JPH11125581A - Automatic lens meter - Google Patents

Automatic lens meter

Info

Publication number
JPH11125581A
JPH11125581A JP9292078A JP29207897A JPH11125581A JP H11125581 A JPH11125581 A JP H11125581A JP 9292078 A JP9292078 A JP 9292078A JP 29207897 A JP29207897 A JP 29207897A JP H11125581 A JPH11125581 A JP H11125581A
Authority
JP
Japan
Prior art keywords
lens
dimensional image
measurement
light
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9292078A
Other languages
Japanese (ja)
Inventor
Hidekazu Yanagi
英一 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP9292078A priority Critical patent/JPH11125581A/en
Publication of JPH11125581A publication Critical patent/JPH11125581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic lens meter that can rapidly obtain optical measurement values that are near the optical characteristic values of a manual- type lens meter with a simple optical configuration. SOLUTION: In the automatic lens meter, a pattern 18 for measuring optical characteristics with at least three openings at a projection light path 13 of measurement luminous flux P for measuring the optical characteristics of a lens 17 to be inspected is provided, at the same time, a two-dimensional image reception element 20 for receiving the light-point image of the measurement luminous flux P being transmitted through each opening is provided, the position of each light-point image on the two-dimensional image reception element 20 is detected, the optical characteristics of the lens 17 to be inspected are automatically calculated and measured, and distance Z from the two-dimensional image reception element 20 to a vertex position 17a of the rear surface of the lens 17 to be inspected is set to a value that is smaller than back focus distance Z1 when the lens 17 to be inspected that has plus power with the measurable maximum degree is set to the projection light path 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マニュアルレンズ
メータの光学特性値に近い光学測定値を迅速かつ簡単な
光学構成により自動測定により得ることのできるオート
レンズメータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic lens meter capable of obtaining an optical measurement value close to an optical characteristic value of a manual lens meter by automatic measurement with a quick and simple optical configuration.

【0002】[0002]

【従来の技術】従来から、測定光束の投光光路に被検レ
ンズをセットし、光軸を中心として5φ〜8φの測定光
束を被検レンズに投光し、検者が最もコロナのピントの
合う位置にディオプターハンドルを調節して、被検レン
ズの度数を読み取るマニュアル式のレンズメータが知ら
れている。このマニュアル式のレンズメータによる光学
特性値は、被検レンズを装用したときに目の瞳孔を透過
する光束が最も集まった位置における測定値に近く、現
実に被検レンズを目に装用したときに対応する好ましい
測定値が得られる。
2. Description of the Related Art Conventionally, a lens to be measured is set on a light beam path of a measuring light beam, and a measuring light beam having a diameter of 5 to 8 mm is projected on the lens to be measured with the optical axis as a center. 2. Description of the Related Art There is known a manual lens meter that reads a power of a lens to be inspected by adjusting a diopter handle to an appropriate position. The optical characteristic value of this manual lens meter is close to the measured value at the position where the luminous flux transmitted through the pupil of the eye is most concentrated when the lens to be inspected is worn, and when the lens to be inspected is actually worn on the eye. Corresponding favorable measurements are obtained.

【0003】一方、オートレンズメータには、図1
(a)に示すように、被検レンズ1の光学特性を測定す
るための測定光束Pの投光光路2に、図2に示すよう
に、多数の開口3を有する光学特性測定用パターン4を
設けると共に、前記各開口3を透過した測定光束の光点
像を受像する二次元受像素子5を設け、二次元受像素子
5上での各光点像の位置を検出して、被検レンズ1の光
学特性を自動的に演算測定する構成のものが知られてい
る。なお、その図1(a)において、6は測定光束発生
光源、7はピンホール、8はコリメータレンズ、9はレ
ンズ受けである。
[0003] On the other hand, an auto lens meter has a structure shown in FIG.
As shown in FIG. 2A, an optical characteristic measuring pattern 4 having a large number of openings 3 is provided on a light projecting optical path 2 of a measuring light beam P for measuring optical characteristics of a lens 1 to be measured, as shown in FIG. A two-dimensional image receiving element 5 for receiving a light spot image of the measurement light beam transmitted through each of the apertures 3 is provided, and the position of each light spot image on the two-dimensional image receiving element 5 is detected to be inspected. A configuration in which the optical characteristics of the lens 1 are automatically calculated and measured is known. In FIG. 1A, reference numeral 6 denotes a measurement light beam generation light source, 7 denotes a pinhole, 8 denotes a collimator lens, and 9 denotes a lens receiver.

【0004】このオートレンズメータによれば、マニュ
アル式のレンズメータ場合に比べて、測定のばらつきが
小さいというメリットがある。
According to the automatic lens meter, there is a merit that the variation in measurement is smaller than that of a manual lens meter.

【0005】[0005]

【発明が解決しようとする課題】ところで、被検レンズ
1には、図3に示すように、球面収差が存在し、特に、
コンタクトレンズでは、その裏面の曲率半径が小さい
(裏面の湾曲が大きい)ので、その球面収差が他のレン
ズに比べて大きい。このような球面収差の大きいレンズ
では、図3に示すように、測定光束Pの交差のため、図
1(a)に示す被検レンズ1の裏面頂点位置1aから二
次元受像素子5までの距離を被検レンズのバックフォー
カス距離fbよりも大きく設計すると、光点像の位置関
係が図1(b)に示すように交差するため、光点像のみ
からでは交差の有無が判断できないという問題がある。
その図1において、実線の光線は被検レンズ1により偏
向された光線を示し、破線の光線はその被検レンズ1の
度数とは異なる度数の被検レンズによって偏向された光
線を示し、破線で示す位置に二次元受像素子5を置く
と、度数の異なる被検レンズでも光点像が同じ位置にで
き、光点像のみからでは光線の交差の有無が判断できな
い。
Incidentally, the test lens 1 has a spherical aberration as shown in FIG.
Since the contact lens has a small radius of curvature on the back surface (the back surface has a large curvature), the spherical aberration is large as compared with other lenses. In such a lens having a large spherical aberration, as shown in FIG. 3, due to the intersection of the measurement light beams P, the distance from the vertex position 1a on the rear surface of the test lens 1 to the two-dimensional image receiving element 5 shown in FIG. If the distance is designed to be larger than the back focus distance fb of the lens to be inspected, the positional relationship between the light spot images intersects as shown in FIG. 1 (b). There is.
In FIG. 1, the solid-line light beam indicates a light beam deflected by the test lens 1, the broken-line light beam indicates a light beam deflected by the test lens having a power different from that of the test lens 1, and is indicated by a broken line. When the two-dimensional image receiving element 5 is placed at the indicated position, the light spot images can be located at the same position even with the test lenses having different degrees of power.

【0006】また、マニュアル式のレンズメータによる
光学特性値とオートレンズメータによる光学特性値とに
ズレが生じる。すなわち、マニュアル式のレンズメータ
の場合には、図3に示すように、全ての光線が集合した
点faにおける光学特性値であるのに対して、オートレ
ンズメータによる場合には、ある光線高さhの細い光線
nで測定すると、光軸上のバックフォーカス距離がfb
であるのに対し、収差の影響により見かけのバックフォ
ーカス距離がfb’となり、光学特性値としての度数が
強めに出てしまうと共に、マニュアル式のレンズメータ
によるバックフォーカス距離(度数)faと異なるバッ
クフォーカス距離(度数)のものが得られることにな
る。
In addition, a deviation occurs between the optical characteristic value obtained by the manual lens meter and the optical characteristic value obtained by the automatic lens meter. That is, in the case of a manual type lens meter, as shown in FIG. 3, the optical characteristic value is at a point fa where all the rays are gathered. When measured with a light beam n having a small value of h, the back focus distance on the optical axis is fb
On the other hand, the apparent back focus distance becomes fb ′ due to the influence of aberration, the power as an optical characteristic value becomes stronger, and the back focus distance (power) fa different from the back focus distance (power) fa by the manual lens meter. The focus distance (frequency) is obtained.

【0007】被検レンズ1に球面収差がある場合であっ
ても、オートレンズメータによる光学特性の光学特性値
(度数)を、できる限りマニュアル式のレンズメータに
よる光学特性値(度数)に近づけるのが、上述の理由に
より望ましい。
[0007] Even when the lens 1 to be inspected has a spherical aberration, the optical characteristic value (frequency) of the optical characteristic by the automatic lens meter should be as close as possible to the optical characteristic value (frequency) by the manual lens meter. Is desirable for the reasons described above.

【0008】そこで、従来のオートレンズメータでは、
多数の開口が必要で、各光線高さでの各光点像の二次元
受像素子5上での位置を演算により求め、この演算値に
よりfb置又はfa置を求めているものもあるが、光点
像の個数が非常に多いため、演算処理に時間がかかりリ
アルタイムでの測定が難しい。
Therefore, in a conventional auto lens meter,
A large number of apertures are required, and the position of each light spot image at each ray height on the two-dimensional image receiving element 5 is obtained by calculation, and the calculated value may be used to determine the fb position or the fa position. In addition, since the number of light spot images is very large, it takes a long time to perform arithmetic processing, and it is difficult to perform measurement in real time.

【0009】本発明は、上記の事情に鑑みて為されたも
ので、その目的とするところは、マニュアルレンズメー
タの光学特性値に近い光学測定値を迅速かつ簡単な光学
構成により自動測定により得ることのできるオートレン
ズメータを提供するところにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain an optical measurement value close to an optical characteristic value of a manual lens meter by automatic measurement with a quick and simple optical configuration. To provide an auto-lens meter capable of performing such operations.

【0010】[0010]

【課題を解決するための手段】請求項1に記載のオート
レンズメータは、被検レンズの光学特性を測定するため
の測定光束の投光光路に少なくとも3個の開口を有する
光学特性測定用パターンを設けると共に、前記各開口を
透過した測定光束の光点像を受像する二次元受像素子を
設け、該二次元受像素子上での前記各光点像の位置を検
出して、前記被検レンズの光学特性を自動的に演算測定
するオートレンズメータであって、前記投光光路に測定
可能な最も度の強いプラスのパワーの被検レンズがセッ
トされているとしたとき、前記二次元受像素子から前記
被検レンズの裏面頂点位置までの距離が、そのバックフ
ォーカス距離よりも小さく設定されている。
According to an aspect of the present invention, there is provided an automatic lens meter, comprising: an optical characteristic measuring pattern having at least three apertures in a projection optical path of a measuring light beam for measuring optical characteristics of a lens to be measured; And a two-dimensional image receiving element for receiving a light spot image of the measurement light beam transmitted through each of the apertures, detecting a position of each of the light spot images on the two-dimensional image receiving element, An auto-lens meter for automatically calculating and measuring the optical characteristics of an inspection lens, wherein a two-dimensional lens having the highest measurable positive power is set in the light projecting optical path. The distance from the image receiving element to the position of the vertex of the rear surface of the test lens is set smaller than the back focus distance.

【0011】前記二次元受像素子上での光点像に基づき
演算された度数が、前記被検レンズをマニュアル式のレ
ンズメータにより測定したときの度数に近い値が得られ
るように前記各開口の大きさが設定されると共に前記各
開口にそれぞれ収束レンズを設けるのが望ましく、前記
収束レンズの焦点距離は光学特性値±5ディオプターの
範囲のいずれか最も使用頻度の多いレンズが前記投光光
路にセットされたときに前記光点像の大きさが最小とな
るように設定されているのが望ましい。
The apertures are calculated so that the power calculated based on the light spot image on the two-dimensional image receiving element is close to the power obtained by measuring the test lens with a manual lens meter. It is desirable that a convergent lens be provided in each of the apertures, and the focal length of the convergent lens be the most frequently used lens in the range of the optical characteristic value ± 5 diopters. It is desirable that the size of the light spot image be set to a minimum when it is set to.

【0012】前記投光光路に測定可能な最も度の強いプ
ラスのパワーの被検レンズがセットされているとしたと
き、前記各光点像が前記二次元受像素子上で互いに密着
しない大きさとされているのが更に好ましい。
When a test lens having the highest measurable positive power is set in the light projecting optical path, each light spot image has a size that does not make close contact with each other on the two-dimensional image receiving element. More preferably, it is performed.

【0013】[0013]

【発明の実施の形態】図4において、10はLED、1
1は拡散板、12はピンホールである。LED10、拡
散板11、ピンホール12は測定光束発生用の光源部を
構成し、ピンホール12は拡散二次点光源として機能す
る。ピンホール12から出射された光束は投光光路13
に設けられたコリメータレンズ14により平行光束に変
換される。投光光路13にはレンズ受け15が設けら
れ、このレンズ受け15には被検レンズ17がセットさ
れる。レンズ受け15は被検レンズ17が眼鏡レンズの
場合にはその直径が約8φ(mm)であるが、被検レン
ズ17としてコンタクトレンズがセットされる場合に
は、その直径が約5φ(mm)のレンズ受け15に置き
換えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG.
1 is a diffusion plate, and 12 is a pinhole. The LED 10, the diffusion plate 11, and the pinhole 12 constitute a light source unit for generating a measurement light beam, and the pinhole 12 functions as a diffusion secondary point light source. The luminous flux emitted from the pinhole 12 is transmitted through the light projecting optical path 13.
The light is converted into a parallel light beam by a collimator lens 14 provided in the camera. A lens receiver 15 is provided in the light projecting optical path 13, and a lens 17 to be measured is set in the lens receiver 15. The lens receiver 15 has a diameter of about 8φ (mm) when the test lens 17 is a spectacle lens, but has a diameter of about 5φ (mm) when a contact lens is set as the test lens 17. Is replaced by the lens receiver 15.

【0014】レンズ受け15の後方には、図5に示すよ
うに開口18aを有する光学特性測定用パターン18が
設けられているが、開口18aの個数は少なくとも3個
以上であれば良い。少なくとも3個あれば、光学特性値
を演算できるからである。また、開口18aの個数が多
すぎると、演算に時間がかかるため、4個が望ましい。
ここでは、開口18aはそれぞれ円形であり、測定光軸
Oから等距離の箇所に90度ずつずれて配置されてい
る。累進レンズのように回転対称でない被検レンズ17
でも測定できるようにするため、上下対称位置に開口1
8aを設けることが望ましい。
As shown in FIG. 5, an optical characteristic measuring pattern 18 having openings 18a is provided behind the lens receiver 15, but the number of openings 18a may be at least three or more. This is because the optical characteristic value can be calculated with at least three. On the other hand, if the number of the openings 18a is too large, it takes a long time to perform the calculation.
Here, each of the openings 18a is circular, and is arranged at a position equidistant from the measurement optical axis O and shifted by 90 degrees. Test lens 17 that is not rotationally symmetric such as a progressive lens
However, in order to be able to measure,
8a is desirably provided.

【0015】各開口18aには、収束レンズ19がそれ
ぞれ配設されている。開口18aの大きさは、オートレ
ンズメータによる光学特性の測定値を、できる限りマニ
ュアル式のレンズメータによる光学特性値に近づけるよ
うにするため、なるべく大きいのが望ましい。被検レン
ズ17がコンタクトレンズである場合、レンズ受け15
の開口が約5φであるので、4個の開口18aの外接円
が5mm以下であることが要求される。また、開口18
aの大きさが大きすぎると、パワーがプラスの強度の被
検レンズ17を測定する場合、光点像同志が密着して各
光点像の重心位置を演算できなくなり、一方、開口18
aの中心位置O1は測定光軸Oからその中心位置O1ま
での距離lが短いと測定感度が鈍り、逆に大きすぎる
と、パワーがマイナスの強度の被検レンズ17の場合に
光点像が後述する二次元受像センサの有効エリアからは
み出すため、測定光軸Oから中心位置O1までの距離l
が1mm程度で、開口18aの大きさが1φ程度である
ことが望ましい。
A converging lens 19 is provided in each opening 18a. The size of the opening 18a is desirably as large as possible in order to make the measured value of the optical characteristic by the auto lens meter as close as possible to the optical characteristic value by the manual lens meter. When the test lens 17 is a contact lens, the lens receiver 15
Is about 5φ, the circumscribed circle of the four openings 18a is required to be 5 mm or less. The opening 18
If the value of “a” is too large, when measuring the test lens 17 having a plus power, the light spot images come into close contact with each other and the center of gravity of each light spot image cannot be calculated.
When the distance l from the measurement optical axis O to the center position O1 of the center position O1 is short, the measurement sensitivity becomes low. On the contrary, when the distance l is too large, the light spot image is formed in the case of the test lens 17 having a minus power. In order to protrude from the effective area of the two-dimensional image receiving sensor described later, a distance l from the measurement optical axis O to the center position O1 is set.
Is preferably about 1 mm and the size of the opening 18a is about 1φ.

【0016】その光学特性測定用パターン板18は、例
えば、ガラス板に金枠を設け、この金枠にマイクロレン
ズを固定したものを用いても良いし、また例えば、1枚
の樹脂板又はガラス板に4個の収束レンズ19を成形し
たモールドレンズを用いても良いし、エッチングにより
ガラス板に回折現象を利用した集光レンズ19を形成し
たものを用いても良い。また、収束レンズ19以外の部
分をクロム等の物質を用いて遮光するのが望ましい。
As the pattern plate 18 for measuring optical characteristics, for example, a glass plate provided with a metal frame and a microlens fixed to the metal frame may be used. For example, one resin plate or glass plate may be used. A mold lens in which four converging lenses 19 are formed on a plate may be used, or a lens in which a condensing lens 19 utilizing a diffraction phenomenon is formed on a glass plate by etching may be used. Further, it is desirable to shield the portion other than the converging lens 19 from light using a substance such as chrome.

【0017】この光学特性測定用パターン18の後方に
は、二次元受像素子としてのエリアCCD20が設けら
れている。エリアCCD20からレンズ受けまでの距離
Z、すなわち、二次元受像素子20から被検レンズ17
の裏面頂点位置17aまでの距離Zは、投光光路13に
測定可能な最も度の強いプラスのパワーの被検レンズ1
7がセットされているとしたときそのバックフォーカス
距離Z1よりも小さく設定されている。光点像同志の重
なり又は被検レンズ17を透過した測定光束の逆転を避
けるためである。
Behind the optical characteristic measuring pattern 18, an area CCD 20 as a two-dimensional image receiving element is provided. The distance Z from the area CCD 20 to the lens receiver, that is, the distance from the two-dimensional image receiving element 20 to the lens
The distance Z from the rear surface vertex position 17a of the lens 1 to the test lens 1 having the strongest positive power that can be measured in the light projecting optical path 13
7 is set smaller than the back focus distance Z1. This is for avoiding overlapping of the light spot images or reversal of the measurement light beam transmitted through the lens 17 to be measured.

【0018】すなわち、図6に示すように、エリアCC
D20を破線で示す位置に設けると、被検レンズ17の
上の領域を通過した測定光束P1はエリアCCD20の
下の領域に結像し、下の領域を通過した測定光束P2は
エリアCCD20の上の領域に結像し、測定光束Pの逆
転が生じて被検レンズ17を通過する際の測定光束Pが
エリアCCD20上のどの光点像に対応するか判別でき
なくなるからである。
That is, as shown in FIG.
When D20 is provided at the position shown by the broken line, the measurement light flux P1 passing through the area above the test lens 17 forms an image on the area below the area CCD 20, and the measurement light flux P2 passing through the area below the area CCD 20 is focused on the area CCD 20. This is because the measurement light flux P is reversed and the measurement light flux P passing through the lens 17 to be measured cannot be determined to which light spot image on the area CCD 20 corresponds.

【0019】そこで、例えば、オートレンズメータの測
定可能な被検レンズ17の測定度数が±25ディオプタ
ーの場合、バックフォーカス距離Z1は40mmである
ので、レンズ受け15からエリアCCD20までの距離
Zは20mm〜30mmであるのが望ましい。距離Zを
20mm以下に設定すると、測定感度が劣化する。な
お、レンズ受け15とエリアCCD20との間にリレー
レンズを設けた場合、この限りではない。
Therefore, for example, when the measurement frequency of the test lens 17 that can be measured by the auto lens meter is ± 25 diopters, the back focus distance Z1 is 40 mm, so the distance Z from the lens receiver 15 to the area CCD 20 is 20 mm. Desirably, it is 3030 mm. When the distance Z is set to be equal to or less than 20 mm, the measurement sensitivity deteriorates. This is not the case when a relay lens is provided between the lens receiver 15 and the area CCD 20.

【0020】また、測定頻度が高い度数の被検レンズ1
7、例えば、弱度(−2.5D)の被検レンズ17が投
光光路13にセットされたとき、エリアCCD20上で
の光点像の大きさが最小となるように設定するのが、キ
ズ、汚れの測定への影響を受けにくくするうえで好まし
い。
The lens 1 to be measured having a high frequency of measurement
7. For example, when the test lens 17 having a weakness (−2.5 D) is set in the light projecting optical path 13, the setting is such that the size of the light spot image on the area CCD 20 is minimized. It is preferable in that it is hardly affected by the measurement of scratches and dirt.

【0021】被検レンズ17へ入射する測定光束nは、
被検レンズ17の透過後に偏向され、その偏向の度合い
は入射高さhとその入射位置における被検レンズ17の
度数とにより定まり、透過後の測定光束の偏向角θとす
ると、S=tanθ/10hであり、入射高さhは既知
であり、図7に示すように、エリアCCD20上での中
心線O’からの高さをhiとすると、θ=(h−hi/
Z)であるので、重心位置G1〜G4が求まれば、被検
レンズ17の度数Sが求められる。
The measurement light beam n incident on the lens 17 to be inspected is
The light is deflected after passing through the test lens 17, and the degree of the deflection is determined by the incident height h and the power of the test lens 17 at the incident position. Assuming that the deflection angle θ of the transmitted measurement light beam is S = tan θ / 10h, the incident height h is known, and as shown in FIG. 7, when the height from the center line O ′ on the area CCD 20 is hi, θ = (h−hi /
Since Z), if the barycentric positions G1 to G4 are obtained, the power S of the lens 17 to be measured is obtained.

【0022】被検レンズ17がプラスのパワーを有する
場合には、各光点像PM1〜PM4の間隔は狭まり、マ
イナスパワーを有する場合には、各光点像PM1〜PM
4の間隔が広がり、被検レンズ17が球面レンズの場合
には、各光点像PM1〜PM4の中心位置G0は中心線
O’から略等距離の位置にあるが、被検レンズ17に歪
みがある場合には、各光点像PM1〜PM4の中心位置
G0から中心線O’までの距離は異なることになる。
When the test lens 17 has a positive power, the interval between the light spot images PM1 to PM4 becomes narrow, and when the test lens 17 has a negative power, the light spot images PM1 to PM4
4 are widened and the lens 17 to be inspected is a spherical lens, the center position G0 of each of the light spot images PM1 to PM4 is located at substantially the same distance from the center line O ′, If there is, the distance from the center position G0 of each of the light spot images PM1 to PM4 to the center line O 'will be different.

【0023】本発明によれば、開口18aをできる限り
大きく形成したので、被検レンズ17の収差の影響を受
けて多数の細い光線が各1個の開口18aを通過するこ
とになり、従って、各1個の開口18aの各光点像PM
1〜PM4の重心位置G1〜G4が1本の細い光線に基
づく中心位置(重心位置)G0に対してずれてエリアC
CD20上に形成されることになり、マニュアル式のレ
ンズメータにより得られる度数に近い値の度数が得られ
ることになる。
According to the present invention, since the aperture 18a is formed as large as possible, a large number of thin light beams pass through each one aperture 18a under the influence of the aberration of the lens 17 to be measured. Each light spot image PM of one opening 18a
Areas C1 to PM4 deviate from the center position (center of gravity position) G0 based on one thin ray and the center of gravity G1 to G4 of area C
The power is formed on the CD 20, and a power close to the power obtained by the manual lens meter can be obtained.

【0024】また、開口18aに向かう測定光束Pが通
る被検レンズ17の局所領域に小さいキズ、汚れが存在
して、開口18aに向かう測定光束が部分的に遮られた
としても、その遮られる割合が細い光線の場合に比べて
小さいので、光点像PM1〜PM4の重心位置G1〜G
4のずれが小さく、従って、ゴミ、汚れに起因する測定
誤差が小さくなり、測定精度が向上する。
Further, even if a small flaw or dirt is present in a local area of the lens 17 through which the measurement light beam P passing through the opening 18a passes, even if the measurement light beam going toward the opening 18a is partially blocked, the light beam is blocked. Since the ratio is smaller than in the case of a thin light beam, the barycentric positions G1 to G of the light spot images PM1 to PM4
4 is small, and therefore, the measurement error due to dust and dirt is small, and the measurement accuracy is improved.

【0025】[0025]

【発明の効果】本発明は、以上説明したように構成した
ので、マニュアルレンズメータの光学特性測定値に近い
光学測定値を自動測定により得ることができるという効
果を奏する。
As described above, the present invention has an effect that an optical measurement value close to the optical characteristic measurement value of a manual lens meter can be obtained by automatic measurement.

【0026】また、被検レンズにゴミ、汚れが存在して
いる場合でも、ゴミ、汚れに起因する測定誤差が小さく
なり、測定精度が向上するという効果を奏する。
Further, even when dust and dirt are present on the lens to be inspected, a measurement error caused by dust and dirt is reduced, and the measurement accuracy is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のオートレンズメータの光学系を示す図
であって、(a)はその測定原理を説明するための光学
図、(b)はその不具合の一例を示す図である。
FIGS. 1A and 1B are diagrams showing an optical system of a conventional auto lens meter, wherein FIG. 1A is an optical diagram for explaining the principle of measurement, and FIG. 1B is a diagram showing an example of the problem.

【図2】 図1に示す光学特性測定用パターンの平面図
である。
FIG. 2 is a plan view of the optical characteristic measurement pattern shown in FIG.

【図3】 被検レンズを透過した測定光束の光線経路を
示す光線図である。
FIG. 3 is a ray diagram showing a ray path of a measurement light beam transmitted through a test lens.

【図4】 本発明に係わるオートレンズメータの測定原
理を説明するための光学図である。
FIG. 4 is an optical diagram for explaining the measurement principle of the auto lens meter according to the present invention.

【図5】 図4に示す光学特性測定用パターンの平面図
である。
FIG. 5 is a plan view of the optical characteristic measurement pattern shown in FIG.

【図6】 本発明に係わる光学特性測定用パターンと被
検レンズの測定光束の光線経路と二次元受像素子との位
置関係を示す模式図である。
FIG. 6 is a schematic diagram showing a positional relationship between an optical characteristic measuring pattern, a light beam path of a measuring light beam of a test lens, and a two-dimensional image receiving element according to the present invention.

【図7】 本発明に係わる二次元受像素子に受像された
光点像を示す平面図である。
FIG. 7 is a plan view showing a light spot image received by the two-dimensional image receiving element according to the present invention.

【符号の説明】[Explanation of symbols]

13…投光光路 17…被検レンズ 17a…裏面頂点位置 18…光学特性測定用パターン 18a…開口 20…二次元受像素子 P…測定光束 Z1…バックフォーカス距離 Reference Signs List 13 Projecting light path 17 Lens under test 17a Backside vertex position 18 Optical characteristic measuring pattern 18a Opening 20 Two-dimensional image receiving element P Measurement light beam Z1 Back focus distance

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検レンズの光学特性を測定するための
測定光束の投光光路に少なくとも3個の開口を有する光
学特性測定用パターンを設けると共に、前記各開口を透
過した測定光束の光点像を受像する二次元受像素子を設
け、該二次元受像素子上での前記各光点像の位置を検出
して、前記被検レンズの光学特性を自動的に演算測定す
るオートレンズメータであって、前記投光光路に測定可
能な最も度の強いプラスのパワーの被検レンズがセット
されているとしたとき、前記二次元受像素子から前記被
検レンズの裏面頂点位置までの距離が、そのバックフォ
ーカス距離よりも小さく設定されているオートレンズメ
ータ。
An optical characteristic measurement pattern having at least three openings is provided in a light projecting optical path of a measurement light beam for measuring optical characteristics of a test lens, and a light spot of the measurement light beam transmitted through each of the openings. An auto lens meter for providing a two-dimensional image receiving element for receiving an image, detecting the position of each of the light spot images on the two-dimensional image receiving element, and automatically calculating and measuring the optical characteristics of the lens to be inspected; The distance from the two-dimensional image receiving element to the vertex position of the rear surface of the test lens, when the test lens having the strongest measurable positive power is set in the light projecting optical path. However, the auto lens meter is set smaller than its back focus distance.
【請求項2】 前記二次元受像素子上での光点像に基づ
き演算された度数が、前記被検レンズをマニュアル式の
レンズメータにより測定したときの度数に近い値が得ら
れるように前記各開口の大きさが設定され、かつ、前記
各開口にはそれぞれ収束レンズが設けられている請求項
1に記載のオートレンズメータ。
2. The method according to claim 1, wherein the power calculated based on the light spot image on the two-dimensional image receiving element is a value close to the power obtained by measuring the test lens with a manual lens meter. The auto lens meter according to claim 1, wherein the size of each opening is set, and each of the openings is provided with a converging lens.
【請求項3】 前記収束レンズの焦点距離は光学特性値
±5ディオプターの範囲のいずれかが前記投光光路にセ
ットされたときに前記光点像の大きさが最小となるよう
に設定されている請求項2に記載のオートレンズメー
タ。
3. The focal length of the converging lens is set such that the size of the light spot image is minimized when any one of optical characteristic values ± 5 diopters is set in the light projecting optical path. The auto lens meter according to claim 2.
【請求項4】 前記投光光路に測定可能な最も度の強い
プラスのパワーの被検レンズがセットされているとした
とき、前記各光点像が前記二次元受像素子上で互いに密
着しない大きさとされている請求項2に記載のオートレ
ンズメータ。
4. When the lens having the highest measurable positive power is set in the light projecting optical path, the light spot images do not adhere to each other on the two-dimensional image receiving element. 3. The auto lens meter according to claim 2, which is sized.
JP9292078A 1997-10-24 1997-10-24 Automatic lens meter Pending JPH11125581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9292078A JPH11125581A (en) 1997-10-24 1997-10-24 Automatic lens meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9292078A JPH11125581A (en) 1997-10-24 1997-10-24 Automatic lens meter

Publications (1)

Publication Number Publication Date
JPH11125581A true JPH11125581A (en) 1999-05-11

Family

ID=17777261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9292078A Pending JPH11125581A (en) 1997-10-24 1997-10-24 Automatic lens meter

Country Status (1)

Country Link
JP (1) JPH11125581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188025A (en) * 1999-12-28 2001-07-10 Topcon Corp Wavefront sensor, and lens meter and active optical reflecting telescope using same
US7230693B2 (en) 2004-03-31 2007-06-12 Nidek Co., Ltd. Lens meter
US7486389B2 (en) 2005-01-07 2009-02-03 Nidek Co., Ltd. Lens meter for measuring refractive power distribution
JP2009128207A (en) * 2007-11-26 2009-06-11 Suruga Seiki Kk Method and device for measuring curvature of luminous flux wave front

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155350U (en) * 1986-03-25 1987-10-02
JPH0618363A (en) * 1992-06-30 1994-01-25 Canon Inc Lens meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155350U (en) * 1986-03-25 1987-10-02
JPH0618363A (en) * 1992-06-30 1994-01-25 Canon Inc Lens meter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188025A (en) * 1999-12-28 2001-07-10 Topcon Corp Wavefront sensor, and lens meter and active optical reflecting telescope using same
US7230693B2 (en) 2004-03-31 2007-06-12 Nidek Co., Ltd. Lens meter
US7486389B2 (en) 2005-01-07 2009-02-03 Nidek Co., Ltd. Lens meter for measuring refractive power distribution
JP2009128207A (en) * 2007-11-26 2009-06-11 Suruga Seiki Kk Method and device for measuring curvature of luminous flux wave front

Similar Documents

Publication Publication Date Title
JP4549468B2 (en) Lens meter
US5917586A (en) Lens meter for measuring the optical characteristics of a lens
JPH0434092B2 (en)
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
EP0589003B1 (en) Method and apparatus for determining the optical properties of a lens
US4281926A (en) Method and means for analyzing sphero-cylindrical optical systems
JPH0627706B2 (en) Reflectance measuring device
JP2002277348A (en) Transmissivity measuring method and device
KR101062279B1 (en) Refractive index measuring device
JPH11125581A (en) Automatic lens meter
JP3749152B2 (en) Lens meter
JPH0933396A (en) Lens meter
JP2008026049A (en) Flange focal distance measuring instrument
JPH0365488B2 (en)
JP3590508B2 (en) Optical system assembly adjustment device and assembly adjustment method
JPH0249558Y2 (en)
JP2003270091A (en) Method and apparatus for measuring wave front aberration in optical system
JPH0346774B2 (en)
JP2001166202A (en) Focus detection method and focus detector
JP3040131B2 (en) Spherical surface scratch inspection device
JPS6255542A (en) Optical system inspecting device
JPS6370110A (en) Distance measuring apparatus
JPH09133608A (en) Lens meter
JPH09288039A (en) Lens meter
JPH09257643A (en) Lens meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905