JPH1112703A - Nonoriented silicon steel sheet excellent in magnetic property, and its production - Google Patents
Nonoriented silicon steel sheet excellent in magnetic property, and its productionInfo
- Publication number
- JPH1112703A JPH1112703A JP9185922A JP18592297A JPH1112703A JP H1112703 A JPH1112703 A JP H1112703A JP 9185922 A JP9185922 A JP 9185922A JP 18592297 A JP18592297 A JP 18592297A JP H1112703 A JPH1112703 A JP H1112703A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- magnetic properties
- rolled
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電動機やトランス
に使用される磁気特性の優れた無方向性電磁鋼板および
その製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties and used for electric motors and transformers, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】無方向性電磁鋼板は、電動機の固定子、
回転子、水力発電機の固定子や変圧器の鉄心材料等に使
用されているが、近年、環境問題とエネルギー問題の双
方から特に冷蔵庫、エアコン等に使用されるモータの高
効率化が図られており、それに伴って鉄心材料である電
磁鋼板の低鉄損化が進んでいる。電磁鋼板の低鉄損化に
は、従来よりC、N、S等の不純元素は低いほどよいと
されていた。2. Description of the Related Art Non-oriented electrical steel sheets are used for stators of electric motors,
Used for rotors, stators for hydroelectric generators, core materials for transformers, etc.In recent years, motors used in refrigerators, air conditioners, etc. have been made more efficient due to both environmental and energy issues. As a result, the iron loss of magnetic steel sheets, which are iron core materials, has been reduced. Conventionally, it has been considered that the lower the impurity elements such as C, N and S, the lower the iron loss of the magnetic steel sheet.
【0003】Nの低減による電磁鋼板の低鉄損化方法と
しては、C:0.005%以下、Si:2.5〜4.0
%、Mn:0.1〜1.0%を含有し、不可避的不純物
のうち、S:15ppm以下、O:20ppm以下、
N:25ppm以下としたスラブを、熱間圧延し、つい
で1回または中間焼鈍を挟む2回の冷間圧延を行ったの
ち、昇温速度300℃/min以上で連続仕上焼鈍する
方法(特開昭59−74223号公報)、C:0.00
5%以下、Si:2.5〜4.0%、Al:0.25〜
1.00%、Mn:0.1〜1.0%を含有し、不可避
的不純物のうち、S:15ppm以下、O:20ppm
以下、N:25ppm以下としたスラブを、熱間圧延
し、900〜1050℃、2〜15分間の熱延板焼鈍を
行ったのち、圧下率65%以上で冷間圧延を行い、引続
き連続仕上焼鈍する方法(特開昭59−74224号公
報)、C:0.005%以下、Si:2.5〜4.0
%、Al:0.25〜1.00%、Mn:0.1〜1.
0%を含有し、不可避的不純物のうち、S:15ppm
以下、O:20ppm以下、N:25ppm以下とした
スラブを、熱間圧延し、950〜1050℃、2〜15
分間の中間焼鈍を挟んで2回目の圧下率70%以上で2
回冷間圧延し、引続き連続仕上焼鈍する方法(特開昭5
9−74225号公報)、C:0.005%以下、S
i:2.5〜4.0%、Al:0.25〜1.00%、
Mn:0.1〜1.0%を含有し、不可避的不純物のう
ち、S:15ppm以下、O:20ppm以下、N:2
5ppm以下とすると共に、Ti+Zr+Ce+Ca≦
150ppmとした電磁鋼板(特開昭59−74257
号公報)、C:0.005%以下、Si:2.5〜4.
0%、Al:0.25〜1.00%、Mn:0.1〜
1.0%を含有し、不可避的不純物のうち、S:15p
pm以下、O:20ppm以下、N:25ppm以下と
し、前記SiおよびAl含有量との関連で示される平均
結晶粒径Dが、100+3.5×[Si%+Al%]2
≦D≦170+5.0×[Si%+Al%]2の範囲内
の値を示す電磁鋼板(特開昭59−74258号公報)
が提案されている。実際に実施例で挙げているNは11
〜25ppmの領域である。[0003] As a method of reducing the iron loss of an electromagnetic steel sheet by reducing N, C: 0.005% or less, Si: 2.5 to 4.0.
%, Mn: 0.1 to 1.0%, among inevitable impurities, S: 15 ppm or less, O: 20 ppm or less,
A method in which a slab having N: 25 ppm or less is hot-rolled, then cold-rolled once or twice with intermediate annealing, and then subjected to continuous finish annealing at a temperature rising rate of 300 ° C./min or more (Japanese Patent Application Laid-Open JP-A-59-74223), C: 0.00
5% or less, Si: 2.5 to 4.0%, Al: 0.25 to
1.00%, Mn: 0.1 to 1.0%, among inevitable impurities, S: 15 ppm or less, O: 20 ppm
Hereinafter, the slab having N: 25 ppm or less is hot-rolled, subjected to hot-rolled sheet annealing at 900 to 1050 ° C for 2 to 15 minutes, and then cold-rolled at a rolling reduction of 65% or more, and continuously finished. Annealing method (JP-A-59-74224), C: 0.005% or less, Si: 2.5 to 4.0
%, Al: 0.25-1.00%, Mn: 0.1-1.
0%, S: 15 ppm of unavoidable impurities
Hereinafter, a slab having O: 20 ppm or less and N: 25 ppm or less is hot-rolled, and 950 to 1050 ° C., 2 to 15
2nd reduction rate of 70% or more with intermediate annealing for 2 minutes
Cold rolling and continuous finish annealing
9-74225), C: 0.005% or less, S
i: 2.5 to 4.0%, Al: 0.25 to 1.00%,
Mn: 0.1-1.0%, among inevitable impurities, S: 15 ppm or less, O: 20 ppm or less, N: 2
5 ppm or less and Ti + Zr + Ce + Ca ≦
An electromagnetic steel sheet having a concentration of 150 ppm (JP-A-59-74257)
Publication), C: 0.005% or less, Si: 2.5-4.
0%, Al: 0.25 to 1.00%, Mn: 0.1 to
1.0%, and among inevitable impurities, S: 15p
pm or less, O: 20 ppm or less, N: 25 ppm or less, and the average crystal grain size D expressed in relation to the Si and Al contents is 100 + 3.5 × [Si% + Al%] 2
≦ D ≦ 170 + 5.0 × [Si% + Al%] Electrical steel sheet showing a value in the range of 2 (Japanese Patent Laid-Open No. 59-74258).
Has been proposed. N actually mentioned in the embodiment is 11
-25 ppm.
【0004】一方、鋼中のSol.Al低減による低鉄
損化方法としては、例えば、Sol.Alを0.002
〜0.080%に限定し、特定の熱延条件と仕上焼鈍後
のスキンパス圧延によってセミプロセス焼鈍後の磁気特
性を改善する方法(特開昭58−171527号公
報)、溶鋼を真空脱ガス処理して鋼中のC:0.015
%以下、O:0.02%以下に下げた後、脱酸にアルミ
ニウムを使用せず、Siのみを使用し、鋼中のSi:
0.1〜1.0%、Al:0.007%以下とする方法
(特開昭53−109815号公報)等が提案されてい
る。On the other hand, Sol. As a method for reducing iron loss by reducing Al, for example, Sol. 0.002 Al
Method of improving magnetic properties after semi-process annealing by specific hot rolling conditions and skin pass rolling after finish annealing (Japanese Patent Application Laid-Open No. 58-171527), vacuum degassing of molten steel And C in steel: 0.015
% Or less, O: after reducing to 0.02% or less, aluminum is not used for deoxidation, only Si is used, and Si in steel:
A method of reducing the content of Al to 0.1 to 1.0% and Al: 0.007% or less (JP-A-53-109815) has been proposed.
【0005】上記特開昭59−74223号公報、特開
昭59−74224号公報、特開昭59−74225号
公報、特開昭59−74257号公報ならびに特開昭5
9−74258号公報で実際に実施例で挙げている鋼中
のNは、11〜25ppmが低減された領域となってお
り、10ppm以下の領域に低減したものは見当たらな
い。また、特開昭58−171527号公報、特開昭5
3−109815号公報に開示の方法では、仕上焼鈍後
にスキンパス圧延を行うため、セミプロセス焼鈍を行わ
ないと所定の磁気特性が得られない。The above-mentioned JP-A-59-74223, JP-A-59-74224, JP-A-59-74225, JP-A-59-74257 and JP-A-5-74257
N in steel actually mentioned in the examples in JP-A-9-74258 is a region in which 11 to 25 ppm is reduced, and N in a region of 10 ppm or less is not found. Also, JP-A-58-171527, JP-A-5-171527
In the method disclosed in Japanese Patent Application Laid-Open No. 3-109815, since skin pass rolling is performed after finish annealing, predetermined magnetic characteristics cannot be obtained unless semi-process annealing is performed.
【0006】近年、モータ製造業界においては、コスト
ダウンのために材料共通化が進められ、例えば、エアコ
ンのコンプレッサー用ハーメチックモータの鉄心にはセ
ミプロセス焼鈍を行うが、同じ材料から室内機の送風フ
ァンモータの鉄心を切り出し、フルプロセスでの使用で
焼鈍を行わない等、いずれの特性も満足させる必要性が
あるが、前記従来技術ではセミプロセス、フルプロセス
の両者を満足させることができなかった。In recent years, in the motor manufacturing industry, materials have been standardized to reduce costs. For example, semi-process annealing is performed on the core of a hermetic motor for a compressor of an air conditioner. Although it is necessary to cut out the core of the motor and not perform annealing in use in the full process, it is necessary to satisfy any of the characteristics. However, in the above-described conventional technology, both the semi-process and the full process could not be satisfied.
【0007】上記問題を解決する方法としては、仕上焼
鈍後スキンパス圧延を行わずに磁気特性を改善する方法
が提案されている。例えば、不純物として混入するVを
コントロールする方法(特開平3−20413号公報)
が提案されている。As a method for solving the above problem, there has been proposed a method for improving magnetic properties without performing skin pass rolling after finish annealing. For example, a method of controlling V mixed as an impurity (Japanese Unexamined Patent Publication No. 3-20413)
Has been proposed.
【0008】[0008]
【発明が解決しようとする課題】上記特開平3−204
13号公報に開示の方法は、不純物として混入するVを
コントロールするには、製鋼原料から吟味しなければな
らず、原料コストの上昇を招くという欠点を有してい
る。SUMMARY OF THE INVENTION The above-mentioned JP-A-3-204
The method disclosed in Japanese Patent Publication No. 13 has a drawback that, in order to control V mixed as an impurity, it is necessary to examine the steelmaking raw material, which leads to an increase in raw material cost.
【0009】一方、最近の製鋼技術の進歩は、従来では
到底不可能であった高純度清浄鋼の商業生産を可能とな
し、C、N、S等の不純元素を10ppm以下で製造す
ることが可能となっている。On the other hand, recent advances in steelmaking technology have made possible the commercial production of high-purity clean steel, which was impossible at all in the past, and made it possible to produce impurity elements such as C, N and S at 10 ppm or less. It is possible.
【0010】本発明の目的は、上記従来技術の欠点を解
消し、鋼中のSol.Alが100ppm程度であって
も、微細なAlN析出による磁気特性の劣化がなく、セ
ミプロセス、フルプロセスの双方に共用できる磁気特性
の優れた無方向性電磁鋼板およびその製造方法を提供す
ることにある。[0010] An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to solve Sol. It is an object of the present invention to provide a non-oriented electrical steel sheet having excellent magnetic properties that can be used for both a semi-process and a full process without deterioration of magnetic properties due to fine AlN precipitation even when Al is about 100 ppm, and a method of manufacturing the same. is there.
【0011】[0011]
【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意試験研究を重ねた。その結果、これま
で鋼中のSol.Alが20ppmを超えると磁気特性
が劣化し、さらに100ppm程度の含有によって微細
なAlNが析出し、著しい磁気特性の劣化を招くことが
知られていたが、鋼中のSol.Alが200ppm程
度までは、鋼中のNを10ppm以下に低減することに
よって、AlNの析出形態が変化して磁気特性の劣化を
防止できると共に、仕上焼鈍後のスキンパス圧延をなく
し、セミプロセス、フルプロセスの双方に共用できるこ
とを見い出し、本発明に到達した。Means for Solving the Problems The present inventors have intensively studied and studied to achieve the above object. As a result, Sol. It has been known that when Al exceeds 20 ppm, the magnetic properties are deteriorated, and when the content is about 100 ppm, fine AlN is precipitated to cause remarkable deterioration of the magnetic properties. By reducing N in steel to 10 ppm or less until Al is about 200 ppm, the precipitation form of AlN changes and magnetic characteristics can be prevented from deteriorating, skin pass rolling after finish annealing is eliminated, and semi-process and full process are performed. They have found that they can be shared by both processes and arrived at the present invention.
【0012】本発明の請求項1の磁気特性の優れた無方
向性電磁鋼板は、C:0.01%以下、Si:1.5%
以下、Mn:1.0%以下、S:0.01%以下、So
l.Al:0.02%以下、P:0.005%以上0.
1%以下、N:0.002%以下を含有し、かつ、Al
(%)×N(%)<1×10-5を満たし、残部がFeお
よび不可避的不純物からなる。このように、C:0.0
1%以下、Si:1.5%以下、Mn:1.0%以下、
S:0.01%以下、Sol.Al:0.02%以下、
P:0.005%以上0.1%以下、N:0.002%
以下を含有し、かつ、Al(%)×N(%)<1×10
-5を満たす電磁鋼板は、磁気特性の劣化を招くAlNの
析出形態が変化し、磁気特性の劣化を防止することがで
きる。According to the first aspect of the present invention, the non-oriented electrical steel sheet having excellent magnetic properties comprises: C: 0.01% or less, Si: 1.5%
Mn: 1.0% or less, S: 0.01% or less, So
l. Al: 0.02% or less, P: 0.005% or more.
1% or less, N: 0.002% or less, and Al
(%) × N (%) <1 × 10 −5 , the balance being Fe and unavoidable impurities. Thus, C: 0.0
1% or less, Si: 1.5% or less, Mn: 1.0% or less,
S: 0.01% or less, Sol. Al: 0.02% or less,
P: 0.005% to 0.1%, N: 0.002%
Contains the following and Al (%) × N (%) <1 × 10
In the magnetic steel sheet satisfying -5 , the precipitation form of AlN that causes the deterioration of the magnetic characteristics changes, and the deterioration of the magnetic characteristics can be prevented.
【0013】本発明の請求項2の磁気特性の優れた無方
向性電磁鋼板の製造方法は、C:0.01%以下、S
i:1.5%以下、Mn:1.0%以下、S:0.01
%以下、Sol.Al:0.02%以下、P:0.00
5%以上0.1%以下、N:0.002%以下を含有
し、かつ、Al(%)×N(%)<1×10-5を満た
し、残部がFeおよび不可避的不純物からなるスラブ
を、1300℃以下の温度に加熱して熱間圧延を行い、
得られた熱延鋼板の冷間圧延を行ったのち、700℃〜
1050℃で連続仕上焼鈍を行うこととしている。上記
化学成分のスラブを、1300℃以下の温度に加熱して
熱間圧延を行うことによって、鋼中のMnSの溶解を招
くことなく、磁気特性を確保することができる。また、
冷間圧延を行ったのち、700℃〜1050℃で連続仕
上焼鈍を行うことによって、加工性、磁気特性が改善さ
れる。The method for producing a non-oriented electrical steel sheet having excellent magnetic properties according to claim 2 of the present invention is as follows: C: 0.01% or less;
i: 1.5% or less, Mn: 1.0% or less, S: 0.01
% Or less, Sol. Al: 0.02% or less, P: 0.00
A slab containing 5% or more and 0.1% or less, N: 0.002% or less, and satisfying Al (%) × N (%) <1 × 10 −5 and the balance being Fe and unavoidable impurities. Is subjected to hot rolling by heating to a temperature of 1300 ° C. or less,
After cold rolling of the obtained hot-rolled steel sheet, 700 ° C.
Continuous finish annealing is performed at 1050 ° C. By heating the slab of the above chemical component to a temperature of 1300 ° C. or lower and performing hot rolling, it is possible to secure magnetic properties without inducing dissolution of MnS in steel. Also,
After cold rolling, continuous finish annealing at 700 ° C. to 1050 ° C. improves workability and magnetic properties.
【0014】本発明の請求項3の磁気特性の優れた無方
向性電磁鋼板の製造方法は、熱間圧延を行ったのち、6
00℃〜1000℃で熱延板焼鈍を行うこととしてい
る。このように、600℃〜1000℃で熱延板焼鈍を
行うことによって、結晶粒が粗大化して磁気特性の改善
を図ることができる。According to a third aspect of the present invention, there is provided a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, comprising the steps of:
The hot-rolled sheet annealing is performed at 00 ° C to 1000 ° C. As described above, by performing the hot-rolled sheet annealing at 600 ° C. to 1000 ° C., the crystal grains are coarsened and the magnetic properties can be improved.
【0015】本発明の請求項4の磁気特性の優れた無方
向性電磁鋼板の製造方法は、熱延鋼板の冷間圧延が1回
または2回以上の中間焼鈍を挟むこととしている。この
ように、中間焼鈍を挟むことによって、結晶粒の過度の
粗大化が防止され、冷間圧延時に圧延材の破断等のトラ
ブルを防止することができる。According to a fourth aspect of the present invention, there is provided a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, wherein the hot-rolled steel sheet is subjected to one or two or more intermediate annealings in cold rolling. By sandwiching the intermediate annealing in this manner, excessive coarsening of crystal grains can be prevented, and troubles such as breakage of the rolled material during cold rolling can be prevented.
【0016】本発明の請求項5の磁気特性の優れた無方
向性電磁鋼板の製造方法は、請求項2〜4の冷延鋼板に
連続仕上焼鈍を行ったのち、有機または有機と無機の複
合物よりなる表面コーティングを施すこととしている。
このように、連続仕上焼鈍を行ったのち、有機または有
機と無機の複合物よりなる表面コーティングを施すこと
によって、打抜き性を重視する用途に適した無方向性電
磁鋼板を製造することができる。According to a fifth aspect of the present invention, there is provided a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, comprising the steps of: subjecting a cold-rolled steel sheet according to the second to fourth aspects to continuous finish annealing; A surface coating consisting of an object is to be applied.
As described above, after performing the continuous finish annealing, by applying a surface coating made of an organic or an organic-inorganic composite, a non-oriented electrical steel sheet suitable for applications where emphasis is placed on punchability can be produced.
【0017】[0017]
【発明の実施の形態】本発明において鋼の化学成分を限
定した理由は、下記のとおりである。Cは、0.01%
を超えて含有させると、磁気時効を引き起こし、磁気特
性を劣化させるため、0.01%以下とした。DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the chemical components of steel in the present invention are as follows. C is 0.01%
If the content exceeds 0.1%, magnetic aging is caused and the magnetic properties are deteriorated.
【0018】Siは、磁気特性の改善に必須の元素であ
るが、1.5%を超えて含有させると窒素ガス雰囲気
中、750℃で2時間のセミプロセス焼鈍での磁気特性
の改善が期待できなく足るため、1.5%以下とした。[0018] Si is an essential element for improving magnetic properties, but if contained in excess of 1.5%, improvement of magnetic properties by semi-process annealing at 750 ° C for 2 hours in a nitrogen gas atmosphere is expected. Since it cannot be satisfied, the content is set to 1.5% or less.
【0019】Mnは、磁気特性の改善に重要な元素であ
るが、1.0%を超えて含有させると延性が劣化し、冷
間圧延が困難となるため、1.0%以下とした。Mn is an important element for improving magnetic properties. However, if it is contained in excess of 1.0%, ductility is deteriorated and cold rolling becomes difficult.
【0020】Sは、0.01%を超えると磁気特性を劣
化させるため、0.01%以下としたが、好ましくは
0.005%以下である。If S exceeds 0.01%, the magnetic properties deteriorate, so the content of S is set to 0.01% or less, but is preferably 0.005% or less.
【0021】Sol.Alは、磁気特性を改善するのに
重要な元素であるが、0.02%を超えると結晶粒の微
細化を招き、磁気特性の劣化を招くため、0.02%以
下とした。Sol. Al is an important element for improving the magnetic properties, but if it exceeds 0.02%, the crystal grains are refined and the magnetic properties are degraded. Therefore, the content of Al is set to 0.02% or less.
【0022】Pは、機械的性質、特に打抜き性を改善す
るのに重要な元素であるが、0.005%未満とするに
は脱燐処理コストが増大し、また、0.1%を超えると
延性が劣化し、冷間圧延時に圧延材の破断等のトラブル
が生じるため、0.005%以上0.1%以下とした。P is an important element for improving the mechanical properties, especially the punching property, but if it is less than 0.005%, the cost of the dephosphorization treatment increases, and more than 0.1%. , The ductility deteriorates, and troubles such as breakage of the rolled material occur during cold rolling.
【0023】Nは、磁気特性に有害な元素であり、0.
002%を超えるとAlと結合してAlNを形成し、結
晶粒を微細化して磁気特性の劣化を招くため、0.00
2%以下としたが、好ましくは0.001%以下であ
る。N is an element harmful to magnetic properties.
If it exceeds 002%, it bonds with Al to form AlN, and the crystal grains are refined to cause deterioration of magnetic properties.
Although it was set to 2% or less, it is preferably 0.001% or less.
【0024】通常AlNの析出は、AlNの溶解度積で
決まるが、溶解度積を超えると有害なAlNが析出して
磁気特性を劣化させる。しかし、磁気特性にとって有害
なAlNは、析出する全てのAlNでないため、溶解度
積[Al(%)×N(%)=1×10-5]より小さくな
り、Sol.Al:0.02%以下、N:0.002%
以下であっても、図1に示すとおり、Al(%)×N
(%)<1×10-5を満足しなければ、鉄損良好な(フ
ルプロセス鉄損値−セミプロセス鉄損値)/フルプロセ
ス鉄損値≧0.2を得ることができない。Normally, the precipitation of AlN is determined by the solubility product of AlN, but when the solubility product is exceeded, harmful AlN precipitates and the magnetic properties deteriorate. However, AlN that is harmful to magnetic properties is not all of the precipitated AlN, so that the solubility product becomes smaller than the solubility product [Al (%) × N (%) = 1 × 10 −5 ]. Al: 0.02% or less, N: 0.002%
Even below, as shown in FIG. 1, Al (%) × N
If (%) <1 × 10 −5 is not satisfied, good iron loss (full process iron loss value−semi-process iron loss value) / full process iron loss value ≧ 0.2 cannot be obtained.
【0025】上記化学成分のスラブは、1300℃以下
の温度に加熱して通常の熱間圧延を行う。スラブの加熱
温度は、1300℃を超えると鋼中のMnS等の析出物
が再溶解し、磁気特性の劣化を招くこととなるので、1
300℃以下とした。しかし、熱間圧延における圧延性
を確保するには、好ましくは1100〜1250℃の範
囲である。The slab of the above-mentioned chemical composition is heated to a temperature of 1300 ° C. or lower and subjected to ordinary hot rolling. When the heating temperature of the slab exceeds 1300 ° C., precipitates such as MnS in the steel are re-dissolved, leading to deterioration of magnetic properties.
The temperature was set to 300 ° C. or less. However, in order to ensure the rollability in hot rolling, the temperature is preferably in the range of 1100 to 1250 ° C.
【0026】熱間圧延された熱延鋼板は、酸洗したの
ち、600℃以上1100℃以下の温度で熱延板焼鈍を
行うか、あるいは熱延のままで冷間圧延し、場合によっ
ては1回または2回以上の中間焼鈍を挟んで冷間圧延
し、連続焼鈍による仕上焼鈍を施す。熱延鋼板の焼鈍温
度は、600℃未満では磁気特性の改善効果がなく、1
100℃を超えると結晶粒が過度に粗大化し、冷間圧延
時に圧延材の破断等のトラブルが生じるので、600〜
1100℃とした。The hot-rolled hot-rolled steel sheet is pickled and then annealed at a temperature of 600 ° C. or more and 1100 ° C. or cold-rolled as hot rolled. Cold rolling is performed with one or two or more intermediate annealings, and finish annealing is performed by continuous annealing. If the annealing temperature of the hot rolled steel sheet is less than 600 ° C., there is no effect of improving the magnetic properties, and
If the temperature exceeds 100 ° C., the crystal grains become excessively coarse and troubles such as breakage of the rolled material occur during cold rolling.
It was 1100 ° C.
【0027】冷間圧延における中間焼鈍温度は、600
℃未満では効果がなく、1000℃を超えると結晶粒が
過度に粗大化し、圧延材の破断等のトラブルが生じるの
で、600〜1000℃が好ましい。また、加工性、磁
気特性改善のための連続焼鈍による仕上焼鈍温度は、7
00℃未満ではTi、Vの添加により再結晶組織が十分
に得られず磁気特性が不良となり、1100℃を超える
と結晶が著しく粗大化して加工性が劣化し、かつα−γ
変態が起こり磁気特性、鋼板の平坦が劣化するため、7
00℃以上1100℃以下とすべきである。The intermediate annealing temperature in cold rolling is 600
If the temperature is lower than 1000C, there is no effect. If the temperature is higher than 1000C, the crystal grains become excessively coarse and troubles such as breakage of the rolled material occur. The final annealing temperature by continuous annealing for improving workability and magnetic properties is 7
If the temperature is lower than 00 ° C., a sufficient recrystallized structure cannot be obtained due to the addition of Ti and V, resulting in poor magnetic properties. If the temperature exceeds 1100 ° C., the crystal becomes extremely coarse and the workability deteriorates, and α-γ
Transformation occurs and the magnetic properties and the flatness of the steel sheet deteriorate.
It should be between 00 ° C and 1100 ° C.
【0028】仕上焼鈍された冷延鋼帯は、打抜き性を重
視する用途には両面に有機質あるいは有機質と無機質の
混合物からなる表面コーティングを施す。表面コーティ
ングは、絶縁ワニス、変圧器油、機械油などに侵されな
いものであればよく、特に限定されないが、樹脂あるい
は樹脂と無機バインダーの混合物等をスプレー塗装、ロ
ールコータ、カーテンフローコート等により鋼帯両面に
皮膜形成する。The finish-annealed cold-rolled steel strip is coated on both sides with a surface coating made of an organic material or a mixture of an organic material and an inorganic material for applications where emphasis is placed on punching properties. The surface coating is not particularly limited as long as it is not affected by insulating varnish, transformer oil, machine oil, and the like, but is not particularly limited, and may be made of a resin or a mixture of a resin and an inorganic binder by spray coating, roll coating, curtain flow coating, or the like. A film is formed on both sides of the belt.
【0029】[0029]
実施例1 表1に示す鋼種1〜9の本発明鋼および鋼種10〜13
の比較鋼の厚さ227mm、幅1000mmの各スラブ
を、表2に示す熱間圧延条件で熱間圧延を行って2.3
mm厚の熱延コイルとしたのち、表2に示す条件で熱延
板を焼鈍しあるいは焼鈍することなく酸洗したのち、表
2に示す条件で冷間圧延して板厚0.50mmの冷延コ
イルに仕上げた。その後、冷延コイルは、表2に示す仕
上焼鈍温度で連続焼鈍により再結晶焼鈍したのち、冷延
鋼帯両面にアクリル樹脂エマルジョン、クロム酸マグネ
シウム、ほう酸よりなる膜厚0.4μmの絶縁皮膜をロ
ールコータ方式により形成させた。得られた各鋼板から
試験片を採取し、JISC2550に規定の電磁鋼板試
験方法に準じて25cmエプスタイン試験器を用いて切
断のまま(フルプロセス)と窒素ガス雰囲気中での75
0℃で2時間の歪取り焼鈍後(セミプロセス)の磁気特
性(鉄損W、磁束密度B)を評価した。その結果を表3
に示す。Example 1 Steel of the present invention of steel types 1 to 9 and steel types 10 to 13 shown in Table 1
Each slab having a thickness of 227 mm and a width of 1000 mm was subjected to hot rolling under the hot rolling conditions shown in Table 2 to 2.3.
After hot-rolled coil having a thickness of 0.5 mm, the hot-rolled sheet was annealed or pickled without annealing under the conditions shown in Table 2, and then cold-rolled under the conditions shown in Table 2 to obtain a cold-rolled sheet having a thickness of 0.50 mm. Finished into rolled coil. Thereafter, the cold-rolled coil was subjected to recrystallization annealing by continuous annealing at the finish annealing temperature shown in Table 2, and then an insulating film having a thickness of 0.4 μm made of an acrylic resin emulsion, magnesium chromate, and boric acid was formed on both sides of the cold-rolled steel strip. It was formed by a roll coater method. A test piece was sampled from each of the obtained steel sheets, and cut as it was (full process) using a 25 cm Epstein tester according to JIS C2550, in accordance with the electromagnetic steel sheet test method specified in JIS C2550, and a test piece in a nitrogen gas atmosphere.
The magnetic properties (iron loss W, magnetic flux density B) after strain relief annealing at 0 ° C. for 2 hours (semi-process) were evaluated. Table 3 shows the results.
Shown in
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】[0032]
【表3】 [Table 3]
【0033】表1〜表3に示すとおり、鋼種1〜9の本
発明例は、いずれも鉄損、磁束密度共にJIS C25
52の無方向性電磁鋼帯で規定されている種類50A4
70〜50A800の規定を満たしている。これに対
し、鋼種10の比較例は、鉄損、磁束密度共にJIS
C2552の無方向性電磁鋼帯で規定されている種類5
0A470〜50A800の規定を満たしているが、セ
ミプロセス焼鈍後の鉄損が大き過ぎる。また、鋼種1
1、12の比較例は、鉄損、磁束密度共にJISC25
52の無方向性電磁鋼帯で規定されている種類50A4
70〜50A800の規定を満たしていない。さらに、
鋼種13の比較例は、鉄損、磁束密度共にJIS C2
552の無方向性電磁鋼帯で規定されている種類50A
470〜50A800の規定を満たしているが、セミプ
ロセス焼鈍後の鉄損が大き過ぎる。As shown in Tables 1 to 3, all of the examples of the present invention of steel types 1 to 9 have JIS C25 in both iron loss and magnetic flux density.
Type 50A4 specified by 52 non-directional electromagnetic steel strips
The requirements of 70 to 50A800 are satisfied. On the other hand, in the comparative example of steel type 10, both iron loss and magnetic flux density were JIS.
Type 5 specified by C2552 non-oriented electrical steel strip
0A470 to 50A800 is satisfied, but iron loss after semi-process annealing is too large. In addition, steel type 1
Comparative examples 1 and 12 show that both iron loss and magnetic flux density are JISC25.
Type 50A4 specified by 52 non-directional electromagnetic steel strips
The requirements of 70 to 50A800 are not satisfied. further,
The comparative example of steel type 13 shows that both iron loss and magnetic flux density are JIS C2.
Type 50A specified by 552 non-directional electromagnetic steel strip
It meets the requirements of 470-50A800, but the iron loss after semi-process annealing is too large.
【0034】実施例2 Sol.Alを0.001〜0.03%の範囲で、Nを
0.0001〜0.0055%の範囲で変化させ、他の
元素の含有量がC:0.003%、Si:0.3%、M
n:0.3%、S:0.005%、P:0.07%で一
定の厚さ227mm、幅1000mmの各スラブを、1
150℃に加熱して通常の熱間圧延を行い板厚2.3m
mの熱延コイルとしたのち、通常の酸洗後、冷間圧延し
て板厚0.5mmの冷延コイルに仕上げた。ついで、8
50℃での連続焼鈍による再結晶焼鈍を行ったのち、冷
延鋼帯両面にアクリル樹脂エマルジョン、クロム酸マグ
ネシウム、ほう酸よりなる膜厚0.4μmの絶縁皮膜を
ロールコータ方式により形成させた。得られた各鋼板か
ら試験片を採取し、JIS C2550に規定の電磁鋼
板試験方法に準じて25cmエプスタイン試験器を用い
て切断のまま(フルプロセス)と窒素ガス雰囲気中での
750℃で2時間の歪取り焼鈍後(セミプロセス)の鉄
損Wを評価し、(フルプロセス鉄損値−セミプロセス鉄
損値)/フルプロセス鉄損値を演算し、(フルプロセス
鉄損値−セミプロセス鉄損値)/フルプロセス鉄損値≧
0.2を鉄損良好、(フルプロセス鉄損値−セミプロセ
ス鉄損値)/フルプロセス鉄損値<0.2を鉄損不良と
して、鋼中のN、Sol.Alと鉄損良好不良との関係
を求めた。その結果を図1に示す。Example 2 Sol. Al is changed in the range of 0.001 to 0.03%, N is changed in the range of 0.0001 to 0.0055%, and the content of other elements is C: 0.003%, Si: 0.3%. , M
n: 0.3%, S: 0.005%, P: 0.07%, and each slab having a constant thickness of 227 mm and a width of 1000 mm
Heated to 150 ° C and subjected to normal hot rolling to a thickness of 2.3m
m hot-rolled coil, and after normal pickling, cold-rolled to obtain a cold-rolled coil having a thickness of 0.5 mm. Then 8
After recrystallization annealing by continuous annealing at 50 ° C., a 0.4 μm-thick insulating film made of an acrylic resin emulsion, magnesium chromate, and boric acid was formed on both surfaces of the cold-rolled steel strip by a roll coater method. A test piece was sampled from each of the obtained steel sheets, and cut as it was (full process) using a 25 cm Epstein tester according to JIS C2550, in accordance with the method for testing electromagnetic steel sheets, and at 750 ° C. for 2 hours in a nitrogen gas atmosphere. (Semi-process iron loss value) / Full-process iron loss value is calculated by calculating (Full-process iron loss value-Semi-process iron loss value) / (Full-process iron loss value-Semi-process iron) Loss value) / Full process iron loss value ≧
0.2 is regarded as good iron loss and (full process iron loss value−semi-process iron loss value) / full process iron loss value <0.2 is regarded as poor iron loss, and N, Sol. The relationship between Al and iron loss good / bad was determined. The result is shown in FIG.
【0035】図1に○印で示すとおり、鋼中のSol.
Alが0.015%であっても、鋼中のNを0.000
6%とすれば、電磁鋼板の鉄損が良好であり、鋼中のN
を0.002%以下、Sol.Alが0.02%以下と
し、かつAl(%)×N(%)<1×10-5を満足させ
ることによって、鉄損良好な(フルプロセス鉄損値−セ
ミプロセス鉄損値)/フルプロセス鉄損値≧0.2に保
持するすることができる。As shown by a circle in FIG. 1, Sol.
Even if Al is 0.015%, N in steel is 0.000%.
If it is 6%, the iron loss of the electromagnetic steel sheet is good, and the N
0.002% or less, Sol. By making Al not more than 0.02% and satisfying Al (%) × N (%) <1 × 10 −5 , good iron loss (full process iron loss value−semi-process iron loss value) / full The process iron loss value can be maintained at ≧ 0.2.
【0036】[0036]
【発明の効果】本発明の請求項1の磁気特性の優れた無
方向性電磁鋼板は、C:0.01%以下、Si:1.5
%以下、Mn:1.0%以下、S:0.01%以下、S
ol.Al:0.02%以下、P:0.005%以上
0.1%以下、N:0.002%以下を含有し、かつA
l(%)×N(%)<1×10-5を満足させ、残部がF
eおよび不可避的不純物からなり、磁気特性に有害なN
を0.002%以下とすると共に、AlNを形成するS
ol.Alを0.02%以下とし、かつAl(%)×N
(%)<1×10-5を満足させることによって、磁気特
性の劣化を招くAlNの析出形態が変化し、磁気特性の
劣化を防止することができる。The non-oriented electrical steel sheet having excellent magnetic properties according to claim 1 of the present invention has a C content of 0.01% or less and a Si content of 1.5%.
%, Mn: 1.0% or less, S: 0.01% or less, S
ol. Al: 0.02% or less, P: 0.005% or more and 0.1% or less, N: 0.002% or less, and A
1 (%) × N (%) <1 × 10 −5 , and the remainder is F
e and unavoidable impurities, which are harmful to magnetic properties.
Is set to 0.002% or less, and S
ol. Al is set to 0.02% or less, and Al (%) × N
By satisfying (%) <1 × 10 −5 , the precipitation form of AlN that causes the deterioration of the magnetic characteristics changes, and the deterioration of the magnetic characteristics can be prevented.
【0037】また、本発明の請求項2の磁気特性の優れ
た無方向性電磁鋼板の製造方法は、磁気特性に有害なN
を0.002%以下とすると共に、AlNを形成するS
ol.Alを0.02%以下とし、かつAl(%)×N
(%)<1×10-5を満足させることによって、磁気特
性の劣化を招くAlNの析出形態が変化し、磁気特性の
劣化を防止することができる。上記化学成分のスラブ
を、1300℃以下の温度に加熱して熱間圧延を行うこ
とによって、鋼中のMnSの溶解を招くことなく、圧延
性を確保することができる。さらに、冷間圧延を行った
のち、連続仕上焼鈍を行うことによって、フルプロセス
〜セミプロセスの双方に加工性、磁気特性を満足させる
ことができる。Further, the method for producing a non-oriented electrical steel sheet having excellent magnetic properties according to claim 2 of the present invention is characterized in that N
Is set to 0.002% or less, and S
ol. Al is set to 0.02% or less, and Al (%) × N
By satisfying (%) <1 × 10 −5 , the precipitation form of AlN that causes the deterioration of the magnetic characteristics changes, and the deterioration of the magnetic characteristics can be prevented. By subjecting the slab of the chemical component to hot rolling at a temperature of 1300 ° C. or lower, rollability can be ensured without inducing dissolution of MnS in the steel. Further, by performing the continuous finishing annealing after the cold rolling, the workability and the magnetic properties can be satisfied in both the full process and the semi-process.
【0038】さらに、本発明の請求項3の磁気特性の優
れた無方向性電磁鋼板の製造方法は、600℃〜100
0℃で熱延板焼鈍を行うことによって、結晶粒が粗大化
して磁気特性を改善を図ることができると共に、結晶粒
の過度の粗大化による冷間圧延時の破断等のトラブルを
防止することができる。Further, the method for producing a non-oriented electrical steel sheet having excellent magnetic properties according to claim 3 of the present invention is as follows.
By performing hot-rolled sheet annealing at 0 ° C., crystal grains can be coarsened to improve magnetic properties, and troubles such as breakage during cold rolling due to excessive coarsening of crystal grains can be prevented. Can be.
【0039】さらにまた、本発明の請求項4の磁気特性
の優れた無方向性電磁鋼板の製造方法は、冷間圧延が1
回または2回以上の中間焼鈍を挟むことによって、結晶
粒の過度の粗大化が防止され、冷間圧延時に圧延材の破
断等のトラブルを防止することができる。Further, the method for producing a non-oriented electrical steel sheet having excellent magnetic properties according to claim 4 of the present invention is characterized in that
By sandwiching the intermediate annealing twice or more times, excessive coarsening of crystal grains can be prevented, and troubles such as breakage of the rolled material during cold rolling can be prevented.
【0040】本発明の請求項5の磁気特性の優れた無方
向性電磁鋼板の製造方法は、請求項2〜4の冷延鋼板に
連続仕上焼鈍を行ったのち、有機または有機と無機の複
合物よりなる表面コーティングを施すことによって、打
抜き性が改善され、金型寿命を伸ばすことができる。According to a fifth aspect of the present invention, there is provided a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, comprising the steps of: subjecting a cold-rolled steel sheet according to the second to fourth aspects to continuous finish annealing; By applying a surface coating made of a material, the punching property can be improved and the life of the mold can be extended.
【図1】実施例2における鋼中のN、Al含有率とAl
(%)×N(%)=1×10-5曲線と鉄損良好、不良と
の関係を示すグラフである。FIG. 1 shows N and Al contents and Al in steel in Example 2.
It is a graph which shows the relationship between (%) * N (%) = 1 * 10 < -5 > curve and iron loss good and bad.
Claims (5)
下、Mn:1.0%以下、S:0.01%以下、So
l.Al:0.02%以下、P:0.005%以上0.
1%以下、N:0.002%以下を含有し、かつ、Al
(%)×N(%)<1×10-5を満たし、残部がFeお
よび不可避的不純物からなることを特徴とする磁気特性
の優れた無方向性電磁鋼板。1. C: 0.01% or less, Si: 1.5% or less, Mn: 1.0% or less, S: 0.01% or less, So
l. Al: 0.02% or less, P: 0.005% or more.
1% or less, N: 0.002% or less, and Al
A non-oriented electrical steel sheet having excellent magnetic properties, satisfying (%) × N (%) <1 × 10 −5 and the balance being Fe and inevitable impurities.
下、Mn:1.0%以下、S:0.01%以下、So
l.Al:0.02%以下、P:0.005%以上0.
1%以下、N:0.002%以下を含有し、かつ、Al
(%)×N(%)<1×10-5を満たし、残部がFeお
よび不可避的不純物からなるスラブを、1300℃以下
の温度に加熱して熱間圧延を行い、得られた熱延鋼板を
冷間圧延したのち、700℃〜1050℃で連続仕上焼
鈍を行うことを特徴とする磁気特性の優れた無方向性電
磁鋼板の製造方法。2. C: 0.01% or less, Si: 1.5% or less, Mn: 1.0% or less, S: 0.01% or less, So
l. Al: 0.02% or less, P: 0.005% or more.
1% or less, N: 0.002% or less, and Al
(%) × N (%) <1 × 10 −5 , and the remainder is made of slabs composed of Fe and unavoidable impurities, heated to a temperature of 1300 ° C. or less, and hot-rolled. , And then performing a continuous finish annealing at 700 ° C. to 1050 ° C., thereby producing a non-oriented electrical steel sheet having excellent magnetic properties.
00℃で熱延板焼鈍することを特徴とする請求項2記載
の磁気特性の優れた無方向性電磁鋼板の製造方法。3. A hot-rolled steel sheet before cold rolling is subjected to a temperature of 600 ° C. to 10 ° C.
The method for producing a non-oriented electrical steel sheet having excellent magnetic properties according to claim 2, wherein the hot-rolled sheet is annealed at 00 ° C.
上の中間焼鈍を挟むことを特徴とする請求項2および3
記載の磁気特性の優れた無方向性電磁鋼板の製造方法。4. The cold rolling of a hot-rolled steel sheet includes one or more intermediate annealings.
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties as described.
有機と無機の複合物よりなる表面コーティングを施すこ
とを特徴とする請求項2ないし4記載の磁気特性の優れ
た無方向性電磁鋼板の製造方法。5. The non-oriented electrical steel sheet having excellent magnetic properties according to claim 2, wherein a surface coating comprising an organic or an organic-inorganic composite is applied after continuous finish annealing. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18592297A JP3280281B2 (en) | 1997-06-25 | 1997-06-25 | Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18592297A JP3280281B2 (en) | 1997-06-25 | 1997-06-25 | Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1112703A true JPH1112703A (en) | 1999-01-19 |
JP3280281B2 JP3280281B2 (en) | 2002-04-30 |
Family
ID=16179234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18592297A Expired - Fee Related JP3280281B2 (en) | 1997-06-25 | 1997-06-25 | Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3280281B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013167000A (en) * | 2012-02-16 | 2013-08-29 | Hitachi Metals Ltd | Metal powder, method for producing the same, and dust core |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7743698B2 (en) | 2003-10-31 | 2010-06-29 | Sephra L.P. | Fountain that flows with fluidic material |
-
1997
- 1997-06-25 JP JP18592297A patent/JP3280281B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013167000A (en) * | 2012-02-16 | 2013-08-29 | Hitachi Metals Ltd | Metal powder, method for producing the same, and dust core |
Also Published As
Publication number | Publication date |
---|---|
JP3280281B2 (en) | 2002-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100345706B1 (en) | Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof | |
JP2004060026A (en) | Grain oriented silicon steel sheet having excellent high frequency magnetic property, rollability and workability and method for producing the same | |
EP3992325A1 (en) | Non-oriented electrical steel plate and manufacturing method therefor | |
JPH08134542A (en) | Production of grain oriented silicon steel sheet having excellent blanking property | |
JP4123629B2 (en) | Electrical steel sheet and manufacturing method thereof | |
JP3239988B2 (en) | High-strength non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same | |
JPH0888114A (en) | Manufacture of nonoriented flat rolled magnetic steel sheet | |
JP3280281B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same | |
JPH0816259B2 (en) | Grain-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
JPH0860311A (en) | Thin nonoriented silicon steel sheet reduced in iron loss and its production | |
JPH0841542A (en) | Production of nonoriented silicon steel sheet excellent in magnetic property | |
JP2001073094A (en) | Nonoriented silicon steel sheet for electric car, and its manufacture | |
JP2002348613A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing | |
JP2001316778A (en) | Nonoriented silicon steel sheet excellent in workability and its production method | |
JPH0949023A (en) | Production of grain oriented silicon steel sheet excellent in iron loss | |
JPH09283316A (en) | Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture | |
JP3275292B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties | |
JPH0657332A (en) | Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss | |
KR100940719B1 (en) | Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing | |
JPH09228005A (en) | Non-oriented silicon steel sheet of high magnetic flux density and low core loss excellent in heat conductivity, and its manufacture | |
JP3022074B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JPH11131196A (en) | Nonoriented silicon steel sheet minimal in iron loss | |
JP2560090B2 (en) | Non-oriented electrical steel sheet manufacturing method | |
JP3964964B2 (en) | Method for producing semi-processed non-oriented electrical steel sheet with excellent low magnetic field characteristics B1 | |
JPS62222022A (en) | Manufacture of nonoriented electrical sheet having good brittleness resistance and magnetic characteristic after stress relief annealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140222 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |