JPH1112654A - Manufacture of grain oriented silicon sheet having excellent magnetic characteristic - Google Patents

Manufacture of grain oriented silicon sheet having excellent magnetic characteristic

Info

Publication number
JPH1112654A
JPH1112654A JP9166135A JP16613597A JPH1112654A JP H1112654 A JPH1112654 A JP H1112654A JP 9166135 A JP9166135 A JP 9166135A JP 16613597 A JP16613597 A JP 16613597A JP H1112654 A JPH1112654 A JP H1112654A
Authority
JP
Japan
Prior art keywords
annealing
temperature
cold rolling
mass
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9166135A
Other languages
Japanese (ja)
Inventor
Mineo Muraki
峰男 村木
Michiro Komatsubara
道郎 小松原
Chizuko Maeda
千寿子 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9166135A priority Critical patent/JPH1112654A/en
Publication of JPH1112654A publication Critical patent/JPH1112654A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an excellent magnetic characteristic by specifying the annealing condition before the final cold rolling, holding a nitride in a solid solution state and cooling and controlling the diameter equivalent to the average circle of the primary recrystallized grain in the primary recrystallized sheet to finely deposit the inhibitor mainly consisting of AlN. SOLUTION: The cold rolling including annealing is applied, and the primary and secondary recrystallizing annealing are applied at >= the attained temperature of 700 deg.C to the silicon steel strip containing, by mass, 2.0-6.5% Si, 0.004-0.03% Al, 0.001-0.01% N. In the annealing process before the final cold rolling, the temperature is risen up to the temperature zone satisfying the formula to dissociate and enter into solid solution the nitride containing Al. Thereafter, the average cooling speed at 850-650 deg.C is held at >=20 deg.C/sec to hold the nitride in the solid solution state and cool. AlN is finely deposited until the starting of the primary recrystallization in the primary recrystallizing annealing after that. The diameter equivalent to the average circle of the primary recrystallized grain in the cross section of the primary recrystallization annealed sheet is controlled to <=8 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、方向性電磁鋼板
に関し、特に安定してより高位な磁気特性が得られる製
造方法を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet, and more particularly, to a method for stably obtaining higher magnetic properties.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主として変圧器その
他の電気機器の鉄心とし用いられ、かかる用途に適合さ
せるには磁束密度、鉄損等の磁気特性に優れることが基
本的に重要である。そのため、方向性電磁鋼板の製造の
際に重要なことは、いわゆる仕上げ焼鈍工程により2次
再結晶をさせた結晶粒の方位を{110}<001>方
位、いわゆるゴス方位に高度に集積させることである。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron cores for transformers and other electric equipment, and it is basically important to have excellent magnetic properties such as magnetic flux density and iron loss in order to meet such applications. . Therefore, what is important in the production of a grain-oriented electrical steel sheet is that the orientation of crystal grains subjected to secondary recrystallization in the so-called finish annealing step is highly integrated in the {110} <001> orientation, the so-called Goss orientation. It is.

【0003】このような2次再結晶粒の集積を効果的に
促進させるためには、第1に、1次再結晶粒の成長を選
択的に抑制するインヒビターと呼ばれる分散相を、均一
かつ適正なサイズで形成させることが重要である。かか
るインヒビターとしては、MnS, MnSe およびAlN 等のよ
うに硫化物、セレン化物および窒化物で、しかも鋼中へ
の溶解度が小さい物質が主に用いられる。このため、従
来から熱間圧延前のスラブ加熱においては、高温加熱を
行ってインヒビターを完全に固溶させ、熱間圧延工程以
降の2次再結晶までの過程でこのインヒビターを微細分
散させる方法がとられている。なお、Sb,Sn,As, Bi,
B, Pb, Ce, Cu およびMoなどの成分もインヒビターとし
て利用されている。
In order to effectively promote the accumulation of such secondary recrystallized grains, first, a dispersed phase called an inhibitor which selectively inhibits the growth of primary recrystallized grains is uniformly and properly dispersed. It is important to form them in a suitable size. As such inhibitors, substances such as MnS, MnSe and AlN which are sulfides, selenides and nitrides and have low solubility in steel are mainly used. For this reason, conventionally, in slab heating before hot rolling, a method of performing high-temperature heating to completely dissolve the inhibitor and finely dispersing the inhibitor in the process from the hot rolling step to the secondary recrystallization is known. Has been taken. In addition, Sb, Sn, As, Bi,
Components such as B, Pb, Ce, Cu and Mo have also been used as inhibitors.

【0004】その第2の条件としては、1回または2回
以上の冷間圧延と1回または2回以上の焼鈍との組合せ
により形成される1次再結晶粒組織および集合組織を制
御することにある。特に1次再結晶粒径は2次再結晶駆
動力に反比例することから、安定して小さな1次再結晶
粒を得ること、また、そのために上記のインヒビターの
抑制力を安定して高位に保つことが重要になる。
The second condition is to control the primary recrystallized grain structure and texture formed by a combination of one or more times of cold rolling and one or more times of annealing. It is in. In particular, since the primary recrystallized grain diameter is inversely proportional to the secondary recrystallization driving force, small primary recrystallized grains can be obtained stably, and the inhibitory force of the above-mentioned inhibitor is stably maintained at a high level. It becomes important.

【0005】そのため、従来より方向性電磁鋼板の製造
工程では、厚み100 〜300 mmのスラブを1250℃以上の温
度に加熱してインヒビター成分を完全に固溶させたの
ち、熱間圧延して熱延板とし、ついでこの熱延板を1回
または中間焼鈍を挟む2回以上の冷間圧延によって最終
冷延板厚とし、その後脱炭焼鈍を行い、焼鈍分離剤を塗
布してから2次再結晶および純化を目的とする最終仕上
げ焼鈍を施す手段が一般的てある。
[0005] Therefore, conventionally, in the process of manufacturing a grain-oriented electrical steel sheet, a slab having a thickness of 100 to 300 mm is heated to a temperature of 1250 ° C or more to completely dissolve the inhibitor component, and then hot-rolled by hot rolling. The hot-rolled sheet is subjected to cold rolling at least once or two or more times with intermediate annealing to obtain a final cold-rolled sheet thickness, then decarburized annealing, coated with an annealing separator, and then subjected to a second re-rolling. Means for applying a final finish annealing for the purpose of crystallization and purification are common.

【0006】これらの工程におけるAlN の微細析出方法
としては、特公昭46−23820 号公報(高磁束密度電磁鋼
板の熱処理法)などに開示されているように、最終冷間
圧延前の焼鈍工程においてAlN を部分解離固溶させ、引
き続く冷却過程でAlN を微細析出させるか、あるいは熱
間圧延の冷却過程ないしは続く焼鈍の昇温工程でAlNを
微細に形成させる方法が一般的であり、1次再結晶粒直
径の値は例えば特公平6−84524 号公報(方向性電磁鋼
板の1次再結晶焼鈍方法)等に示されるように概ね9〜
30μm の範囲が通常であった。
As a method for precipitating AlN in these steps, as disclosed in Japanese Patent Publication No. 46-23820 (heat treatment method for high magnetic flux density electromagnetic steel sheet), etc., in the annealing step before final cold rolling, A method of partially dissolving and dissolving AlN to precipitate AlN finely in the subsequent cooling process, or finely forming AlN in the cooling process of hot rolling or the subsequent heating step of annealing is generally used. The value of the crystal grain diameter is generally about 9 to 9 as shown in Japanese Patent Publication No. 6-84524 (primary recrystallization annealing method for grain-oriented electrical steel sheets).
A range of 30 μm was usual.

【0007】よって、完全な1次再結晶を生ぜしめ、安
定して8μm 以下の1次再結晶粒径を得るには、より多
量のインヒビター成分を添加するか、より微細なインヒ
ビターの析出状態を達成するかが必要であるが、前者に
関しては、より多量のインヒビター成分の添加はより高
いスラブ加熱温度を必要とするためおのずから限界があ
り、また後者に関しても、熱間圧延や焼鈍後の冷却過程
で形成されるインヒビターの微細化には限界があるな
ど、安定して微細1次再結晶粒を得ることは困難であっ
た。
Therefore, in order to cause complete primary recrystallization and stably obtain a primary recrystallization particle size of 8 μm or less, a larger amount of an inhibitor component should be added, or the precipitation state of a finer inhibitor should be reduced. It is necessary to achieve this, but for the former, the addition of a larger amount of the inhibitor component naturally has a limit because it requires a higher slab heating temperature, and also for the latter, the cooling process after hot rolling or annealing. It was difficult to stably obtain fine primary recrystallized grains, for example, there was a limit to the miniaturization of the inhibitor formed by the method.

【0008】一方、近年は省エネルギー化への要請が一
層強くなってきており、この要請にこたえるために、さ
らに安定して高位な抑制力が得られるプロセスが求めら
れている。
On the other hand, in recent years, the demand for energy saving has been further increased, and in order to respond to this demand, a process capable of more stably obtaining a high level of suppressing power is required.

【0009】[0009]

【発明が解決しようとする課題】この発明は、前記した
問題点を有利に解決しようとするものであり、新規発想
のもとAlN を主とするインヒビターを極めて微細に析出
させ、安定かつ良好な2次再結晶の生成に利用する磁気
特性の優れる方向性電磁鋼板の製造方法を提案すること
を目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems. According to a novel idea, an inhibitor mainly composed of AlN is deposited very finely to obtain a stable and favorable solution. It is an object of the present invention to propose a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties for use in generating secondary recrystallization.

【0010】[0010]

【課題を解決するための手段】発明者らは、種々実験を
行った結果、従来の工程では、AlN は熱間圧延またはそ
の後の最終冷間圧延前の焼鈍工程で析出し、以後の熱処
理過程では、仕上げ焼鈍中に分解されるまで、基本的に
完全には固溶することなく、オストワルド成長により次
第に抑制力を低下させていくことを知見した。また、前
記した焼鈍中一たんAlN を固溶させたのちその冷却過程
でAlN を析出させる手法においては、AlN の析出分布が
不均一になるという問題のあることもわかった。
As a result of various experiments, the inventors have found that in the conventional process, AlN is precipitated in the annealing step before hot rolling or the subsequent final cold rolling, and in the subsequent heat treatment step. It has been found that, until it is decomposed during the finish annealing, the inhibitory power is gradually reduced by Ostwald ripening, basically without completely forming a solid solution. Further, it was also found that the method of dissolving AlN as a solid solution during annealing and then precipitating AlN during the cooling process has a problem that the distribution of AlN precipitated becomes non-uniform.

【0011】これらの知見に基づき鋭意調査の結果、最
終冷間圧延前の焼鈍工程で十分に高温に昇温することに
よって一たんAlN を全量完全に固溶させたのち、その冷
却過程ではAlN を析出させることなく、続いて施される
冷間圧延で導入された転位上に、組織の回復・再結晶が
生じる前にAlN を析出させることにより、極めて微細な
AlN を均一に析出させることができ高い抑制力が得られ
ることが明らかとなった。上記知見に立脚するこの発明
の要旨は以下の通りである。
As a result of intensive investigations based on these findings, it was found that the temperature of the annealing step before the final cold rolling was sufficiently raised to a high temperature to completely dissolve the entire amount of AlN, and then the AlN was dissolved in the cooling step. By precipitating AlN on the dislocations introduced in the subsequent cold rolling without precipitation, before the recovery and recrystallization of the structure occurs, extremely fine
It has been clarified that AlN can be uniformly deposited and a high suppressing power can be obtained. The gist of the present invention based on the above findings is as follows.

【0012】 Si:2.0 〜6.5 mass%、Al:0.004 〜
0.03mass%およびN:0.001 〜0.01mass%を含むけい素
鋼帯を素材として、適宜焼鈍を行う1回以上の冷間圧延
の工程を経て、到達温度が700 ℃以上の1次再結晶焼鈍
ののち、引き続きあるいは別途2次再結晶焼鈍を行って
方向性電磁鋼板を製造するにあたり、最終冷間圧延前の
焼鈍工程で、材料温度T(℃)を上記のAl含有量の値を
mass%AlおよびN含有量の値をmass%Nとしてあらわす
下記式(1)を満たす温度域まで昇温して一たんAlを含む
窒化物を解離固溶させ、その後の冷却過程の850 ℃から
650 ℃までの温度間の平均冷却速度を20℃/s以上とし
て窒化物を固溶状態に保持して冷却し、その後最終冷間
圧延を経て施される1次再結晶焼鈍での1次再結晶開始
前迄にAlN を微細析出させ、1次再結晶焼鈍板断面での
1次再結晶粒の平均円相当直径を8μm 以下とすること
を特徴とする磁気特性の優れる方向性電磁鋼板の製造方
法(第1発明)。
Si: 2.0 to 6.5 mass%, Al: 0.004 to
Using a silicon steel strip containing 0.03 mass% and N: 0.001 to 0.01 mass% as a raw material, the steel sheet is subjected to one or more cold rolling steps of appropriately annealing, and is subjected to a primary recrystallization annealing at an ultimate temperature of 700 ° C. or more. Then, when producing a grain-oriented electrical steel sheet by successively or separately performing secondary recrystallization annealing, in the annealing step before final cold rolling, the material temperature T (° C.) is set to the value of the above Al content.
The value of mass% Al and the content of N is expressed as mass% N. The temperature is raised to a temperature range that satisfies the following equation (1) to dissociate the nitride containing Al as a solid solution.
The average cooling rate between temperatures up to 650 ° C is 20 ° C / s or more, the nitride is kept in a solid solution state, cooled, and then subjected to primary recrystallization annealing through primary recrystallization annealing. Manufacture of grain-oriented electrical steel sheets with excellent magnetic properties, wherein AlN is finely precipitated before the start of crystallization and the average equivalent circle diameter of primary recrystallized grains in the cross section of the primary recrystallized annealed sheet is 8 μm or less. Method (first invention).

【0013】 最終冷間圧延前の析出Al量を60masspp
m 未満に制御する第1発明に記載の磁気特性の優れる方
向性電磁鋼板の製造方法(第2発明)。
[0013] The amount of precipitated Al before final cold rolling is reduced to 60 masspp.
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to the first invention, wherein the grain is controlled to be less than m (second invention).

【0014】 最終冷間圧延後、冷延板を450 ℃以
上、650 ℃以下の温度範囲に20秒間以上保持したのち1
次再結晶焼鈍を行う第1発明または第2発明に記載の磁
気特性の優れる方向性電磁鋼板の製造方法(第3発
明)。
After the final cold rolling, the cold rolled sheet is kept in a temperature range of 450 ° C. or more and 650 ° C. or less for 20 seconds or more, and then
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to the first invention or the second invention, wherein the second recrystallization annealing is performed (third invention).

【0015】 最終冷間圧延終了後、2次再結晶開始
までの間の鋼板にN:10massppm 以上の窒化を行うこと
を特徴とする第1発明、第2発明または第3発明に記載
の磁気特性の優れる方向性電磁鋼板の製造方法(第4発
明)。
[0015] The magnetic properties according to the first, second or third invention, wherein the steel sheet is subjected to nitriding of N: 10 mass ppm or more after the end of the final cold rolling until the start of the secondary recrystallization. A method for producing a grain-oriented electrical steel sheet having an excellent (fourth invention).

【0016】なお、この発明は、主として一方向性電磁
鋼板の製造方法についてなされたものであるが、同様な
2次再結晶現象を利用する二方向性電磁鋼板の製造にも
応用が可能であり、1次再結晶焼鈍と2次再結晶焼鈍と
を同一の焼鈍中に行う方法を採用する場合、低温スラブ
加熱法を採用する場合、さらには、各種磁区細分化処理
を施す製品の製造などへの適用が可能である。
Although the present invention has been made mainly with respect to a method for producing a grain-oriented electrical steel sheet, it is also applicable to the production of a grain-oriented electrical steel sheet utilizing a similar secondary recrystallization phenomenon. 1. When adopting a method in which the primary recrystallization annealing and the secondary recrystallization annealing are performed during the same annealing, when employing a low-temperature slab heating method, and further for manufacturing a product to be subjected to various magnetic domain refining treatments. Is applicable.

【0017】[0017]

【発明の実施の形態】この発明の対象とする方向性電磁
鋼板用の素材、すなわち、けい素鋼帯の成分組成の限定
理由ならびに好適範囲について以下に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION The reason for limiting the component composition of a material for a grain-oriented electrical steel sheet, ie, a silicon steel strip, to which the present invention is applied, and the preferred range will be described below.

【0018】C:0.10mass%以下(以後単に%であらわ
す) Cは、熱間圧延、冷間圧延中の組成の均一分散化のみな
らず、ゴス方位結晶粒の発達に有用な成分であり、微量
でも存在することが望ましい。しかしながら、0.10%を
超えて含有させた場合には、脱炭が困難になり、かえっ
てゴス方位結晶粒の集積に乱れが生じることから、必ず
しも限定するものではないが含有量の上限を0.10%とす
ることが望ましい。
C: 0.10 mass% or less (hereinafter simply expressed as%) C is a component useful not only for uniformly dispersing the composition during hot rolling and cold rolling, but also for developing Goss-oriented crystal grains. Desirably, it is present even in trace amounts. However, when the content exceeds 0.10%, decarburization becomes difficult, and the accumulation of Goss-oriented crystal grains is disturbed. Therefore, the upper limit of the content is not necessarily limited to 0.10%. It is desirable to do.

【0019】Si:2.0 〜6.5 % Siは、鋼板の比抵抗を高め、鉄損の低減に有効である
が、6.5 %を上回る含有量では冷間圧延性が損なわれ、
一方2.0 %に満たないような含有量では比抵抗が低下す
るだけでなく、2次再結晶および純化のために行われる
最終仕上げ焼鈍中のα→γ変態によって結晶方位のラン
ダム化を生じ、十分な鉄損低減効果が得られなくなる。
したがって、その含有量は2.0 〜6.5 %の範囲とする。
Si: 2.0 to 6.5% Si is effective in increasing the specific resistance of the steel sheet and reducing iron loss, but when the content exceeds 6.5%, the cold rolling property is impaired.
On the other hand, if the content is less than 2.0%, not only the specific resistance is reduced, but also the crystal orientation is randomized by α → γ transformation during the final refining annealing performed for secondary recrystallization and purification, and No iron loss reduction effect can be obtained.
Therefore, its content is in the range of 2.0 to 6.5%.

【0020】Mn:0.02〜0.12% Mnは、必ずしも限定するものではないが、熱間脆性を防
止するためには少なくとも0.02%程度含有させることが
好ましい。しかし、含有量があまり多すぎると磁気特性
の劣化を引きおこすので、その上限は0.12%程度にする
ことが望ましい。
Mn: 0.02 to 0.12% Mn is not necessarily limited, but is preferably contained at least about 0.02% in order to prevent hot embrittlement. However, if the content is too large, the magnetic properties are degraded, so the upper limit is preferably set to about 0.12%.

【0021】インヒビターとしてのAlN の構成成分の、
AlおよびNは以下の理由から上下限が定められる。 Al:0.004 〜0.03% Alは、含有量が少なすぎるとインヒビターの絶対量が不
足し、また多すぎると工業的に昇温可能な温度でのAlN
の完全固溶が不可能になることから、その含有量を0.00
4 〜0.03%の範囲とする。 N:0.001 〜0.01% 出発素材であるけい素鋼帯のNは、上記Alと同様の理由
により上下限が定められ、その含有量を0.001 〜0.01%
の範囲とする。
The constituents of AlN as an inhibitor are:
The upper and lower limits of Al and N are determined for the following reasons. Al: 0.004 to 0.03% When the content of Al is too small, the absolute amount of the inhibitor becomes insufficient, and when the content is too large, AlN at a temperature that can be industrially heated can be obtained.
Can not be completely solid-dissolved, so its content is 0.00
The range is 4 to 0.03%. N: 0.001 to 0.01% The upper and lower limits of N of the silicon steel strip, which is the starting material, are determined for the same reason as for Al, and the content is 0.001 to 0.01%.
Range.

【0022】また、この発明では、最終冷間圧延終了後
2次再結晶開始までの間の鋼板を窒化しインヒビターを
増強させることが有効で、その際の窒化量は10ppm 以
上とすることがよい。
Further, in the present invention, it is effective to increase the inhibitor by nitriding the steel sheet between the end of the final cold rolling and the start of the secondary recrystallization, and the amount of nitriding at that time is preferably 10 ppm or more. .

【0023】さらに、この発明では析出型インヒビター
として、MnS, MnSe, CuSx およびCuSex 等を活用するこ
ともよく、この場合AlN との併用が可能である。また、
粒界偏析型インヒビターとの併用もできそれぞれ有効に
作用する。これらのインヒビター成分としては、上記の
S,Seのほか、Sb,Sn,As, Bi, B,Pb, Ce, Ti, Cuお
よびMoなどがあり、これらの1種または2種以上の複合
使用が可能である。それらの成分の含有量の好適範囲
は、おおむね0.001 〜0.2 %の範囲である。
Further, in the present invention, MnS, MnSe, CuSx, CuSex and the like may be used as the precipitation inhibitor, and in this case, it is possible to use together with AlN. Also,
It can be used in combination with a grain boundary segregation inhibitor, and each works effectively. Examples of these inhibitor components include Sb, Sn, As, Bi, B, Pb, Ce, Ti, Cu and Mo in addition to S and Se described above, and one or more of these may be used in combination. It is possible. The preferred range of the content of these components is generally in the range of 0.001 to 0.2%.

【0024】つぎに、この発明の製造工程条件について
以下に述べる。従来からの製鋼法で得られる上記成分組
成に調整した溶鋼を連続鋳造法または造塊法で鋳造し、
必要に応じて分塊工程を挟んでスラブとしたのち、スラ
ブの加熱工程を経て熱間圧延し素材とするけい素鋼帯を
得る。なお、スラブ加熱は一般にいわれている高温加熱
および低温加熱のいずれもが適用できる。
Next, the manufacturing process conditions of the present invention will be described below. Molten steel adjusted to the above component composition obtained by conventional steelmaking method is cast by continuous casting method or ingot-making method,
If necessary, the slab is sandwiched between the slabs, and then hot-rolled through a slab heating process to obtain a silicon steel strip as a raw material. As the slab heating, any of generally-used high-temperature heating and low-temperature heating can be applied.

【0025】このけい素鋼帯を素材として、熱延板焼鈍
・中間焼鈍等適宜焼鈍を行う1回以上の冷間圧延を施し
て最終冷延板厚とするが、この発明では、前記したよう
に、最終冷間圧延前の焼鈍工程で、材料温度T(℃)を
素材のAl含有量の値をmass%AlおよびN含有量の値をma
ss%Nとしてあらわす下記式(1)を満たす温度域まで
昇温して一たんAlを含む窒化物を全量解離固溶させ、そ
の後の冷却過程の850℃から650 ℃までの温度間の平均
冷却速度を20℃/s以上として窒化物を固溶状態に保持
して冷却すること、そして、その後最終冷間圧延を経て
施される1次再結晶焼鈍での1次再結晶前までにAlN を
微細析出させ、1次再結晶焼鈍板断面での1次再結晶粒
の平均直径を8μm 以下とすることを骨子とするもので
ある。 T(℃)>−5570/log(mass%Al×mass%N)−273 ・・・(1)
Using the silicon steel strip as a raw material, the steel sheet is subjected to one or more cold rolling steps of appropriately annealing such as hot-rolled sheet annealing and intermediate annealing to obtain a final cold-rolled sheet thickness. In the annealing step before the final cold rolling, the material temperature T (° C.) was set to the value of the Al content of the material, and the values of mass% Al and N were set to ma.
The temperature is raised to a temperature range satisfying the following formula (1) expressed as ss% N to dissociate all the nitride containing Al as a solid solution, and then average cooling between 850 ° C and 650 ° C in the subsequent cooling process Cooling at a rate of 20 ° C./s or more while maintaining the nitride in a solid solution state, and before the first recrystallization in the first recrystallization annealing performed through final cold rolling, The essence is to finely precipitate and make the average diameter of the primary recrystallized grains in the cross section of the primary recrystallized annealed plate 8 μm or less. T (° C)> -5570 / log (mass% Al x mass% N) -273 (1)

【0026】この最終冷間圧延前の焼鈍では、AlN を完
全に固溶させるために最低限上記式(1) を超える材料温
度まで昇温させる必要があり、この材料温度が不足する
と十分に均一微細なAlN の析出が得られず、粗大な1次
再結晶組織となってしまう。また固溶加熱後の冷却過程
では上記条件に従って冷却しないと、一部に粗大なAlN
が析出し同様の問題を生じる。
In the annealing before the final cold rolling, it is necessary to raise the temperature of the material to at least a temperature exceeding the above-mentioned formula (1) in order to completely dissolve the AlN. Fine AlN precipitates cannot be obtained, resulting in a coarse primary recrystallized structure. Also, in the cooling process after the solid solution heating, if the cooling is not performed in accordance with the above conditions, some coarse AlN
Precipitates and causes the same problem.

【0027】さらに、上記AlN の固溶加熱後最終冷間圧
延前の材料の析出Al量は60ppm を下回ることが好まし
い。なお、この分析には電解抽出濾過後硝酸・塩酸の混
酸液で溶解してICP分析する特開平6−11805 号公報
(鉄鋼材料中の析出物・介在物の分析用電解液)を用い
ることがよい。
Further, the amount of precipitated Al of the material before the final cold rolling after the solid solution heating of AlN is preferably less than 60 ppm. For this analysis, JP-A-6-11805 (electrolyte for analysis of precipitates and inclusions in steel materials) in which ICP analysis is carried out by dissolving in a mixed acid solution of nitric acid and hydrochloric acid after electrolytic extraction filtration is used. Good.

【0028】最終冷間圧延後は1次再結晶焼鈍を施す
が、1次再結晶焼鈍温度は、低すぎると1次再結晶が完
了しないため、少なくとも700 ℃の温度に加熱すること
が必要であるが、一方で、8μm 以下の1次再結晶粒径
を得るためには過度の高温処理は好ましくなく、その上
限は概ね900 ℃の温度とすることがよい。
After the final cold rolling, primary recrystallization annealing is performed. However, if the primary recrystallization annealing temperature is too low, the primary recrystallization will not be completed, so it is necessary to heat to at least 700 ° C. On the other hand, however, an excessively high temperature treatment is not preferable in order to obtain a primary recrystallized grain size of 8 μm or less, and the upper limit thereof is preferably about 900 ° C.

【0029】加えて、1次再結晶前に転位上にAlN を微
細に析出させることが重要であるので、1次再結晶焼鈍
において、昇温速度を遅くしたり、1次再結晶開始前に
450℃以上650 ℃以下の温度範囲に20秒間以上保持する
などの手法を用いることは、この発明の効果を安定させ
るために極めて有効である。また、この手法により形成
される極微細な窒化物を2次再結晶焼鈍中にも存在させ
るためには、2次再結晶開始前までに公知の方法で窒化
(N:10ppm 以上の窒化)させる手段も極めて有効であ
る。
In addition, since it is important to precipitate AlN finely on dislocations before the first recrystallization, the rate of temperature rise is reduced during the first recrystallization annealing,
It is extremely effective to stabilize the effect of the present invention by using a technique such as maintaining the temperature in a temperature range of 450 ° C. or more and 650 ° C. or less for 20 seconds or more. Further, in order to make the extremely fine nitride formed by this method exist during the secondary recrystallization annealing, nitriding (N: 10 ppm or more) is performed by a known method before the start of the secondary recrystallization. Means are also very effective.

【0030】1次再結晶焼鈍後は常法に従って2次再結
晶焼鈍を行い製品とするが、必要に応じて絶縁コーティ
ングや平坦化処理を施し製品とすることもよい。
After the primary recrystallization annealing, secondary recrystallization annealing is performed according to a conventional method to obtain a product. However, if necessary, the product may be subjected to insulation coating or flattening treatment to obtain a product.

【0031】[0031]

【実施例】【Example】

実施例1 C:0.05%、Si:3.25%、Mn:0.07%、S:0.02%、A
l:0.020 %およびN:0.007 %を含有し、残部が主と
してFeからなる溶鋼を連続鋳造して厚さ:220 mmのスラ
ブとし、このスラブをガス燃焼炉で1260℃の温度に加熱
してから、さらに誘導加熱炉で1380℃の温度に加熱した
のち、熱間圧延して板厚:2.5 mmの熱延板(けい素鋼
帯)とした。
Example 1 C: 0.05%, Si: 3.25%, Mn: 0.07%, S: 0.02%, A
l: A molten steel containing 0.020% and N: 0.007%, with the balance being mainly Fe, is continuously cast into a slab having a thickness of 220 mm, and this slab is heated to a temperature of 1260 ° C in a gas-fired furnace. Then, after heating to a temperature of 1380 ° C. in an induction heating furnace, hot rolling was performed to obtain a hot-rolled sheet (silicon steel strip) having a sheet thickness of 2.5 mm.

【0032】この熱延板を素材として、1000℃・40sの
熱延板焼鈍を施したのち、板厚:1.8 mmまで1次冷間圧
延し、最終冷間圧延前焼鈍として1190℃・100 sの中間
焼鈍後((1) 式から計算されるT>1172℃)水冷し、最
終冷延板厚:0.23mmに2次冷間圧延した。
Using this hot-rolled sheet as a material, it is subjected to hot-rolled sheet annealing at 1000 ° C./40 s, then primary cold-rolled to a sheet thickness of 1.8 mm, and as annealed at 1190 ° C./100 s before final cold-rolling. Was subjected to water cooling (T> 1172 ° C. calculated from the equation (1)), followed by secondary cold rolling to a final cold-rolled sheet thickness of 0.23 mm.

【0033】その後、この冷延板に780 ℃・110 sの脱
炭を兼ねた1次再結晶焼鈍を施したところ、平均円相当
直径が6.2 μm の1次再結晶板が得られ、引き続き1160
℃の温度まで窒素:水素=1:3の雰囲気中で25℃/h
の昇温速度で2次再結晶焼鈍を行った。かくして得られ
た製品の磁束密度を調査した結果、B8 :1.953 Tの優
れた値が得られた。
After that, when the cold-rolled sheet was subjected to primary recrystallization annealing combined with decarburization at 780 ° C. for 110 seconds, a primary recrystallized sheet having an average equivalent circle diameter of 6.2 μm was obtained.
Up to a temperature of 25 ° C./h in an atmosphere of nitrogen: hydrogen = 1: 3
The secondary recrystallization annealing was performed at a heating rate of. As a result of examining the magnetic flux density of the product thus obtained, an excellent value of B 8 : 1.953 T was obtained.

【0034】一方、最終冷間圧延前焼鈍、すなわち中間
焼鈍温度を1130℃とした以外は上記と同一条件で処理し
た製品の磁束密度B8 は1.855 Tであった。
On the other hand, the magnetic flux density B 8 of the product treated under the same conditions as above except that the final pre-cold-rolling annealing, that is, the intermediate annealing temperature was 1130 ° C., was 1.855 T.

【0035】実施例2 C:0.05%、Si:3.25%、Mn:0.07%、S:0.02%、A
l:0.020 %およびN:0.0078%を含有し、残部が主と
してFeからなる溶鋼を連続鋳造して厚さ:220 mmのスラ
ブとし、このスラブをガス燃焼炉で1280℃の温度に加熱
したのち、熱間圧延して板厚:2.5 mmの熱延板(けい素
鋼帯)とした。
Example 2 C: 0.05%, Si: 3.25%, Mn: 0.07%, S: 0.02%, A
l: 0.020% and N: 0.0078%, the remainder being mainly cast of molten steel consisting mainly of Fe to form a slab with a thickness of 220 mm, and heating this slab to a temperature of 1280 ° C in a gas-fired furnace. Hot rolling was performed to obtain a hot-rolled sheet (silicon steel strip) having a thickness of 2.5 mm.

【0036】この熱延板を素材として、950 ℃・40sの
熱延板焼鈍を施したのち、板厚:1.8 mmまで1次冷間圧
延し、最終冷間圧延前焼鈍として1250℃・100sの中間焼
鈍後((1) 式から計算されるT>1213℃)水冷し、最終
冷延板厚:0.23mmに2次冷間圧延した。
Using this hot rolled sheet as a material, hot rolled sheet annealing at 950 ° C./40 s is performed, then primary cold rolling is performed to a sheet thickness: 1.8 mm, and annealing at 1250 ° C./100 s is performed before final cold rolling. After the intermediate annealing (T> 1213 ° C. calculated from the equation (1)), the steel sheet was water-cooled and subjected to secondary cold rolling to a final cold-rolled sheet thickness of 0.23 mm.

【0037】その後、この冷延板に580 ℃・60s のAlN
析出焼鈍に続いて830 ℃・70s の脱炭を兼ねた1次再結
晶焼鈍を行ったところ、平均円相当直径が7.4 μm の1
次再結晶板が得られ、引き続き、1160℃の温度まで窒
素:水素=1:3の雰囲気中で20℃/hの昇温速度で2
次再結晶焼鈍を行い、得られた製品について磁束密度を
調査した結果、B8 :1.957 Tの優れた値が得られた。
Thereafter, the cold rolled sheet was subjected to AlN at 580 ° C. for 60 seconds.
Following the precipitation annealing, the primary recrystallization annealing combined with decarburization at 830 ° C for 70 s was performed.
A secondary recrystallized plate was obtained, and subsequently heated to a temperature of 1160 ° C. in an atmosphere of nitrogen: hydrogen = 1: 3 at a temperature increasing rate of 20 ° C./h.
The secondary recrystallization annealing was performed, and the magnetic flux density of the obtained product was examined. As a result, an excellent value of B 8 : 1.957 T was obtained.

【0038】一方、最終冷間圧延前焼鈍、すなわち中間
焼鈍温度を変化させた以外は上記と同一条件で処理した
場合について、中間焼鈍後最終冷間圧延前の材料の析出
Al量、1次再結晶板の1次再結晶粒径ならびに製品の磁
束密度をそれぞれ測定した。
On the other hand, in the case of annealing before the final cold rolling, that is, the treatment under the same conditions as above except that the intermediate annealing temperature was changed, precipitation of the material before the final cold rolling after the intermediate annealing was performed.
The Al content, the primary recrystallized grain size of the primary recrystallized plate, and the magnetic flux density of the product were measured.

【0039】これらの測定結果を図1、2および3に示
す。図1は、中間焼鈍後の析出Al量に及ぼす中間焼鈍温
度の影響を示すグラフ、図2は、中間焼鈍温度と1次再
結晶平均粒径との関係のグラフおよび図3は磁気特性に
及ぼす中間焼鈍温度の影響を示すグラフである。
The results of these measurements are shown in FIGS. FIG. 1 is a graph showing the effect of the intermediate annealing temperature on the amount of precipitated Al after intermediate annealing, FIG. 2 is a graph showing the relationship between the intermediate annealing temperature and the average primary recrystallization grain size, and FIG. It is a graph which shows the influence of intermediate annealing temperature.

【0040】これらの図から明らかなように、最終冷間
圧延前焼鈍すなわち中間焼鈍温度が前記式(1) に適合す
る温度域では、最終冷間圧延前にはAlの析出量が少なく
(図1)、平均円相当1次再結晶粒径は8μm 以下の微
細粒になり(図2)そして製品の磁束密度(図3)は極
めて優れるものとなることがわかる。
As is apparent from these figures, in the temperature range in which the annealing before final cold rolling, ie, the intermediate annealing temperature satisfies the above equation (1), the amount of precipitated Al is small before final cold rolling (see FIG. 1) It can be seen that the primary recrystallized grain equivalent to an average circle becomes fine grains of 8 μm or less (FIG. 2), and the magnetic flux density of the product (FIG. 3) is extremely excellent.

【0041】実施例3 C:0.05%、Si:3.25%、Mn:0.05%、S:0.01%、A
l:0.014 %およびN:0.007 %を含有し、残部が主と
してFeからなる溶鋼を連続鋳造して厚さ:220 mmのスラ
ブとし、このスラブをガス燃焼炉で1190℃に加熱したの
ち、熱間圧延して板厚:2.5 mmの熱延板(けい素鋼帯)
とした。
Example 3 C: 0.05%, Si: 3.25%, Mn: 0.05%, S: 0.01%, A
Continuously cast molten steel containing l: 0.014% and N: 0.007%, with the balance being mainly Fe, to form a slab with a thickness of 220 mm. This slab was heated to 1190 ° C in a gas-fired furnace, Rolled and hot-rolled with a thickness of 2.5 mm (silicon steel strip)
And

【0042】この熱延板を素材として、1190℃・80s の
最終冷間圧延前焼鈍すなわち熱延板焼鈍後((1) 式から
計算されるT>1116℃)水冷し、1回冷間圧延法により
最終冷延板厚:0.27mmに仕上げた。その後この冷延板に
780 ℃・110sの脱炭を兼ねた1次再結晶焼鈍を行いさら
にアンモニアを含む雰囲気中でN:0.022 %まで窒化さ
せたところ、平均円相当結晶粒径が6.6 μm の1次再結
晶板が得られた。引き続き1160℃の温度まで窒素:水素
=1:3の雰囲気中で25℃/hの昇温速度で昇温する2
次再結晶焼鈍を行い製品とした。
Using this hot rolled sheet as a material, annealing before final cold rolling at 1190 ° C./80 s, that is, after the hot rolled sheet annealing (T> 1116 ° C. calculated from the equation (1)), then cold rolling once Finished to a final cold-rolled sheet thickness: 0.27 mm by the method. Then on this cold rolled sheet
Primary recrystallization annealing combined with decarburization at 780 ° C for 110 s was performed, and nitriding was performed in an atmosphere containing ammonia to N: 0.022%. Obtained. Subsequently, the temperature is raised to a temperature of 1160 ° C. in an atmosphere of nitrogen: hydrogen = 1: 3 at a rate of 25 ° C./h 2
Next recrystallization annealing was performed to obtain a product.

【0043】かくして得られた製品の磁束密度B8 は1.
961 Tと優れる値を示した。
The magnetic flux density B 8 of the product thus obtained is 1.
It showed an excellent value of 961 T.

【0044】[0044]

【発明の効果】この発明は、方向性電磁鋼板の製造にあ
たり、最終冷間圧延前の焼鈍条件を特定して窒化物を固
溶状態に保持して冷却し、1次再結晶板での1次再結晶
粒の平均円相当直径を制御するものであり、この発明に
よれば、高位の抑制力が安定して得られ、工業的に極め
て高磁性の方向性電磁鋼板を安定して得ることができ
る。さらにこの発明は低温スラブ加熱法にも適用できる
ので製造工程におけるエネルギーコストの削減に有効で
ある。
According to the present invention, in manufacturing a grain-oriented electrical steel sheet, the annealing conditions before final cold rolling are specified, the nitride is kept in a solid solution state, cooled, and the first recrystallized sheet is cooled. According to the present invention, an average equivalent circle diameter of the next recrystallized grains is controlled. According to the present invention, a high-order suppressing force can be stably obtained, and an industrially extremely high-magnetic grain-oriented electrical steel sheet can be stably obtained. Can be. Further, since the present invention can be applied to a low-temperature slab heating method, it is effective in reducing energy costs in a manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】中間焼鈍後の析出Al量に及ぼす中間焼鈍温度の
影響を示すグラフである。
FIG. 1 is a graph showing the effect of intermediate annealing temperature on the amount of precipitated Al after intermediate annealing.

【図2】中間焼鈍温度と1次再結晶平均粒径との関係の
グラフである。
FIG. 2 is a graph showing a relationship between an intermediate annealing temperature and a primary recrystallization average particle size.

【図3】磁気特性に及ぼす中間焼鈍温度の影響を示すグ
ラフである。
FIG. 3 is a graph showing the effect of an intermediate annealing temperature on magnetic properties.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si:2.0 〜6.5 mass%、Al:0.004 〜0.
03mass%およびN:0.001 〜0.01mass%を含むけい素鋼
帯を素材として、適宜焼鈍を行う1回以上の冷間圧延の
工程を経て、到達温度が700 ℃以上の1次再結晶焼鈍の
のち、引き続きあるいは別途2次再結晶焼鈍を行って方
向性電磁鋼板を製造するにあたり、 最終冷間圧延前の焼鈍工程で、材料温度T(℃)を上記
のAl含有量の値をmass%AlおよびN含有量の値をmass%
Nとしてあらわす下記式(1)を満たす温度域まで昇温し
て一たんAlを含む窒化物を解離固溶させ、その後の冷却
過程の850 ℃から650 ℃までの温度間の平均冷却速度を
20℃/s以上として窒化物を固溶状態に保持して冷却
し、その後最終冷間圧延を経て施される1次再結晶焼鈍
での1次再結晶開始前迄にAlN を微細析出させ、1次再
結晶焼鈍板断面での1次再結晶粒の平均円相当直径を8
μm 以下とすることを特徴とする磁気特性の優れる方向
性電磁鋼板の製造方法。 〔記〕 T(℃)>−5570/log(mass%Al×mass%N)−273 ・・・(1)
[Claim 1] Si: 2.0 to 6.5 mass%, Al: 0.004 to 0.4 mass%.
Using a silicon steel strip containing 03 mass% and N: 0.001 to 0.01 mass% as a raw material, it is subjected to at least one cold rolling step of appropriately annealing, and after primary recrystallization annealing at an ultimate temperature of 700 ° C or more, In order to manufacture a grain-oriented electrical steel sheet by successively or separately performing secondary recrystallization annealing, in the annealing step before final cold rolling, the material temperature T (° C.) is set to the above Al content value by mass% Al and Mass value of N content
The temperature is raised to a temperature range that satisfies the following formula (1), expressed as N, to dissociate and dissolve the nitride containing Al for a moment, and the average cooling rate between 850 ° C. and 650 ° C. in the subsequent cooling process is
At a temperature of 20 ° C./s or more, the nitride is kept in a solid solution state and cooled, and then AlN is finely precipitated before the start of primary recrystallization in primary recrystallization annealing performed through final cold rolling. The average circle equivalent diameter of the primary recrystallized grains in the cross section of the primary recrystallized annealed plate was 8
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized in that the grain size is not more than μm. [Note] T (° C)> -5570 / log (mass% Al x mass% N) -273 (1)
【請求項2】 最終冷間圧延前の析出Al量を60massppm
未満に制御する請求項1に記載の磁気特性の優れる方向
性電磁鋼板の製造方法。
2. The amount of precipitated Al before final cold rolling is reduced to 60 mass ppm.
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the grain size is controlled to be less than.
【請求項3】 最終冷間圧延後、冷延板を450 ℃以上、
650 ℃以下の温度範囲に20秒間以上保持したのち1次再
結晶焼鈍を行う請求項1または2に記載の磁気特性の優
れる方向性電磁鋼板の製造方法。
3. After the final cold rolling, the cold rolled sheet is heated to 450 ° C. or more,
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1 or 2, wherein the primary recrystallization annealing is performed after the temperature is maintained at a temperature of 650 ° C or less for 20 seconds or more.
【請求項4】 最終冷間圧延終了後、2次再結晶開始ま
での間の鋼板にN:10massppm 以上の窒化を行うことを
特徴とする請求項1,2または3に記載の磁気特性の優
れる方向性電磁鋼板の製造方法。
4. The magnetic properties according to claim 1, 2, or 3, wherein the steel sheet is subjected to nitriding of N: 10 mass ppm or more after the end of the final cold rolling until the start of the secondary recrystallization. Manufacturing method of grain-oriented electrical steel sheet.
JP9166135A 1997-06-23 1997-06-23 Manufacture of grain oriented silicon sheet having excellent magnetic characteristic Withdrawn JPH1112654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9166135A JPH1112654A (en) 1997-06-23 1997-06-23 Manufacture of grain oriented silicon sheet having excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9166135A JPH1112654A (en) 1997-06-23 1997-06-23 Manufacture of grain oriented silicon sheet having excellent magnetic characteristic

Publications (1)

Publication Number Publication Date
JPH1112654A true JPH1112654A (en) 1999-01-19

Family

ID=15825693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9166135A Withdrawn JPH1112654A (en) 1997-06-23 1997-06-23 Manufacture of grain oriented silicon sheet having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPH1112654A (en)

Similar Documents

Publication Publication Date Title
WO2007102282A1 (en) Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
WO2006132095A1 (en) Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPS5813606B2 (en) It&#39;s hard to tell what&#39;s going on.
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JPS5932528B2 (en) Method for manufacturing unidirectional silicon steel sheet with excellent magnetic properties
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3390109B2 (en) Low iron loss high magnetic flux density
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JPH1112654A (en) Manufacture of grain oriented silicon sheet having excellent magnetic characteristic
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2688146B2 (en) Method for producing unidirectional electrical steel sheet having high magnetic flux density
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907