JP2019130070A - Biological information measurement device - Google Patents

Biological information measurement device Download PDF

Info

Publication number
JP2019130070A
JP2019130070A JP2018015296A JP2018015296A JP2019130070A JP 2019130070 A JP2019130070 A JP 2019130070A JP 2018015296 A JP2018015296 A JP 2018015296A JP 2018015296 A JP2018015296 A JP 2018015296A JP 2019130070 A JP2019130070 A JP 2019130070A
Authority
JP
Japan
Prior art keywords
light
biological information
probe
transmitted
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018015296A
Other languages
Japanese (ja)
Inventor
理美 藤田
Satomi Fujita
理美 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP2018015296A priority Critical patent/JP2019130070A/en
Publication of JP2019130070A publication Critical patent/JP2019130070A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

To provide a biological information measurement device capable of measuring biological information other than SpOwhile having a compact probe configuration.SOLUTION: A biological information measurement device 10 comprises: a probe 100 comprising a measurement light emission part for emitting a measurement light to a measurement portion, and a transmission/reflection light entry part to which a transmission light or reflection light of the measurement light which passed the measurement portion enters, and being attached to the measurement portion; a multi wavelength light source 210 for emitting light including at least red light and near infrared light; a calculation part 220 for determining a plurality of kinds of biological information based on transmission/reflection light; and a light cable 300 provided between the multi wavelength light source 210 and the probe 100, and between the probe 100 and the calculation part 220, sending the light obtained on the multi wavelength light source 210 to the probe 100, and sending the transmission/reflection light obtained on the probe 100 or an electric signal based on the transmission/reflection light to the calculation part 220.SELECTED DRAWING: Figure 1

Description

本発明は、生体情報測定装置に関し、例えば動脈血酸素飽和度(以下、単にSpOあるいは酸素飽和度という)を測定可能な生体情報測定装置に関する。 The present invention relates to a biological information measuring device, for example, a biological information measuring device capable of measuring arterial blood oxygen saturation (hereinafter simply referred to as SpO 2 or oxygen saturation).

SpOを測定可能な生体情報測定装置としてパルスオキシメータが広く普及している。パルスオキシメータは、動脈血における総ヘモグロビンに対する酸素化ヘモグロビンの割合を表す動脈血酸素飽和度を非侵襲的に測定することができる医療機器である(例えば特許文献1、2参照)。 Pulse oximeters are widely used as biological information measuring devices capable of measuring SpO 2 . A pulse oximeter is a medical device that can noninvasively measure arterial oxygen saturation, which represents the ratio of oxygenated hemoglobin to total hemoglobin in arterial blood (see, for example, Patent Documents 1 and 2).

パルスオキシメータは、指、足趾又は耳朶等の測定部位にプローブを装着するように構成されている。このプローブには、発光ダイオード等の発光素子と、フォトダイオード等のフォトディテクターとが設けられている。   The pulse oximeter is configured to attach a probe to a measurement site such as a finger, a footpad or an earlobe. The probe is provided with a light emitting element such as a light emitting diode and a photo detector such as a photodiode.

そして、赤色光を発光する発光素子と近赤外光を発光する発光素子を交互に発光させることにより、測定部位に向けて赤色光と近赤外光とを交互に照射し、測定部位を透過し又は測定部位から反射した光をフォトディテクターによって検出する。なお、一般にSpO測定における赤色光とは660nm±5nmで定義され、近赤外光とは800〜950nmで定義される。よって、本明細書における赤色光及び近赤外光はこの範囲の光を意味するものとする。 Then, by alternately emitting light emitting elements that emit red light and light emitting elements that emit near-infrared light, red light and near-infrared light are alternately irradiated toward the measurement site and transmitted through the measurement site. Or the light reflected from the measurement site is detected by a photodetector. In general, red light in SpO 2 measurement is defined as 660 nm ± 5 nm, and near-infrared light is defined as 800 to 950 nm. Therefore, red light and near infrared light in this specification mean light in this range.

パルスオキシメータは、フォトディテクターにより得た透過光又は反射光の検出信号を用いて酸素飽和度を算出する。具体的には、動脈血の脈拍に同期する光検出レベルの変動を赤色光の場合と近赤外光の場合とで対比し、その比から酸素飽和度を算出する。パルスオキシメータは、算出した動脈血酸素飽和度を表示部に表示する。   The pulse oximeter calculates oxygen saturation using a detection signal of transmitted light or reflected light obtained by a photodetector. Specifically, the fluctuation of the light detection level synchronized with the pulse of arterial blood is compared between the case of red light and the case of near infrared light, and the oxygen saturation is calculated from the ratio. The pulse oximeter displays the calculated arterial blood oxygen saturation on the display unit.

パルスオキシメータのプローブとしては、例えば指先に装着可能なケース内に発光部と受光部が設けられて構成されたものがある。また、シート状の基材に発光部と受光部が設けられた構成のものもある(例えば特許文献3、4参照)。   As a probe of a pulse oximeter, for example, there is one configured by providing a light emitting part and a light receiving part in a case that can be attached to a fingertip. There is also a configuration in which a light emitting part and a light receiving part are provided on a sheet-like base material (see, for example, Patent Documents 3 and 4).

特開2001−78990号公報JP 2001-78990 A 特開2015−107152号公報JP-A-2015-107152 米国特許第5,800,349号明細書US Pat. No. 5,800,349 特開2004−329607号公報JP 2004-329607 A 特開2011−209265号公報JP 2011-209265 A 特開2002−65645号公報JP 2002-65645 A 特開2017−205264号公報JP 2017-205264 A

ところで、プローブは被検者の指先などに装着されるので、可能な限りコンパクトであることが好ましい。   By the way, since the probe is attached to the fingertip of the subject, it is preferable that the probe is as compact as possible.

また、従来のパルスオキシメータにおいては、赤色光と近赤外光を所定のタイミングで交互に発光させることが要求されているが、赤色光と近赤外光とを交互に発光させずに同時に発光させてもSpOを測定できれば、発光駆動回路を簡単化できるので好ましい。 In addition, in the conventional pulse oximeter, it is required to emit red light and near infrared light alternately at a predetermined timing. However, red light and near infrared light are not emitted alternately and simultaneously. If SpO 2 can be measured even when light is emitted, the light emission drive circuit can be simplified, which is preferable.

さらに、SpO以外の他の生体情報も測定できれば、非常に便利であると考えられる。 Furthermore, it would be very convenient if other biological information other than SpO 2 could be measured.

本発明は、以上の点を考慮してなされたものであり、コンパクトなプローブ構成でありながら、SpO以外の他の生体情報も測定可能な生体情報測定装置を提供する。 The present invention has been made in consideration of the above points, and provides a biological information measuring apparatus capable of measuring biological information other than SpO 2 while having a compact probe configuration.

本発明の生体情報測定装置の一つの態様は、
測定部位に向けて測定光を出射する測定光出射部と、前記測定部位を透過又は反射した前記測定光の透過/反射光を入射する透過/反射光入射部とを有し、測定部位に装着されるプローブと、
少なくとも赤色光及び近赤外光を含む光を発光する多波長光源と、
前記透過/反射光に基づいて複数種類の生体情報を求める演算部と、
前記多波長光源と前記プローブとの間、及び、前記プローブと前記演算部との間に設けられ、前記多波長光源で得られた光を前記プローブに送るとともに、前記プローブで得られた前記透過/反射光又は前記透過/反射光に基づく電気信号を前記演算部に送る、光ケーブルと、
を有する。
One aspect of the biological information measuring device of the present invention is:
A measurement light emitting part that emits measurement light toward the measurement site and a transmission / reflection light incidence unit that transmits the transmitted / reflected light of the measurement light that is transmitted or reflected through the measurement site, and is attached to the measurement site A probe to be
A multi-wavelength light source that emits light including at least red light and near infrared light;
A calculation unit for obtaining a plurality of types of biological information based on the transmitted / reflected light;
Provided between the multi-wavelength light source and the probe, and between the probe and the calculation unit, and transmits the light obtained by the multi-wavelength light source to the probe and the transmission obtained by the probe. An optical cable for sending an electrical signal based on the reflected light or the transmitted / reflected light to the arithmetic unit;
Have

本発明によれば、プローブに光ケーブルによって多波長光源を接続するようにしたので、コンパクトなプローブ構成でありながら、SpO以外の他の生体情報も測定可能な生体情報測定装置を実現できる。 According to the present invention, since the multi-wavelength light source is connected to the probe by the optical cable, it is possible to realize a biological information measuring device capable of measuring biological information other than SpO 2 while having a compact probe configuration.

実施の形態に係る生体情報測定装置の全体構成を示す概略図Schematic which shows the whole structure of the biological information measuring device which concerns on embodiment プローブの構成例を示す斜視図A perspective view showing a configuration example of a probe

<1>本発明に至った経緯
本発明の実施の形態を説明する前に、本発明に至った経緯について説明する。
<1> Background to the Present Invention Before the embodiment of the present invention is described, the background to the present invention will be described.

本発明の発明者は、先ず、以下の点に着目した。
従来のパルスオキシメータにおいては、発光部は赤色光を発光するLEDと近赤外光を発光するLEDとで構成され、受光部は生体を透過又は反射してきたこれらの光を検出する1つのPD(Photo-Diode)で構成されている。このように受光部が1つのPDで構成されているため、赤色光と近赤外光が同時にPDへ入射すると赤色光と近赤外光との区別ができなくなるので、赤色光と近赤外光を交互(正確には赤色光→消灯→近赤外光→消灯→・・・)に光らせている。
The inventor of the present invention first focused on the following points.
In a conventional pulse oximeter, the light emitting part is composed of an LED that emits red light and an LED that emits near-infrared light, and the light receiving part is one PD that detects these lights that have been transmitted or reflected through the living body. (Photo-Diode). Since the light receiving unit is configured by one PD in this way, when red light and near infrared light are incident on the PD at the same time, it becomes impossible to distinguish between red light and near infrared light. Light is emitted alternately (to be exact, red light → off → near infrared light → off →...).

その結果、従来のパルスオキシメータにおいては、赤色光と近赤外光のLEDを交互に発光させるため、各色での測定は同時には行えず、例えば数m秒の遅延が生じるので、その分だけ測定精度が低下する欠点がある。また、赤色光と近赤外光のLEDを所定のタイミングで交互に光らせる必要があるので、LEDの動作回路が複雑になる欠点がある。   As a result, in conventional pulse oximeters, red and near-infrared LEDs are made to emit light alternately, so measurement in each color cannot be performed at the same time. For example, a delay of several milliseconds occurs. There is a drawback that the measurement accuracy is lowered. Further, since it is necessary to cause red and near-infrared LEDs to alternately illuminate at a predetermined timing, there is a drawback that the operation circuit of the LEDs becomes complicated.

そこで、本発明の発明者は、赤色光と近赤外光との両方の光を含むような多波長光源を用いるとともに、赤外光のみを検出する第1のフォトディテクターと近赤外光のみを検出する第2のフォトディテクターとを設ければ、発光部の駆動回路を簡単化しつつ、従来と同様のSpO測定を実現できると考えた。 Therefore, the inventor of the present invention uses a multi-wavelength light source including both red light and near infrared light, and only the first photodetector for detecting only infrared light and only near infrared light. It was considered that the SpO 2 measurement similar to the conventional one can be realized while simplifying the driving circuit of the light emitting section by providing the second photodetector for detecting the light emission.

さらに、折角、指にプローブを装着しているのであるから、SpOばかりでなく、例えば皮膚の水分量や、血糖値、脂質なども測定できれば、一括して複数の生体情報を得ることができ、非常に便利な生体情報測定装置を実現できると考えた。そこで、多波長光源として、SpOばかりでなく、例えば皮膚の水分量や、血糖値、脂質なども測定できる光源を用いることにした。 Furthermore, since the probe is attached to the corner or finger, if not only SpO 2 but also the water content of the skin, blood glucose level, lipid, etc. can be measured, a plurality of biological information can be obtained collectively. We thought that it would be possible to realize a very convenient biological information measuring device. Therefore, as a multi-wavelength light source, it was decided to use not only SpO 2 but also a light source capable of measuring, for example, the skin water content, blood glucose level, lipid and the like.

本発明の発明者は、このような多波長光源としてハロゲンランプ又はキセノンランプを用いることにした。ハロゲンランプは一般に略350〜3500nm程度の非常に広い有効波長をもつ。因みに、キセノンランプも略185〜2000nm程度の広い有効波長をもつ。なお、ハロゲンランプは上記有効波長の範囲内でなだらかな発光強度となるので、ハロゲンランプを用いればキセノンランプよりも良好な生体情報の測定を行うことができる。   The inventor of the present invention decided to use a halogen lamp or a xenon lamp as such a multi-wavelength light source. The halogen lamp generally has a very wide effective wavelength of about 350 to 3500 nm. Incidentally, the xenon lamp also has a wide effective wavelength of about 185 to 2000 nm. Since the halogen lamp has a gentle emission intensity within the above effective wavelength range, the use of the halogen lamp makes it possible to perform better biological information measurement than the xenon lamp.

例えば特許文献5には、1100〜2400nmの波長の近赤外線を使用して、皮膚水分量を測定する装置が記載されている。   For example, Patent Document 5 describes an apparatus for measuring skin moisture content using near infrared light having a wavelength of 1100 to 2400 nm.

また、例えば特許文献6には、ハロゲンランプを用いて波長1000〜2500nmを含む光を発光し、この波長1000〜2500nmの光を2分割して、それぞれを人体照射とリファレンスに使用することで、グルコースと他のノイズ成分の信号を分離し、血糖値を評価する非侵襲血糖計が記載されている。   For example, Patent Document 6 emits light including a wavelength of 1000 to 2500 nm using a halogen lamp, divides the light of wavelength 1000 to 2500 nm into two parts, and uses them for human body irradiation and reference, respectively. A non-invasive blood glucose meter is described that separates glucose and other noise component signals and evaluates blood glucose levels.

また、例えば特許文献7には、750nm以上の第1の光と、第1の光よりも短く900nm以下の光とを用いて、血中脂質濃度を測定する装置が記載されている。   For example, Patent Document 7 describes an apparatus for measuring blood lipid concentration using first light of 750 nm or more and light shorter than the first light and 900 nm or less.

このようにハロゲンランプなどの多波長光源を用いれば、SpOばかりでなく、例えば皮膚の水分量や、血糖値、脂質なども測定可能となる。しかし、ハロゲンランプなどの多波長光源は、サイズが大きく、指先などの人体に装着するプローブに搭載するのはほぼ不可能である。 If a multi-wavelength light source such as a halogen lamp is used in this way, not only SpO 2 but also the moisture content of the skin, blood glucose level, lipid and the like can be measured. However, multi-wavelength light sources such as halogen lamps are large in size and almost impossible to mount on probes that are worn on the human body such as fingertips.

そこで、本発明の発明者は、プローブと多波長光源とを別体に構成し、プローブと多波長光源とを光ケーブルによって接続すれば、プローブを大型化させずに、SpOを含む様々な生体情報を光学的に測定できると考え、本発明に至った。 Therefore, the inventor of the present invention can configure various probes including SpO 2 without increasing the size of the probe by configuring the probe and the multi-wavelength light source separately and connecting the probe and the multi-wavelength light source with an optical cable. It was considered that information could be measured optically, leading to the present invention.

<2>実施の形態
図1は、本発明の実施の形態に係る生体情報測定装置10の全体構成を示す概略図である。生体情報測定装置10は、被検者の指先に装着されるプローブ100と、生体情報モニター200と、プローブ100と生体情報モニター200とを接続する光ケーブル300と、を有する。光ケーブル300としては例えば光ファイバーケーブルが用いられる。光ケーブル300は、コネクタ(図示せず)を介してプローブ100及び生体情報モニター200に挿抜可能に接続される。
<2> Embodiment FIG. 1 is a schematic diagram showing an overall configuration of a biological information measuring apparatus 10 according to an embodiment of the present invention. The biological information measuring device 10 includes a probe 100 attached to a fingertip of a subject, a biological information monitor 200, and an optical cable 300 that connects the probe 100 and the biological information monitor 200. As the optical cable 300, for example, an optical fiber cable is used. The optical cable 300 is detachably connected to the probe 100 and the biological information monitor 200 via a connector (not shown).

生体情報モニター200は、多波長光源210及び演算部220を有する。   The biological information monitor 200 includes a multi-wavelength light source 210 and a calculation unit 220.

多波長光源210は少なくとも赤色光及び近赤外光を含む光を発光する。具体的には、本実施の形態の多波長光源210はハロゲンランプである。本実施の形態の生体情報測定装置10は、SpOに加えて、皮膚の水分量や、血糖値、脂質などといった複数の生体情報を光学的に測定することを目的としているので、多波長光源210は、SpOが良好に測定できるような赤色光(例えば、波長660[nm])及び近赤外光(例えば、波長940[nm])の光を含むことに加えて、他の生体情報を良好に測定できる波長の光を含むものである。例えば、皮膚水分量も測定しようとする場合には1100〜2400nmの波長を含む多波長光源210を設ければよく、血糖値も測定しようとする場合には1000〜2500nmの波長を含む多波長光源210を設ければよく、血中脂質濃度を測定しようとする場合には750〜900nmの波長を含む多波長光源210を設ければよい。 The multi-wavelength light source 210 emits light including at least red light and near infrared light. Specifically, the multi-wavelength light source 210 of the present embodiment is a halogen lamp. The biological information measuring apparatus 10 of the present embodiment is intended to optically measure a plurality of biological information such as skin moisture content, blood glucose level, lipid, etc. in addition to SpO 2. 210 includes light of red light (for example, wavelength 660 [nm]) and near-infrared light (for example, wavelength 940 [nm]) that can measure SpO 2 well, and other biological information. Including light of a wavelength that can be measured well. For example, a multi-wavelength light source 210 including a wavelength of 1100 to 2400 nm may be provided when the skin water content is to be measured, and a multi-wavelength light source including a wavelength of 1000 to 2500 nm when a blood glucose level is also to be measured. 210 may be provided, and when a blood lipid concentration is to be measured, a multi-wavelength light source 210 including a wavelength of 750 to 900 nm may be provided.

多波長光源210の光は、光ケーブル300を介してプローブ100に送られる。   The light from the multi-wavelength light source 210 is sent to the probe 100 via the optical cable 300.

プローブ100は、被検者の指先に装着される。プローブ100は、測定部位に向けて測定光を出射する測定光出射部と、測定部位を透過した測定光の透過光を入射する透過光入射部と、を有する。プローブ100の構成については後述する。なお、本実施の形態においては主に測定部位を透過した透過光に基づいて生体情報を求める場合について述べるが、測定部位を反射した反射光に基づいて生体情報を求めてもよい。したがって、以下の記述における「透過」は「反射」と読み換えることができる。さらに、プローブが装着される測定部位は指先に限らず、身体の他の部位であってもよい。   The probe 100 is attached to the fingertip of the subject. The probe 100 includes a measurement light emitting unit that emits measurement light toward the measurement site, and a transmitted light incident unit that receives the transmitted light of the measurement light that has passed through the measurement site. The configuration of the probe 100 will be described later. In the present embodiment, a case where biological information is obtained mainly based on transmitted light that has passed through the measurement site will be described. However, biological information may be obtained based on reflected light reflected from the measurement site. Therefore, “transmission” in the following description can be read as “reflection”. Furthermore, the measurement site to which the probe is attached is not limited to the fingertip, and may be another site of the body.

プローブ100の透過光入射部に入射された透過光は、光ケーブル300を介して生体情報モニター200の演算部220に送られる。   The transmitted light incident on the transmitted light incident part of the probe 100 is sent to the calculation part 220 of the biological information monitor 200 via the optical cable 300.

演算部220は、透過光に基づいて生体情報を求める。具体的には、演算部220は、透過光に基づいて、SpOに加えて、皮膚の水分量、血糖値及び又は脂質を求める。勿論、演算部220は、透過光だけでなく多波長光源210の光も用いて生体情報を求めてもよい。演算部220による生体情報の求め方は、既に従来から知られている種々の方法を適用可能であるため、ここでは簡単に説明する。 The calculation unit 220 obtains biological information based on the transmitted light. Specifically, the calculation unit 220 obtains the skin water content, blood glucose level, and / or lipid in addition to SpO 2 based on the transmitted light. Of course, the calculation unit 220 may obtain the biological information using not only the transmitted light but also the light of the multi-wavelength light source 210. The method for obtaining the biological information by the calculation unit 220 can be applied to various methods that have been known in the past, and will be briefly described here.

演算部220は、分光センサー(図示せず)を有し、光ケーブル300から送られてきた透過光に含まれる波長のうち、求めようとする生体情報の演算に必要な波長成分を分光センサーによって抽出し、抽出した波長成分を用いた演算により生体情報を求めるようになっている。なお、演算部220は、光電変換部(図示せず)を有し、光ケーブル300から送られてきた透過光に含まれる波長のうち、求めようとする生体情報の演算に必要な波長成分をフィルタリングや分析などの方法によって抽出し、抽出した波長成分を用いた演算により生体情報を求めるようにしてもよい。例えば、生体情報としてSpOを求める場合には、演算部220は、透過光に含まれる波長成分のうち、例えば波長660nmの赤色光のレベルと波長940nmの近赤外光のレベルとを抽出し、それらに基づいて所定の演算を行うことでSpOを算出する。 The calculation unit 220 includes a spectroscopic sensor (not shown), and extracts, from the wavelengths included in the transmitted light transmitted from the optical cable 300, a wavelength component necessary for calculation of biological information to be obtained by the spectroscopic sensor. In addition, the biological information is obtained by calculation using the extracted wavelength component. The calculation unit 220 includes a photoelectric conversion unit (not shown), and filters out wavelength components necessary for calculation of biological information to be obtained out of wavelengths included in transmitted light transmitted from the optical cable 300. Or biometric information may be obtained by calculation using the extracted wavelength component. For example, when obtaining SpO 2 as the biological information, the calculation unit 220 extracts, for example, the level of red light with a wavelength of 660 nm and the level of near infrared light with a wavelength of 940 nm from the wavelength components included in the transmitted light. Then, SpO 2 is calculated by performing a predetermined calculation based on them.

生体情報モニター200は、演算部220によって求めた複数の生体情報を表示部230に表示する。   The biological information monitor 200 displays a plurality of biological information obtained by the calculation unit 220 on the display unit 230.

図2は、プローブ100の構成例を示す斜視図である。プローブ100は、シート状の基材110の一面に、測定部位に向けて測定光を出射する測定光出射部120と、測定部位を透過した測定光の透過光を入射する透過光入射部130と、が設けられている。基材110の面のうち、この測定光出射部120及び透過光入射部130が設けられた一面は粘着面となっており、プローブ100はこの粘着面の粘着力により図1に示したような状態で被検者の指先に装着される。プローブ100の装着状態において、測定光出射部120は爪の生え際付近に当接するように配置され、透過光入射部130は爪とは反対側の指の腹に当接するように配置される。   FIG. 2 is a perspective view illustrating a configuration example of the probe 100. The probe 100 has, on one surface of a sheet-like substrate 110, a measurement light emitting unit 120 that emits measurement light toward the measurement site, and a transmitted light incident unit 130 that enters the transmitted light of the measurement light that has passed through the measurement site. , Is provided. Of the surfaces of the substrate 110, one surface on which the measurement light emitting unit 120 and the transmitted light incident unit 130 are provided is an adhesive surface, and the probe 100 has an adhesive force as shown in FIG. It is attached to the subject's fingertip in a state. When the probe 100 is mounted, the measurement light emitting unit 120 is disposed so as to contact the vicinity of the nail, and the transmitted light incident unit 130 is disposed so as to contact the belly of the finger opposite to the nail.

測定光出射部120は、光ケーブル300より送られてきた多波長の測定光を出射する窓と、窓の方向に測定光を向けるミラーなどの光学系と、有する。透過光入射部130は、指を透過した透過光を入射する窓と、窓から入射した透過光を光ケーブル300の方向に向けるミラーなどの光学系と、を有する。   The measurement light emitting unit 120 includes a window that emits multi-wavelength measurement light transmitted from the optical cable 300, and an optical system such as a mirror that directs the measurement light toward the window. The transmitted light incident unit 130 includes a window that receives the transmitted light that has passed through the finger, and an optical system such as a mirror that directs the transmitted light that has entered from the window toward the optical cable 300.

このようなプローブ100を用いることにより、光ケーブル300より送られてきた多波長の測定光を所定の測定部位に照射できるとともに、測定部位を透過した測定光の透過光を光ケーブル300に入射させることができるようになる。   By using such a probe 100, it is possible to irradiate a predetermined measurement site with multi-wavelength measurement light transmitted from the optical cable 300 and to allow the transmitted light of the measurement light transmitted through the measurement site to enter the optical cable 300. become able to.

ここで、プローブ100を使い捨てタイプのプローブとするためには、例えば、基材110に光ケーブル300を挿抜可能なコネクタ(図示せず)を設ければよい。   Here, in order to make the probe 100 a disposable probe, for example, a connector (not shown) that can insert and remove the optical cable 300 may be provided on the base 110.

なお、本実施の形態では、プローブ100によって得られた透過光を光ケーブル300を介して演算部220に送り、演算部220が光電変換を行う場合について述べたが、光電変換はプローブ100側で行うようにしてもよい。例えば、プローブ100の透過光入射部130を、フォトディテクターのような光電変換機能を有するデバイスによって構成する。この場合には、光ケーブル300は、光電変換された電気信号を演算部220に送る電線を有する。   In the present embodiment, the case where the transmitted light obtained by the probe 100 is sent to the calculation unit 220 via the optical cable 300 and the calculation unit 220 performs photoelectric conversion has been described. However, the photoelectric conversion is performed on the probe 100 side. You may do it. For example, the transmitted light incident part 130 of the probe 100 is configured by a device having a photoelectric conversion function such as a photodetector. In this case, the optical cable 300 includes an electric wire that sends the photoelectrically converted electric signal to the arithmetic unit 220.

具体的には、SpOを測定する機能を持たせるためには、プローブ100は、測定部位を透過した透過光を受光し当該透過光に含まれる赤色光を検出する第1のフォトディテクターと、測定部位を透過した透過光を受光し当該透過光に含まれる近赤外光を検出する第2のフォトディテクターと、を有し、光ケーブル300は、多波長光源210の光を伝送する光ケーブルに加えて、第1及び第2のフォトディテクターにより得られた電気信号を伝送する電線を有する、構成とすればよい。つまり、求めようとする生体情報に応じて必要な波長成分は異なるので、求めようとする生体情報に必要な波長成分のみをプローブ100側で抽出してから演算部220に送るようにすればよい。 Specifically, in order to have a function of measuring SpO 2 , the probe 100 receives a transmitted light transmitted through the measurement site, and detects a red light contained in the transmitted light; A second photodetector that receives the transmitted light that has passed through the measurement site and detects near-infrared light included in the transmitted light. The optical cable 300 is in addition to the optical cable that transmits the light of the multi-wavelength light source 210. Thus, the configuration may include an electric wire that transmits an electric signal obtained by the first and second photodetectors. That is, since the necessary wavelength component differs depending on the biological information to be obtained, only the wavelength component necessary for the biological information to be obtained is extracted on the probe 100 side and then sent to the calculation unit 220. .

ただし、実施の形態のように、プローブ100がフォトディテクターを有さずに、透過光を光のまま光ケーブル300に送る構成とし、演算部220側に光電変換部(フォトディテクター)を設ける構成とすれば、プローブ100を使い捨てタイプとする場合に有利となる。   However, as in the embodiment, the probe 100 does not have a photo detector, but transmits light as it is to the optical cable 300, and a configuration in which a photoelectric conversion unit (photo detector) is provided on the calculation unit 220 side. This is advantageous when the probe 100 is a disposable type.

以上説明したように、本実施の形態によれば、測定部位に向けて測定光を出射する測定光出射部120と、測定部位を透過した測定光の透過光を入射する透過光入射部130とを有し、測定部位に装着されるプローブ100と、少なくとも赤色光及び近赤外光を含む光を発光する多波長光源210と、透過光に基づいて複数種類の生体情報を求める演算部220と、多波長光源210とプローブ100との間、及び、プローブ100と演算部220との間に設けられ、多波長光源210で得られた光をプローブ100に送るとともに、プローブ100で得られた透過光又は透過光に基づく電気信号を演算部220に送る、光ケーブル300と、を設けたことにより、コンパクトなプローブ構成でありながら、SpO以外の他の生体情報も測定可能な生体情報測定装置を実現できる。 As described above, according to the present embodiment, the measurement light emitting unit 120 that emits the measurement light toward the measurement site, and the transmitted light incident unit 130 that receives the transmitted light of the measurement light that has passed through the measurement site. A probe 100 attached to the measurement site, a multi-wavelength light source 210 that emits light including at least red light and near-infrared light, and a calculation unit 220 that obtains a plurality of types of biological information based on transmitted light, , Provided between the multi-wavelength light source 210 and the probe 100, and between the probe 100 and the calculation unit 220, and transmits light obtained by the multi-wavelength light source 210 to the probe 100 and transmission obtained by the probe 100. By providing an optical cable 300 that sends an electrical signal based on light or transmitted light to the calculation unit 220, other biological information other than SpO 2 is measured while having a compact probe configuration. A biological information measuring device that can be determined can be realized.

特に、SpOを測定する際には、多波長光源を用いているので、赤色光と近赤外光を所定のタイミングで交互に発光させる必要がなくなり、光源の駆動回路を簡単化できる。 In particular, when SpO 2 is measured, since a multi-wavelength light source is used, it is not necessary to alternately emit red light and near-infrared light at a predetermined timing, and the drive circuit for the light source can be simplified.

上述の実施の形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することの無い範囲で、様々な形で実施することができる。   The above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. That is, the present invention can be implemented in various forms without departing from the gist or main features thereof.

上述の実施の形態では、プローブ100が粘着面を有するシート状の基材によって形成されている場合について述べたが、プローブはこれに限らず、指先を覆うケースによって形成されており、その内部に測定光出射部及び透過光入射部を設けるようにしてもよい。   In the above-described embodiment, the case where the probe 100 is formed by a sheet-like base material having an adhesive surface has been described. However, the probe is not limited to this, and is formed by a case that covers a fingertip, A measurement light emitting part and a transmitted light incident part may be provided.

また上述の実施の形態では、プローブ100が指に装着されるタイプである場合について述べたが、本発明はこれに限らず、プローブ部は例えば足趾又は耳朶等の測定部位に装着するタイプのものであってもよい。   In the above-described embodiment, the case where the probe 100 is a type that is worn on the finger has been described. However, the present invention is not limited to this, and the probe unit is of a type that is worn on a measurement site such as a footpad or an earlobe. It may be a thing.

さらに上述の実施の形態では、多波長光源210及び演算部220を生体情報モニター200に設けた場合について述べたが、多波長光源210は生体情報モニターとは別の位置に設けてもよい。ただし、実施の形態のように多波長光源210及び演算部220の両方を生体情報モニター200に設けるようにすれば、測定部位への光照射と、生体情報モニター200への透過/反射光の取込とを、1本の光ケーブルで行うことができるといったメリットがある。   Furthermore, although the case where the multi-wavelength light source 210 and the calculation unit 220 are provided in the biological information monitor 200 has been described in the above-described embodiment, the multi-wavelength light source 210 may be provided at a position different from the biological information monitor. However, if both the multi-wavelength light source 210 and the calculation unit 220 are provided in the biological information monitor 200 as in the embodiment, light irradiation to the measurement site and transmission / reflection of light to the biological information monitor 200 are performed. There is a merit that it can be performed with a single optical cable.

本発明は、コンパクトなプローブ構成でありながら、SpO以外の他の生体情報も測定可能な生体情報測定装置を実現できるといった効果を得ることができ、例えば生体情報モニターと連携して用いられる。 The present invention can obtain an effect that a biological information measuring device capable of measuring biological information other than SpO 2 can be realized while having a compact probe configuration, and is used in cooperation with a biological information monitor, for example.

10 生体情報測定装置
100 プローブ
110 基材
120 測定光出射部
130 透過光入射部
200 生体情報モニター
210 多波長光源
220 演算部
230 表示部
300 光ケーブル
DESCRIPTION OF SYMBOLS 10 Biological information measuring apparatus 100 Probe 110 Base material 120 Measuring light emission part 130 Transmitted light incident part 200 Biological information monitor 210 Multiwavelength light source 220 Calculation part 230 Display part 300 Optical cable

Claims (8)

測定部位に向けて測定光を出射する測定光出射部と、前記測定部位を透過又は反射した前記測定光の透過/反射光を入射する透過/反射光入射部とを有し、測定部位に装着されるプローブと、
少なくとも赤色光及び近赤外光を含む光を発光する多波長光源と、
前記透過/反射光に基づいて複数種類の生体情報を求める演算部と、
前記多波長光源と前記プローブとの間、及び、前記プローブと前記演算部との間に設けられ、前記多波長光源で得られた光を前記プローブに送るとともに、前記プローブで得られた前記透過/反射光又は前記透過/反射光に基づく電気信号を前記演算部に送る、光ケーブルと、
を有する生体情報測定装置。
A measurement light emitting part that emits measurement light toward the measurement site and a transmission / reflection light incidence unit that transmits the transmitted / reflected light of the measurement light that is transmitted or reflected through the measurement site, and is attached to the measurement site A probe to be
A multi-wavelength light source that emits light including at least red light and near infrared light;
A calculation unit for obtaining a plurality of types of biological information based on the transmitted / reflected light;
Provided between the multi-wavelength light source and the probe, and between the probe and the calculation unit, and transmits the light obtained by the multi-wavelength light source to the probe and the transmission obtained by the probe. An optical cable for sending an electrical signal based on the reflected light or the transmitted / reflected light to the arithmetic unit;
A biological information measuring device.
前記演算部は、前記透過/反射光に基づいて、SpO及びそれとは別の生体情報を得ることが可能とされている、
請求項1に記載の生体情報測定装置。
Based on the transmitted / reflected light, the calculation unit can obtain SpO 2 and biological information different from the SpO 2 .
The biological information measuring device according to claim 1.
前記複数の生体情報には、皮膚の水分量、血糖値、又は脂質が含まれる、
請求項2に記載の生体情報測定装置。
The plurality of pieces of biological information include skin water content, blood glucose level, or lipid.
The biological information measuring device according to claim 2.
前記多波長光源及び前記演算部は、生体情報モニターに設けられており、
前記光ケーブルは、前記プローブと前記生体情報モニターとの間に接続される、
請求項1から請求項3のいずれか一項に記載の生体情報測定装置。
The multi-wavelength light source and the calculation unit are provided in a biological information monitor,
The optical cable is connected between the probe and the biological information monitor.
The biological information measuring device according to any one of claims 1 to 3.
前記多波長光源は、ハロゲンランプ又はキセノンランプである、
請求項1から請求項4のいずれか一項に記載の生体情報測定装置。
The multi-wavelength light source is a halogen lamp or a xenon lamp.
The biological information measuring device according to any one of claims 1 to 4.
前記プローブは、前記透過/反射光を光のまま前記光ケーブルに送る、
請求項1から請求項5のいずれか一項に記載の生体情報測定装置。
The probe sends the transmitted / reflected light as light to the optical cable.
The biological information measuring device according to any one of claims 1 to 5.
前記プローブは、
前記透過/反射光を受光し、当該透過/反射光に含まれる赤色光を検出する第1のフォトディテクターと、
前記透過/反射光を受光し、当該透過/反射光に含まれる近赤外光を検出する第2のフォトディテクターと、
を有し、
前記光ケーブルは、
前記多波長光源の光を伝送する光伝送線路に加えて、前記第1及び第2のフォトディテクターにより得られた電気信号を伝送する電線を有する、
請求項1から請求項5のいずれか一項に記載の生体情報測定装置。
The probe is
A first photodetector for receiving the transmitted / reflected light and detecting red light included in the transmitted / reflected light;
A second photodetector that receives the transmitted / reflected light and detects near-infrared light included in the transmitted / reflected light;
Have
The optical cable is
In addition to the optical transmission line that transmits the light of the multi-wavelength light source, it has an electric wire that transmits the electrical signal obtained by the first and second photodetectors,
The biological information measuring device according to any one of claims 1 to 5.
前記プローブは、
シート状の基材と、
前記基材に設けられ、前記光ケーブルを挿抜可能なコネクタと、
を有する、
請求項1から請求項7のいずれか一項に記載の生体情報測定装置。
The probe is
A sheet-like substrate;
A connector provided on the base material and capable of inserting and removing the optical cable;
Having
The biological information measuring device according to any one of claims 1 to 7.
JP2018015296A 2018-01-31 2018-01-31 Biological information measurement device Pending JP2019130070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018015296A JP2019130070A (en) 2018-01-31 2018-01-31 Biological information measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018015296A JP2019130070A (en) 2018-01-31 2018-01-31 Biological information measurement device

Publications (1)

Publication Number Publication Date
JP2019130070A true JP2019130070A (en) 2019-08-08

Family

ID=67545175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018015296A Pending JP2019130070A (en) 2018-01-31 2018-01-31 Biological information measurement device

Country Status (1)

Country Link
JP (1) JP2019130070A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348002A (en) * 1992-04-23 1994-09-20 Sirraya, Inc. Method and apparatus for material analysis
JP2003210465A (en) * 2002-01-25 2003-07-29 Matsushita Electric Ind Co Ltd Optical bio-information measuring device
JP2003227791A (en) * 2002-02-05 2003-08-15 Hitachi Medical Corp Biological photometric apparatus
JP2005095317A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Optical measurement apparatus and blood sugar level measurement apparatus using it
JP2006230657A (en) * 2005-02-24 2006-09-07 Spectratech Inc Visualization apparatus
US20070177130A1 (en) * 2005-11-21 2007-08-02 Macintyre Duncan Modified method and apparatus for measuring analytes
WO2011013694A1 (en) * 2009-07-28 2011-02-03 パナソニック電工株式会社 Device for estimating blood sugar level

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348002A (en) * 1992-04-23 1994-09-20 Sirraya, Inc. Method and apparatus for material analysis
JP2003210465A (en) * 2002-01-25 2003-07-29 Matsushita Electric Ind Co Ltd Optical bio-information measuring device
JP2003227791A (en) * 2002-02-05 2003-08-15 Hitachi Medical Corp Biological photometric apparatus
JP2005095317A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Optical measurement apparatus and blood sugar level measurement apparatus using it
JP2006230657A (en) * 2005-02-24 2006-09-07 Spectratech Inc Visualization apparatus
US20070177130A1 (en) * 2005-11-21 2007-08-02 Macintyre Duncan Modified method and apparatus for measuring analytes
WO2011013694A1 (en) * 2009-07-28 2011-02-03 パナソニック電工株式会社 Device for estimating blood sugar level

Similar Documents

Publication Publication Date Title
EP0992214B1 (en) Pulse oximeter and sensor optimized for low saturation
US7679519B2 (en) Apparatus for improved pulse oximetry measurement
US8126525B2 (en) Probe and a method for use with a probe
US20070043281A1 (en) Method and device for non-invasive measurements of blood parameters
US20020038078A1 (en) Apparatus for measuring/determining concentrations of light absorbing materials in blood
US9279763B2 (en) Apparatus and method for measuring an analyte such as bilirubin, using light
US20130085351A1 (en) Apparatus and method for measuring a tissue analyte such as bilirubin using the brewster&#39;s angle
US20100081902A1 (en) Medical Sensor and Technique for Using the Same
JP2001149349A (en) Sensor for living body
JP2007532188A (en) Photoplethysmography using spatially uniform multicolor sources
KR102043319B1 (en) Frequency domian based multi-wavelength bio-signal analysing apparatus
JP2004135854A (en) Reflection type photoelectric pulse wave detector and reflection type oxymeter
JP2004290544A (en) Blood analyzer
WO2020036246A1 (en) Bio-signal analysis apparatus using machine learning and method therefor
KR101281169B1 (en) Noninvasive probe for measuring at least a constituent of body fluids and system including the same
JP2004248820A (en) Blood analyzer
JP6125821B2 (en) Oxygen saturation measuring apparatus and oxygen saturation calculating method
JPH10337282A (en) Reflection type oxygen saturation degree measuring device
WO2019161336A1 (en) System and method for an optical blood flow measurement
JP2019130070A (en) Biological information measurement device
JP6741485B2 (en) Pulse photometer and reliability evaluation method for calculated values of blood light-absorbing substance concentration
CN113891682B (en) Device for measuring optical or physiological parameters in a scattering medium featuring an optical contact detector
McEwen et al. Noninvasive monitoring with strongly absorbed light
JP3635331B2 (en) Substance measuring device
CN110621213B (en) Signal processing apparatus for analyzing biological signal and biological signal analyzing device using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315