光素子から体表面で反射して受光素
子に向かう光を遮光するための円筒状の遮光部材が受光
素子と発光素子との間に設けられたプローブを備えてお
り、受光素子にて検出される反射光の強度を表す光電脈
波信号が大きく得られるのに加えて、血管床の組成が不
均一である場合やプローブの姿勢が傾いた場合において
も酸素飽和度を精度良く且つ安定して測定できる等の利
点を有している。また、上記公報に記載の反射型オキシ
メータにおいては、光電脈波信号の交流成分と直流成分
との比に基づいて酸素飽和度が決定されるようになって
いる。
[0003] The reflection type oximeter described in the above publication is
Two types of light emitting elements having different emission wavelengths are arranged alternately over the entire circumference at predetermined intervals on a circumference of a predetermined radius centered on the light receiving element, and reflected from the light emitting element on the body surface to the light receiving element. A cylindrical light blocking member for blocking incoming light is provided with a probe provided between the light receiving element and the light emitting element, and a photoelectric pulse wave signal representing the intensity of reflected light detected by the light receiving element is large. In addition to this, there is an advantage that the oxygen saturation can be measured accurately and stably even when the composition of the vascular bed is not uniform or when the posture of the probe is inclined. Further, in the reflection oximeter described in the above publication, the oxygen saturation is determined based on the ratio between the AC component and the DC component of the photoplethysmographic signal.

【0004】[0004]

【考案が解決しようとする課題】しかしながら、上記公
報に記載の反射型オキシメータのプローブにおいても未
だ解決すべき問題を有している。すなわち、受光素子と
各発光素子との間の距離が一定であるために、生体内か
らの反射光の強度が充分大きく得られる生体表面からの
深さを表す最適検出深度の幅が狭くなることから、被測
定者の個人差や測定部位の相違により生体表面からの血
管床の深さ位置がばらつくと、光電脈波信号の大きさが
低下して酸素飽和度を精度良く測定できなくなるおそれ
があるとともに、生体に加えられたショック等により末
梢循環が低下して血管床のより深い位置からしか反射光
が検出されなくなると、光電脈波信号の大きさが低下し
て酸素飽和度を測定精度良く且つ安定して測定できなく
なるおそれがあるのである。
However, the probe of the reflection type oximeter described in the above publication still has a problem to be solved. That is, since the distance between the light receiving element and each light emitting element is constant, the width of the optimum detection depth representing the depth from the surface of the living body where the intensity of the reflected light from the inside of the living body is sufficiently large is reduced. Therefore, if the depth position of the vascular bed from the surface of the living body varies due to the individual difference of the subject and the difference of the measurement site, the magnitude of the photoelectric pulse wave signal may decrease and the oxygen saturation may not be measured accurately. In addition, when peripheral blood circulation is reduced due to shock applied to the living body and reflected light is detected only from a deeper position in the vascular bed, the magnitude of the photoelectric pulse wave signal decreases and the oxygen saturation is measured accurately. There is a possibility that good and stable measurement cannot be performed.

【0005】本考案は以上の事情を背景にして為された
ものであって、その目的とするところは、被測定者の個
人差や測定部位の相違に拘らず酸素飽和度を精度良く測
定し得かつ末梢循環の低下に拘らず酸素飽和度を測定精
度良く且つ安定して測定し得る反射型オキシメータ用プ
ローブを提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to accurately measure the oxygen saturation regardless of the individual difference of the subject and the difference of the measurement site. It is an object of the present invention to provide a probe for a reflection type oximeter capable of measuring oxygen saturation with high accuracy and stability regardless of a decrease in peripheral circulation.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本考案の要旨とするところは、複数種類の発光素子
から互いに波長の異なる複数種類の光を生体の表面に順
次照射してその生体からの複数種類の反射光を該照射
に同期してタイミングを切り替えることにより共通の受
光素子にてそれぞれ検出し、その反射光の強度を表す光
電脈波信号に基づいて血液中の酸素飽和度を測定する反
射型オキシメータにおいて、前記発光素子群を構成する
発光素子が各種類毎に前記受光素子を囲む周の全体に亘
って略均等になるような間隔で配列されるとともに、そ
れら発光素子と受光素子との間に、その発光素子から前
記生体の表面で反射してその受光素子へ向かう光を遮光
する環状の遮光部材が設けられた形式のプローブであっ
て、前記発光素子を、前記受光素子との間の距離が漸次
増大し途中から漸次減少するようにその受光素子の周り
に設けたことにある。
Means for Solving the Problems The gist of the present invention to achieve the above object is to sequentially emit a plurality of types of light having different wavelengths from a plurality of types of light emitting element groups onto the surface of a living body. was irradiated, the irradiation of a plurality of types of reflected light from the living body
In the reflection type oximeter, which detects each of the common light receiving elements by switching the timing in synchronization with each other and measures the oxygen saturation in blood based on the photoelectric pulse wave signal representing the intensity of the reflected light, Configure the element group
A light emitting element covers the entire circumference surrounding the light receiving element for each type.
Together are arranged at intervals such as to be substantially equal to I, between them the light emitting element and the light receiving element, it is reflected by the surface of the living body from the light-emitting element light shielding ring for blocking light toward the light receiving element A probe in which a member is provided, wherein the distance between the light emitting element and the light receiving element is gradually increased.
It is provided around the light receiving element so as to increase and gradually decrease in the middle .

【0007】[0007]

【作用および考案の効果】かかる構成の反射型オキシメ
ータ用プローブによれば、複数種類の波長の光を発光し
且つ各種類毎に複数設けられた発光素子が、共通の受光
素子の周りにその受光素子との間の距離が漸次増大し途
中から漸次減少するように配列されるので、反射光の最
適検出深度の幅が広く得られることとなる。これによ
り、被測定者の個人差や測定部位の相違により生体表面
からの血管床の深さ位置がばらついても光電脈波信号の
大きさが充分に得られて酸素飽和度を精度良く測定し得
るとともに、末梢循環が低下して血管床のより深い位置
からしか反射光が検出されなくなっても光電脈波信号の
大きさが充分に得られて酸素飽和度を測定精度良く且つ
安定して測定し得る。
According to the probe for a reflection type oximeter having such a structure, a plurality of light emitting elements which emit light of a plurality of wavelengths and are provided for each kind are provided around a common light receiving element. The distance from the photo detector gradually increases
Since they are arranged so as to gradually decrease from the middle, a wide range of the optimum detection depth of the reflected light can be obtained. As a result, even if the depth position of the vascular bed from the living body surface varies due to the individual difference of the subject or the measurement site, the magnitude of the photoplethysmographic signal can be sufficiently obtained and the oxygen saturation can be accurately measured. In addition, even if the reflected light is detected only from a deeper position in the vascular bed due to a decrease in peripheral circulation, the magnitude of the photoplethysmographic signal can be sufficiently obtained and the oxygen saturation can be measured accurately and stably. I can do it.

【0008】好適には、受光素子にてそれぞれ検出され
る発光素子毎の反射光の生体表面からの各最小検出深度
は、その生体の皮膚の一部を構成する表皮の厚さ以上と
なるように決定される。このように、受光素子と各発光
素子との間の距離が異なっていても発光素子毎の最小検
出深度が表皮の厚さ以上とされることにより、血管が存
在しない表皮からの反射光が受光素子にて検出されるの
を好適に回避し得るため、光電脈波信号の交流成分と直
流成分との比を大きく確保し得て酸素飽和度の測定精度
を一層向上させ得る。
Preferably, each minimum detection depth from the surface of the living body of the reflected light of each light emitting element detected by the light receiving element is equal to or greater than the thickness of the epidermis constituting a part of the skin of the living body. Is determined. As described above, even if the distance between the light receiving element and each light emitting element is different, the minimum detection depth of each light emitting element is set to be equal to or greater than the thickness of the epidermis, so that reflected light from the epidermis without blood vessels is received. Since the detection by the element can be preferably avoided, a large ratio between the AC component and the DC component of the photoplethysmographic signal can be secured, and the measurement accuracy of the oxygen saturation can be further improved.

【0009】[0009]

【実施例】以下、本考案の一実施例を図面に基づいて詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings.

【0010】図2は本考案が適用されたプローブを備え
た反射型オキシメータの一構成例を示す図であって、プ
ローブ10は、たとえば生体の指等の体表面12に密着
した状態で装着される。プローブ10は、図1および図
2に示すように、一方向において開口する容器状のハウ
ジング14と、そのハウジング14の底部内面の外周側
に位置する部分において所定間隔毎に交互に且つ環状に
配列され、LED等から成るたとえば9個づつの第1発
光素子18および第2発光素子20と、それら第1発光
素子18および第2発光素子20の内周側においてハウ
ジング14の底部内面に設けられ、ホトダイオードやホ
トトランジスタ等から成る受光素子16と、ハウジング
14内に一体的に設けられ、受光素子16および発光素
子18,20を覆う透明な樹脂22と、ハウジング14
内において受光素子16と発光素子18,20との間に
設けられ、発光素子18,20から照射された光の体表
面12から受光素子16に向かう反射光を遮光する環状
の遮光部材24とを備えて構成されている。
FIG. 2 is a diagram showing an example of a configuration of a reflection type oximeter provided with a probe to which the present invention is applied. The probe 10 is mounted in a state in which the probe 10 is in close contact with a body surface 12 such as a living finger. Is done. As shown in FIGS. 1 and 2, the probes 10 are alternately and annularly arranged at predetermined intervals in a container-like housing 14 which is open in one direction, and in a portion located on the outer peripheral side of the bottom inner surface of the housing 14. A first light-emitting element 18 and a second light-emitting element 20, for example, each comprising an LED or the like, and provided on the inner surface of the bottom of the housing 14 on the inner peripheral side of the first light-emitting element 18 and the second light-emitting element 20; A light-receiving element 16 composed of a photodiode, a phototransistor, or the like; a transparent resin 22 provided integrally in the housing 14 to cover the light-receiving element 16 and the light-emitting elements 18 and 20;
And a ring-shaped light blocking member 24 provided between the light receiving element 16 and the light emitting elements 18 and 20 for blocking reflected light of the light emitted from the light emitting elements 18 and 20 from the body surface 12 toward the light receiving element 16. It is provided with.

【0011】上記第1発光素子18はたとえば660n
m程度の波長の赤色光を発光し、第2発光素子20はた
とえば800nm程度の波長の赤外光を発光するもので
あるが、必ずしもこれらの波長に限定されるものではな
く、ヘモグロビンの吸光係数と酸化ヘモグロビンの吸光
係数とが大きく異なる波長の光と、それら両吸光係数が
略同じとなる波長の光とを発光するものであればよい。
これら第1発光素子18および第2発光素子20は一定
時間づつ順番に所定周波数で発光させられるとともに、
両発光素子18,20から照射された光の体表面12下
の血管床、すなわち皮膚の一部を構成する真皮内におい
て細い血管が密集している部分からの反射光は共通の受
光素子16によりそれぞれ受光される。
The first light emitting element 18 is, for example, 660n.
m emits red light having a wavelength of about m, and the second light emitting element 20 emits infrared light having a wavelength of about 800 nm, for example. However, the present invention is not necessarily limited to these wavelengths, and the extinction coefficient of hemoglobin is not limited thereto. Any light may be used as long as it emits light having a wavelength at which the extinction coefficient of oxyhemoglobin differs greatly from that of oxyhemoglobin and light having a wavelength at which both extinction coefficients are substantially the same.
The first light emitting element 18 and the second light emitting element 20 emit light at a predetermined frequency in order for a predetermined time,
The reflected light from the vascular bed under the body surface 12 of the light emitted from the light emitting elements 18 and 20, that is, the portion where the thin blood vessels are densely packed in the dermis constituting a part of the skin, is reflected by the common light receiving element 16. Each is received.

【0012】受光素子16は、その受光量に対応した大
きさの電気信号SVを増幅器30を介してローパスフィ
ルタ32へ出力する。この電気信号SVは、動脈の脈動
による変動成分を含んでいる。ローパスフィルタ32は
入力された電気信号SVから脈波の周波数よりも高い周
波数を有するノイズを除去し、そのノイズが除去された
信号SVをデマルチプレクサ34へ出力する。デマルチ
プレクサ34は後述の切換信号SCにより第1発光素子
18および第2発光素子20の発光に同期して切り換え
られることにより、赤色光による電気信号SVR をサン
プルホールド回路36およびA/D変換器38を介して
I/Oポート40へ逐次供給するとともに、赤外光によ
る電気信号SVIRをサンプルホールド回路42およびA
/D変換器44を介してI/Oポート40へ逐次供給す
る。サンプルホールド回路36,42は、入力された電
気信号SVR ,SVIRをA/D変換器38,44へ逐次
出力する際に、前回出力した電気信号SVR ,SVIR
ついてのA/D変換器38,44における変換作動が終
了するまで次に出力する電気信号SVR ,SVIRをそれ
ぞれ保持するためのものである。
The light receiving element 16 outputs an electric signal SV having a magnitude corresponding to the amount of received light to the low-pass filter 32 via the amplifier 30. This electric signal SV includes a fluctuation component due to arterial pulsation. The low-pass filter 32 removes noise having a frequency higher than the frequency of the pulse wave from the input electric signal SV, and outputs the signal SV from which the noise has been removed to the demultiplexer 34. By demultiplexer 34 is switched in synchronism with the emission of the first light emitting element 18 and the second light emitting element 20 by switching signal SC will be described later, the electrical signal SV R by the red light sample hold circuit 36 and A / D converter 38 with sequentially supplied to the I / O port 40 via an electrical signal SV IR by infrared light sample hold circuit 42 and a
It is sequentially supplied to the I / O port 40 via the / D converter 44. When sequentially outputting the input electric signals SV R , SV IR to the A / D converters 38, 44, the sample-hold circuits 36, 42 perform A / D conversion on the previously output electric signals SV R , SV IR. Until the conversion operation in the devices 38 and 44 is completed, the electric signals SV R and SV IR to be output next are respectively held.

【0013】上記I/Oポート40は、データバスライ
ンを介してCPU46,ROM48,RAM50,表示
器52とそれぞれ接続されている。CPU46は、RA
M50の記憶機能を利用しつつROM48に予め記憶さ
れたプログラムに従って測定動作を実行し、I/Oポー
ト40から駆動回路54へ照射信号SLDを出力して第
1発光素子18および第2発光素子20をタイミングを
切り替えることにより順番に所定の周波数で一定時間づ
つ発光させる一方、それら第1発光素子18および第2
発光素子20の発光に同期して切換信号SCを出力して
デマルチプレクサ34を切り換えることにより、前記電
気信号SVR をサンプルホールド回路36へ、前記電気
信号SVIRをサンプルホールド回路42へそれぞれ振り
分ける。また、CPU46は、予め記憶されたプログラ
ムに従って前記電気信号SVR および電気信号SVIR
それぞれ表す光電脈波形に基づいて血液中の酸素飽和度
を決定し且つその決定した酸素飽和度を表示器52に表
示させる。なお、この酸素飽和度の決定方法は、たとえ
ば、本出願人が先に出願して公開された特開平3−15
440号公報に記載された決定方法と同様であり、数式
1に示す比と酸素飽和度との間の予め求められた関係か
ら実際の比に基づいて酸素飽和度が決定される。
The I / O port 40 is connected to a CPU 46, a ROM 48, a RAM 50, and a display 52 via data bus lines. The CPU 46 sets the RA
Using the storage function of M50, the measuring operation is executed in accordance with a program stored in the ROM 48 in advance, and the irradiation signal SLD is output from the I / O port 40 to the driving circuit 54, and the first light emitting element 18 and the second light emitting element 20 are output. The timing
By switching, light is emitted in sequence at a predetermined frequency for a certain period of time, while the first light emitting element 18 and the second
By switching the demultiplexer 34 by outputting the switching signal SC in synchronization with the light emission of the light emitting element 20, the electric signal SV R is distributed to the sample and hold circuit 36 and the electric signal SV IR is distributed to the sample and hold circuit 42. Further, the CPU 46 determines the oxygen saturation in the blood based on the photoplethysmographic waveforms represented by the electric signal SV R and the electric signal SV IR according to a program stored in advance, and displays the determined oxygen saturation on the display 52. To be displayed. The method of determining the oxygen saturation is described in, for example, Japanese Patent Application Laid-Open No.
This is the same as the determination method described in Japanese Patent Application Publication No. 440, and the oxygen saturation is determined based on the actual ratio from the previously obtained relationship between the ratio shown in Expression 1 and the oxygen saturation.

【0014】[0014]

【数1】 (Equation 1)

【0015】上記数式1において、VdR,VSRはそれぞ
れ赤色光による光電脈波形の上ピーク値,下ピーク値で
あり、VdIR ,VSIR はそれぞれ赤外光による光電脈波
形の上ピーク値,下ピーク値である。また、VdR−VSR
およびVdIR −VSIR は各光電脈波形の交流成分の振幅
をそれぞれ表しており、VdR+VSRおよびVdIR +V
SIR は各光電脈波形の直流成分を2倍したものをそれぞ
れ表している。
In the above formula 1, V dR and V SR are the upper peak value and lower peak value of the photoplethysmographic waveform due to red light, respectively, and V dIR and V SIR are the upper peak values of the photoplethysmographic waveform due to infrared light, respectively. , The lower peak value. Also, V dR −V SR
And V dIR −V SIR represent the amplitude of the AC component of each photoplethysmographic waveform, respectively, and V dR + V SR and V dIR + V
SIR represents the DC component of each photoelectric pulse waveform doubled.

【0016】ここで、本実施例においては、更に、ハウ
ジング14の周壁および遮光部材24はそれぞれ長円形
状を成しているとともに、受光素子16は遮光部材24
の内周側の一端部側に偏った位置に設けられている。こ
れにより、各発光素子18,20は、受光素子16を囲
む周の全体に亘って略均等になるような間隔で、受光素
子16との間の距離が漸次増大し途中から漸次減少する
ように受光素子16の周りに設けられていることから、
生体内からの反射光の強度が充分大きく得られる体表面
12からの深さを表す最適検出深度dsuitの幅が広く得
られることとなる。図3は、牛乳等の懸濁液56が入っ
た容器58の底に反射鏡60を配置して成る生体モデル
を用いてプローブ10の反射光検出特性を試験する場合
の一状態を示しており、懸濁液56内においてプローブ
10と反射鏡60との間の距離dmodel (生体内からの
反射光の検出深度に相当)を漸次変えて発光素子18,
20から反射鏡60に向かって光を照射すると、受光素
子16にて検出される反射光の強度がたとえば図4に示
すように変化し、反射鏡60からの反射光強度が最も大
きく得られる最適検出距離の幅Wが広く得られた。これ
により、プローブ10を体表面12に装着した場合にお
いても前記最適検出深度dsuitの幅が広く得られるもの
と推定される。
Here, in this embodiment, the peripheral wall of the housing 14 and the light-shielding member 24 each have an oval shape, and the light-receiving element 16 is
Is provided at a position biased toward one end of the inner peripheral side. Thus, each of the light emitting elements 18 and 20 surrounds the light receiving element 16.
Provided around the light receiving element 16 such that the distance between the light receiving element 16 and the light receiving element 16 gradually increases and gradually decreases in the middle thereof at intervals so as to be substantially uniform over the entire circumference. From
As a result, the width of the optimum detection depth d suit indicating the depth from the body surface 12 at which the intensity of the reflected light from the living body is sufficiently large can be obtained. FIG. 3 shows a state in which the reflected light detection characteristic of the probe 10 is tested using a biological model in which a reflecting mirror 60 is disposed at the bottom of a container 58 containing a suspension 56 of milk or the like. , The distance d model between the probe 10 and the reflecting mirror 60 in the suspension 56 (corresponding to the detection depth of the reflected light from the living body) is gradually changed,
When light is irradiated from 20 toward the reflecting mirror 60, the intensity of the reflected light detected by the light receiving element 16 changes, for example, as shown in FIG. A wide detection distance width W was obtained. Accordingly, it is estimated that even when the probe 10 is mounted on the body surface 12, the width of the optimum detection depth d suit can be widened.

【0017】また、受光素子16と発光素子18,20
との間の距離が大きくなる程、遮光部材24の受光素子
16と各発光素子18,20とを結ぶ直線上における厚
さtが、たとえば図1においてt1 乃至t4 にて示すよ
うに漸次大きくされている。これにより、受光素子16
にてそれぞれ検出される発光素子18,20毎の反射光
の体表面12からの各最小検出深度dmin は、たとえば
図5乃至図8に示すように各発光素子18,20におい
て互いに同一とされ且つたとえば0.35mmにそれぞれ
決定されている。
Further, the light receiving element 16 and the light emitting elements 18 and 20
As the distance between them increases, the thickness t of the light shielding member 24 on the straight line connecting the light receiving element 16 and each of the light emitting elements 18 and 20 gradually increases, for example, as shown by t 1 to t 4 in FIG. Has been enlarged. Thereby, the light receiving element 16
Each of the minimum detection depths d min of the reflected light from the body surface 12 for each of the light emitting elements 18 and 20 detected respectively at the light emitting elements 18 and 20 is the same in each of the light emitting elements 18 and 20 as shown in FIGS. In addition, for example, each is set to 0.35 mm.

【0018】このように、本実施例によれば、各発光素
子18,20が受光素子16との間の距離が漸次増大し
途中から漸次減少するように受光素子16の周りに設け
られることにより反射光の最適検出深度dsuitの幅が広
く得られるため、被測定者の個人差や測定部位の相違に
より体表面12からの血管床の深さ位置がばらついても
光電脈波信号(SVR ,SVIR)の大きさが充分に得ら
れて酸素飽和度を精度良く測定できるとともに、メスや
薬物等により生体にショックが加えられることにより末
梢循環が低下して血管床のより深い位置からしか反射光
が検出されなくなっても光電脈波信号の大きさが充分に
得られて酸素飽和度を測定精度良く且つ安定して測定す
ることができる。
As described above, according to this embodiment, the distance between each of the light emitting elements 18 and 20 and the light receiving element 16 gradually increases.
Since the width of the optimal detection depth d suit of the reflected light is widened by being provided around the light receiving element 16 so as to gradually decrease from the middle, the distance from the body surface 12 due to the individual difference of the subject and the difference of the measurement site. vascular bed depth position photoelectric pulse wave signal is also varied (SV R, SV IR) with the magnitude is sufficiently obtained oxygen saturation can be accurately measured, shock in addition to biological by knife or drugs, etc. Even if the peripheral circulation is reduced and reflected light is detected only from a deeper position in the vascular bed, the magnitude of the photoelectric pulse wave signal is sufficiently obtained and the oxygen saturation is measured with high accuracy and stability can do.

【0019】ところで、人体の表皮の厚さは、足底など
を除く殆どの部位の皮膚において0.3mm以下であるこ
とが知られているが、本実施例によれば、発光素子1
8,20毎の最小検出深度dmin はその殆どの部位の表
皮の最高厚である0.3mmより僅かに大きい0.35mm
にそれぞれ決定されているので、血管が存在しない表皮
からの反射光が受光素子16にて検出されることが確実
に回避される。これにより、光電脈波形の交流成分と直
流成分との比、すなわち(VdR−VSR)/(VdR
SR)や(VdIR −VSIR )/(VdIR +VSIR )が大
きく確保されて酸素飽和度の測定精度が一層向上するこ
ととなる。
By the way, it is known that the thickness of the epidermis of the human body is 0.3 mm or less in the skin of almost all parts except the sole and the like.
The minimum detection depth d min every 8, 20 is 0.35 mm, which is slightly larger than the maximum thickness of the epidermis of most parts, 0.3 mm.
Therefore, the detection of the reflected light from the epidermis having no blood vessel by the light receiving element 16 is reliably avoided. Thus, the ratio between the AC component and the DC component of the photoplethysmographic waveform, that is, (V dR −V SR ) / (V dR +
(V SR ) and (V dIR −V SIR ) / (V dIR + V SIR ) are largely secured, and the measurement accuracy of the oxygen saturation is further improved.

【0020】なお、前記実施例では、発光素子18,2
0毎の最小検出深度dmin は0.35mmにて同一に決定
されているが、必ずしもその必要はなく、たとえば、人
体の殆どの部位の表皮の最高厚である0.3mm以上の種
々の値に決定されていても前記実施例と略同様の効果を
得ることができる。
In the above embodiment, the light emitting elements 18, 2
The minimum detection depth d min for each 0 is determined to be the same at 0.35 mm, but it is not always necessary, for example, various values of 0.3 mm or more, which is the maximum thickness of the epidermis of most parts of the human body. However, the same effect as in the above embodiment can be obtained.

【0021】また、前記実施例において、最小検出深度
min が被測定者の表皮の厚さより小さい場合において
も、発光素子18,20が受光素子16との間の距離が
漸次増大し途中から漸次減少するように受光素子16の
周りに配列されていることにより、被測定者の個人差や
測定部位の相違に拘らず酸素飽和度を精度良く測定し得
かつ末梢循環の低下に拘らず酸素飽和度を測定精度良く
且つ安定して測定し得るという本考案の効果が得られ
る。
Further, in the above embodiment, even when the minimum detection depth d min is smaller than the thickness of the skin of the subject, the distance between the light emitting elements 18 and 20 and the light receiving element 16 gradually increases, and gradually from the middle. By being arranged around the light receiving element 16 so as to decrease, the oxygen saturation can be measured accurately regardless of the individual difference of the subject and the difference of the measurement site, and the oxygen saturation can be measured regardless of the decrease in the peripheral circulation. The effect of the present invention is that the degree can be measured with high accuracy and stability.

【0022】また、前記実施例では、受光素子16は長
円形状の環状を成す遮光部材24の内周側の一端部側に
偏った位置に設けられているが、その遮光部材24の内
周側の中央部分に設けられている場合や円筒状の遮光部
材が用いられている場合においても、本考案の効果を得
ることができる。
Further, in the above embodiment, the light receiving element 16 is provided at a position deviated to one end of the inner peripheral side of the light shielding member 24 having an oval ring shape. The effect of the present invention can be obtained also in the case where it is provided in the center part on the side or when a cylindrical light shielding member is used.

【0023】また、前記実施例では、発光素子18,2
0は配列形状が長円形状となるように配列されている
が、必ずしもその必要はなく、たとえば、菱形形状や円
形状に配列されてもよい。発光素子18,20が円形状
に配列される場合には、その円周内の偏心した位置に受
光素子16が配置されることとなる。要するに、発光素
子は受光素子との間の距離が漸次増大し途中から漸次減
少するようにその受光素子の周りに設けられておればよ
いのである。
Further, in the above embodiment, the light emitting elements 18, 2
The 0s are arranged so that the arrangement shape is an ellipse shape, but this is not always necessary. For example, they may be arranged in a rhombus shape or a circular shape. When the light emitting elements 18 and 20 are arranged in a circular shape, the light receiving element 16 is arranged at an eccentric position in the circumference. In short, the distance between the light emitting element and the light receiving element gradually increases, and gradually decreases in the middle.
What is necessary is just to be provided around the light receiving element so as to reduce it.

【0024】また、前記実施例では、波長の異なる2種
類の光を発光する第1発光素子18および第2発光素子
20が交互に配列されているが、必ずしもその必要はな
く、たとえば、波長の異なる3種類以上の光を発光する
3種類以上の発光素子が各種類が全周に亘って略均等に
分散するように複数づつ配列されてもよい。
In the above embodiment, the first light emitting elements 18 and the second light emitting elements 20 which emit two kinds of light having different wavelengths are arranged alternately. However, this is not always necessary. A plurality of three or more types of light-emitting elements that emit three or more different types of light may be arranged such that each type is substantially evenly distributed over the entire circumference.

【0025】その他、本考案はその趣旨を逸脱しない範
囲において種々変更が加えられ得るものである。
In addition, the present invention can be variously modified without departing from the gist thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図2のプローブをそのハウジングの開口側から
見た図であって、拡大して示す図である。
FIG. 1 is an enlarged view of the probe of FIG. 2 viewed from an opening side of a housing thereof.

【図2】本考案の一実施例であるプローブを備えた反射
型オキシメータの一構成例を示すブロック線図である。
FIG. 2 is a block diagram showing a configuration example of a reflection type oximeter including a probe according to an embodiment of the present invention.

【図3】懸濁液内に反射鏡を有する生体モデルを用いて
図2のプローブの反射光検出特性を試験する場合の一状
態を示す図である。
FIG. 3 is a diagram showing one state in a case where the reflected light detection characteristics of the probe of FIG. 2 are tested using a biological model having a reflecting mirror in a suspension.

【図4】図3の生体モデルを用いて求められた図2のプ
ローブの反射光検出特性の一例を示す図である。
FIG. 4 is a diagram showing an example of a reflected light detection characteristic of the probe of FIG. 2 obtained using the biological model of FIG. 3;

【図5】図1の遮光部材の厚さt1 の部分における反射
光の最小検出深度dmin を示す図である。
FIG. 5 is a diagram showing a minimum detection depth d min of reflected light at a portion of the light shielding member having a thickness t 1 of FIG. 1;

【図6】図1の遮光部材の厚さt2 の部分における反射
光の最小検出深度dmin を示す図である。
FIG. 6 is a diagram illustrating a minimum detection depth d min of reflected light at a portion of a light shielding member having a thickness t 2 of FIG. 1;

【図7】図1の遮光部材の厚さt3 の部分における反射
光の最小検出深度dmin を示す図である。
FIG. 7 is a diagram illustrating a minimum detection depth d min of reflected light at a portion of a light shielding member having a thickness t 3 of FIG. 1;

【図8】図1の遮光部材の厚さt4 の部分における反射
光の最小検出深度dmin を示す図である。
8 is a diagram showing a minimum detectable depth d min of the reflected light in a portion of the thickness t 4 of the shielding member of FIG.

【符号の説明】[Explanation of symbols]

10 プローブ 12 体表面 16 受光素子 18 第1発光素子 20 第2発光素子 24 遮光部材 Reference Signs List 10 probe 12 body surface 16 light receiving element 18 first light emitting element 20 second light emitting element 24 light shielding member

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】複数種類の発光素子から互いに波長の異
なる複数種類の光を生体の表面に順次照射して該生体
からの複数種類の反射光を該照射に同期してタイミング
を切り替えることにより共通の受光素子にてそれぞれ検
出し、該反射光の強度を表す光電脈波信号に基づいて血
液中の酸素飽和度を測定する反射型オキシメータにおい
て、前記発光素子群を構成する発光素子が各種類毎に前
記受光素子を囲む周の全体に亘って略均等になるような
間隔で配列されるとともに、該発光素子と該受光素子と
の間に、該発光素子から前記生体の表面で反射して該受
光素子へ向かう光を遮光する環状の遮光部材が設けられ
た形式のプローブであって、 前記発光素子を、前記受光素子との間の距離が漸次増大
し途中から漸次減少するように該受光素子の周りに設け
たことを特徴とする反射型オキシメータ用プローブ。
1. A plurality types plurality of types having different wavelengths from each other from the light emitting element group of the light sequentially applied to the surface of the living body, the timing of a plurality of types of reflected light from the living body in synchronism with the irradiation
The light-emitting element group is configured in a reflection-type oximeter that detects each of the light-receiving elements by switching over and measures the oxygen saturation in blood based on a photoplethysmographic signal representing the intensity of the reflected light. The light emitting element is substantially uniform over the entire circumference surrounding the light receiving element for each type.
While arranged at intervals, between the light-emitting element and the light-receiving element, a ring-shaped light-shielding member that shields light from the light-emitting element on the surface of the living body toward the light-receiving element is provided. A probe, wherein a distance between the light emitting element and the light receiving element gradually increases.
A reflection type oximeter probe which is provided around the light receiving element so as to gradually decrease in the middle .
【請求項2】請求項1に記載の反射型オキシメータ用プ
ローブにおいて、受光素子にてそれぞれ検出される発光
素子毎の反射光の生体表面からの各最小検出深度を、該
生体の皮膚の一部を構成する表皮の厚さ以上としたこと
を特徴とする反射型オキシメータ用プローブ。
2. The reflection oximeter probe according to claim 1, wherein the minimum detection depth from the surface of the living body of the reflected light of each light emitting element detected by the light receiving element is defined as one of the skins of the living body. A reflective oximeter probe characterized in that it has a thickness equal to or greater than the thickness of the skin constituting the portion.
JP8382091U 1991-09-17 1991-09-17 Reflective oximeter probe Expired - Fee Related JP2555833Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8382091U JP2555833Y2 (en) 1991-09-17 1991-09-17 Reflective oximeter probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8382091U JP2555833Y2 (en) 1991-09-17 1991-09-17 Reflective oximeter probe

Publications (2)

Publication Number Publication Date
JPH0524006U JPH0524006U (en) 1993-03-30
JP2555833Y2 true JP2555833Y2 (en) 1997-11-26

Family

ID=13813332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8382091U Expired - Fee Related JP2555833Y2 (en) 1991-09-17 1991-09-17 Reflective oximeter probe

Country Status (1)

Country Link
JP (1) JP2555833Y2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317295A (en) * 1992-05-26 1993-12-03 Omron Corp Probe for measuring oxygen of living body tissue
JPH0928696A (en) * 1995-07-21 1997-02-04 Hitachi Ltd Photomeasuring instrument and photomeasurement
JPH10216114A (en) * 1997-02-06 1998-08-18 Nippon Colin Co Ltd Degree of oxygen saturation measuring apparatus
JPH10337282A (en) * 1997-02-06 1998-12-22 Nippon Colin Co Ltd Reflection type oxygen saturation degree measuring device
JPH10216115A (en) * 1997-02-06 1998-08-18 Nippon Colin Co Ltd Highly accurate reflection type degree of oxygen saturation measuring apparatus
JP3790030B2 (en) * 1997-10-30 2006-06-28 コーリンメディカルテクノロジー株式会社 Reflective photoelectric pulse wave detector
KR102024631B1 (en) * 2012-12-20 2019-09-24 (주)아모레퍼시픽 The method for identifying skin type
JP6790412B2 (en) * 2016-03-28 2020-11-25 富士ゼロックス株式会社 Biological information measuring device

Also Published As

Publication number Publication date
JPH0524006U (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US5203329A (en) Noninvasive reflectance oximeter sensor providing controlled minimum optical detection depth
US6363269B1 (en) Synchronized modulation/demodulation method and apparatus for frequency division multiplexed spectrophotometric system
EP0648085B1 (en) Simulation for pulse oximeter
EP3380002B1 (en) Wearable device and system for acquiring physiological information of a subject
JP2766317B2 (en) Pulse oximeter
US4948248A (en) Blood constituent measuring device and method
US5277181A (en) Noninvasive measurement of hematocrit and hemoglobin content by differential optical analysis
EP1322216B1 (en) A pulse oximeter and a method of its operation
US5752920A (en) Blood pressure monitor apparatus
EP0479322A2 (en) Apparatus for detecting transducer movement
JPH10216115A (en) Highly accurate reflection type degree of oxygen saturation measuring apparatus
JP2004135854A (en) Reflection type photoelectric pulse wave detector and reflection type oxymeter
US8433382B2 (en) Transmission mode photon density wave system and method
JP2555833Y2 (en) Reflective oximeter probe
JPH10337282A (en) Reflection type oxygen saturation degree measuring device
JP3790030B2 (en) Reflective photoelectric pulse wave detector
JPH10216114A (en) Degree of oxygen saturation measuring apparatus
US5203342A (en) Peripheral blood circulation state detecting apparatus
JP3705667B2 (en) Heart failure monitoring device
US5225672A (en) Method and apparatus for detecting movement of an electro-optical transducer
JPH09215664A (en) Evaluator of autonomic nerve function
JP2688508B2 (en) Reflective oximeter
JPH02111345A (en) Reflecting oxymeter
JP2555828Y2 (en) Reflective oximeter probe
JP2851088B2 (en) Biological signal pulse detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees