JPH09133608A - Lens meter - Google Patents

Lens meter

Info

Publication number
JPH09133608A
JPH09133608A JP29443695A JP29443695A JPH09133608A JP H09133608 A JPH09133608 A JP H09133608A JP 29443695 A JP29443695 A JP 29443695A JP 29443695 A JP29443695 A JP 29443695A JP H09133608 A JPH09133608 A JP H09133608A
Authority
JP
Japan
Prior art keywords
lens
measurement
inspected
power
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29443695A
Other languages
Japanese (ja)
Inventor
Hidekazu Yanagi
英一 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP29443695A priority Critical patent/JPH09133608A/en
Publication of JPH09133608A publication Critical patent/JPH09133608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lens meter by which a lens, to be inspected, whose power is strong can be measured simply. SOLUTION: In a lens meter, a luminous flux from a light source 1 is made incident on a lens 9 to be inspected, the displacement amount of the luminous flux which is transmitted through the lens to be inspected is detected by a light-receiving sensor 6b, power numbers in respective positions on the face of the lens 9 to be inspected are measured on the basis of its detection result, and the distribution of the power numbers is measured. At this time, an optical member 3 which is arranged two- dimensionally between the light source part 1 and the lens 9 to be inspected and which forms many measuring luminous fluxes is arranged and installed. A measuring auxiliary lens 11 whose power number distribution is known and which equally distributes the measuring luminous fluxes Pi in the whole of a light-receiving area 6c at the light-receiving sensor 6b at a time when the lens 9 to be inspected is not set in a measuring optical path 10 is arranged, so as to be capable of being inserted and removed, in the measuring optical path 10 at the rear of a part in which the lens 9 to be inspected is arranged and installed. When the measuring luminous fluxes Pi are deviated from the light-receiving area 6c, whether the power of the lens 9 to be inspected is positive or negative is judged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光源部からの光束
を被検レンズに入射させ、この被検レンズ透過後の光束
の変位量を受光センサにより検出し、この検出結果に基
づいて被検レンズの面の各位置における度数を測定する
ことにより度数分布を測定するレンズメーターの改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention makes a light beam from a light source enter a lens to be inspected, detects a displacement amount of the light beam after passing through the lens to be inspected by a light receiving sensor, and inspects based on the detection result. The present invention relates to an improvement of a lens meter that measures a power distribution by measuring the power at each position on the surface of a lens.

【0002】[0002]

【従来の技術】従来から、被検レンズを検者がレンズ受
けにセットし、光源部からの光束を被検レンズに入射さ
せ、この被検レンズ透過後の光束の変位量を受光センサ
により検出し、この検出結果に基づいて被検レンズの面
のその位置における度数を測定するレンズメーターが知
られている。近年、眼鏡レンズとして累進多焦点レン
ズ、遠用非球面レンズが広く普及しつつあり、これに伴
って、被検レンズの面の各位置での度数の変化を測定す
ること、すなわち、度数分布を測定することが要望され
ているが、この従来のレンズメーターでは、検者が手動
で逐一被検レンズを光軸と直交する面内で移動させて、
その位置における度数の読み取りを行っている。
2. Description of the Related Art Conventionally, an examiner sets a lens to be inspected on a lens receiver, makes a light beam from a light source enter the lens to be inspected, and detects a displacement amount of the light beam after passing through the lens to be inspected by a light receiving sensor. However, there is known a lens meter that measures the power at that position on the surface of the lens to be inspected based on the detection result. In recent years, progressive multifocal lenses and distance-use aspherical lenses have become widely used as spectacle lenses, and along with this, measuring the change in the power at each position of the surface of the lens to be tested, that is, the power distribution, Although it is desired to measure, in this conventional lens meter, the examiner manually moves the lens to be inspected one by one in a plane orthogonal to the optical axis,
The frequency is read at that position.

【0003】また、この種のレンズメーターには被検レ
ンズをレンズ受けに対して駆動させる機構のものもあ
る。更に、被検レンズに測定光束として平行光束を投射
し、この被検レンズを透過した光線の変位に基づくモア
レ縞を観測することにより被検レンズの二次元の度数分
布を測定するレンズメーターも知られている。
There is also a lens meter of this type having a mechanism for driving a lens under test with respect to a lens receiver. Furthermore, a lens meter that measures a two-dimensional power distribution of the lens to be inspected by projecting a parallel light beam as a measurement light beam onto the lens to be inspected and observing moire fringes based on the displacement of the light beam transmitted through this lens is also known. Has been.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、検者が
手動で被検レンズを移動させて面の各位置での度数を測
定する従来のレンズメーターでは、安価ではあるが測定
に手間がかかるという問題がある。また、被検レンズを
光軸と直交する面内で自動的に移動させる駆動機構を有
するレンズメーターは、機械的構成が複雑となりかつ高
価であるという問題点を有する。更に、モアレ縞を観測
することにより度数分布を測定するレンズメーターで
は、大口径のレンズを必要とするうえ、モアレ縞の解析
に時間がかかり、迅速に度数分布を測定できないという
問題がある。
However, the conventional lens meter in which the examiner manually moves the lens to be inspected to measure the dioptric power at each position of the surface is inexpensive, but the measurement is troublesome. There is. Further, the lens meter having a drive mechanism for automatically moving the lens to be inspected in a plane orthogonal to the optical axis has a problem that the mechanical structure is complicated and the cost is high. Furthermore, a lens meter that measures a power distribution by observing moire fringes requires a lens with a large aperture, and it takes time to analyze the moiré fringes, which makes it impossible to quickly measure the power distribution.

【0005】本件出願人は、上記問題点を解決するため
に、光源部と被検レンズとの間に二次元的に配列された
多数の測定光束を形成する光学部材としてのマイクロレ
ンズアレイを設け、1個の光源でかつ低コストで機械的
駆動部を必要とせずしかも被検レンズの面の各位置の度
数分布を短時間で測定できるレンズメーターを先に出願
した(特願平7−189289号を参照)。
In order to solve the above problems, the applicant of the present invention provides a microlens array as an optical member for forming a large number of measurement light beams which are two-dimensionally arranged between a light source section and a lens to be inspected. A patent application was previously filed for a lens meter that uses a single light source, is low in cost, does not require a mechanical drive unit, and can measure the frequency distribution of each position on the surface of the lens under test in a short time (Japanese Patent Application No. 7-189289). No.).

【0006】この光源部と被検レンズとの間に二次元的
に配列された多数の測定光束を形成する光学部材を配設
する構成のレンズメーターの場合、被検レンズが強度の
負のパワーを有する場合、測定光束の一部が受光センサ
の受光エリアからはみ出すことがあり、このような場合
には、被検レンズの度数分布の一部に欠落が生じ、正確
な度数分布を得られないという不都合がある。また、被
検レンズが強度の正のパワーを有する場合、測定光束の
交差が生じ、この場合にも、正確な度数分布の測定がで
きないという不都合がある。
In the case of a lens meter having a structure in which a large number of measuring light fluxes arranged two-dimensionally are arranged between the light source unit and the lens to be inspected, the lens to be inspected has a negative power of intensity. In the case where the measurement light beam has a part, a part of the measurement light beam may protrude from the light receiving area of the light receiving sensor. In such a case, a part of the power distribution of the lens under test may be missing, and an accurate power distribution cannot be obtained. There is an inconvenience. Further, when the lens to be inspected has a strong positive power, the measurement light fluxes cross each other, and in this case also, there is the inconvenience that an accurate power distribution cannot be measured.

【0007】特願平7−189289号に開示の発明で
は、この不都合を解消するために、透過遮光領域からな
る測定光束透過窓を有する液晶シャッターを設け、測定
光束透過窓を順番に開閉することにより、受光センサ上
での測定光束の位置と被検レンズの各面における位置と
の対応関係を与えるようにしている。
In the invention disclosed in Japanese Patent Application No. 7-189289, in order to solve this inconvenience, a liquid crystal shutter having a measurement light flux transmission window formed of a transmission light shielding region is provided, and the measurement light flux transmission window is opened and closed in order. By this, the correspondence between the position of the measurement light beam on the light receiving sensor and the position on each surface of the lens to be inspected is given.

【0008】しかしながら、この液晶シャッターを用い
て、測定光束の受光センサの受光エリアからのはみ出
し、測定光束の交差を回避する構成は、制御が複雑であ
り、総じてコスト高となるという問題点がある。
However, the configuration in which the liquid crystal shutter is used to prevent the measurement light flux from protruding from the light receiving area of the light receiving sensor and avoiding the intersection of the measurement light flux has a problem that the control is complicated and the cost becomes high as a whole. .

【0009】本発明は、上記の事情に鑑みて為されたも
ので、その目的とするところは、強度のパワーを有する
被検レンズの測定を簡便に行うことのできるレンズメー
ターを提供することにある。
The present invention has been made in view of the above circumstances. An object of the present invention is to provide a lens meter capable of easily measuring a lens to be inspected having a strong power. is there.

【0010】[0010]

【課題を解決するための手段】本発明に係わる請求項1
に記載のレンズメーターは、上記の課題を解決するた
め、光源部からの光束を被検レンズに入射させ、該被検
レンズ透過後の光束の変位量を受光センサにより検出
し、この検出結果に基づいて前記被検レンズの面の各位
置における度数を測定することにより度数分布を測定す
るレンズメーターにおいて、前記光源部と前記被検レン
ズとの間に二次元的に配列された多数の測定光束を形成
する光学部材が配設され、前記被検レンズの配設箇所後
方の測定光路に、度数分布が既知でかつ前記受光センサ
の受光エリア内に前記測定光束を収束させる測定補助レ
ンズが挿脱可能に配置されていることを特徴とする。
A first aspect of the present invention.
In order to solve the above problems, the lens meter described in (1) makes the light beam from the light source enter the lens to be detected, and detects the displacement amount of the light beam after passing through the lens to be detected by the light receiving sensor. Based on the lens meter for measuring the power distribution by measuring the power at each position of the surface of the lens to be tested, a large number of measurement light fluxes arranged two-dimensionally between the light source unit and the lens to be tested. An optical member that forms a measurement auxiliary lens for converging the measurement light beam within the light receiving area of the light receiving sensor in the measurement light path behind the installation position of the lens to be inspected. It is characterized by being arranged as possible.

【0011】本発明に係わる請求項2に記載のレンズメ
ーターは、上記の課題を解決するため、光源部からの光
束を被検レンズに入射させ、該被検レンズ透過後の光束
の変位量を受光センサにより検出し、この検出結果に基
づいて前記被検レンズの面の各位置における度数を測定
することにより度数分布を測定するレンズメーターにお
いて、前記光源部と前記被検レンズとの間に二次元的に
配列された多数の測定光束を形成する光学部材が配設さ
れ、前記被検レンズの配設箇所後方の測定光路に、度数
分布が既知でかつ前記被検レンズが前記測定光路に未セ
ットのときに前記受光センサの受光エリア全体に前記測
定光束を均等に分配する測定補助レンズが挿脱可能に配
置され、前記測定光束の前記受光エリアからのはみ出し
により前記被検レンズのパワーの正負を判定することを
特徴とする。
In order to solve the above-mentioned problems, a lens meter according to a second aspect of the present invention allows a light beam from a light source unit to enter a lens to be inspected, and the displacement amount of the light beam after passing through the lens to be inspected. In a lens meter that detects the power distribution by measuring the power at each position of the surface of the lens to be detected based on the detection result by a light receiving sensor, a lens meter that measures the power distribution between the light source unit and the lens to be tested. An optical member for forming a large number of measurement light beams arranged in a dimension is arranged, and the power distribution is known in the rear of the position where the lens to be inspected is disposed, and the lens to be inspected is not yet in the measurement light path. At the time of setting, a measurement auxiliary lens that evenly distributes the measurement light beam is arranged in the entire light reception area of the light receiving sensor so that the measurement light beam is protruded from the light reception area, and the measurement target lens is projected. And judging the sign of's power.

【0012】本発明に係わる請求項3に記載のレンズメ
ーターは、請求項2に記載のレンズメーターにおいて、
前記測定光束の前記受光エリア上での個数に基づき前記
被検レンズを透過した測定光束の前記受光エリアからの
はみ出しを判断することを特徴とする。
A lens meter according to a third aspect of the present invention is the lens meter according to the second aspect,
It is characterized in that the protrusion of the measurement light flux transmitted through the lens under test from the light reception area is determined based on the number of the measurement light flux on the light reception area.

【0013】本発明に係わる請求項4に記載のレンズメ
ーターは、請求項2に記載のレンズメーターにおいて、
前記測定補助レンズが負のパワーを有し、該負のパワー
を有する測定補助レンズを前記測定光路に挿入した状態
で、前記被検レンズを前記測定光路にセットしたとき
に、前記測定光束が前記受光エリアからはみ出したとき
には負のパワーを有する被検レンズが前記測定光路にセ
ットされたと判断し、前記測定光束が前記受光エリアか
らはみ出さなかったときには正のパワーを有する被検レ
ンズが前記測定光路にセットされたと判断することを特
徴とする。
A lens meter according to a fourth aspect of the present invention is the lens meter according to the second aspect,
When the measurement auxiliary lens has a negative power and the measurement auxiliary lens having the negative power is inserted in the measurement optical path and the lens under test is set in the measurement optical path, When the lens to be measured has a negative power, it is determined that the lens to be measured has been set in the measurement optical path, and when the measurement light beam has not protruded from the light receiving area, the lens to be measured has a positive power. It is characterized in that it is determined that it has been set to.

【0014】本発明に係わる請求項5に記載のレンズメ
ーターは、請求項4に記載のレンズメーターにおいて、
前記被検レンズが負のパワーを有するときは、前記測定
光路から前記負のパワーを有する測定補助レンズを離脱
させた状態で、前記測定光束が前記受光エリアからはみ
出したか否かを判断し、前記測定光束が前記受光エリア
からはみ出さないと判断されたときには、この状態で前
記被検レンズの度数分布を測定し、前記測定光束が前記
受光エリアからはみ出したと判断されたときには度数分
布が既知の正のパワーを有する測定補助レンズを前記測
定光路に挿入した状態で、前記被検レンズの度数分布と
前記正のパワーを有する測定補助レンズの既知の度数分
布とを含んだ仮度数分布を測定し、該仮度数分布から前
記既知の度数分布を除去して前記被検レンズの度数分布
を求めることを特徴とする。
A lens meter according to a fifth aspect of the present invention is the lens meter according to the fourth aspect,
When the lens to be inspected has a negative power, it is determined whether or not the measurement light beam has protruded from the light receiving area in a state where the measurement auxiliary lens having the negative power is removed from the measurement optical path, When it is determined that the measurement light flux does not extend from the light receiving area, the power distribution of the lens to be tested is measured in this state, and when it is determined that the measurement light flux extends from the light receiving area, the known power distribution is known. In a state in which a measurement auxiliary lens having a power of is inserted in the measurement optical path, a provisional power distribution including a power distribution of the lens under test and a known power distribution of the measurement auxiliary lens having a positive power is measured, The known power distribution is removed from the provisional power distribution to obtain the power distribution of the lens to be tested.

【0015】本発明に係わる請求項6に記載のレンズメ
ーターは、請求項4に記載のレンズメーターにおいて、
前記被検レンズが正のパワーを有すると判断されたとき
には、負のパワーを有する測定補助レンズを前記測定光
路に挿入した状態で、前記被検レンズの度数分布と前記
負のパワーを有する測定補助レンズの既知の度数分布と
を含んだ仮度数分布を測定し、該仮度数分布から前記既
知の度数分布を除去して前記被検レンズの度数分布を求
めることを特徴とする。
A lens meter according to a sixth aspect of the present invention is the lens meter according to the fourth aspect,
When it is determined that the lens to be inspected has a positive power, with the measurement auxiliary lens having a negative power inserted in the measurement optical path, the power distribution of the lens to be inspected and the measurement auxiliary having the negative power It is characterized in that a virtual power distribution including a known power distribution of the lens is measured, and the known power distribution is removed from the virtual power distribution to obtain a power distribution of the lens to be tested.

【0016】[0016]

【作用】レンズメーターの測定光路には、度数分布が既
知の負のパワーを有する測定補助レンズが挿入されてい
る。被検レンズが未配置のとき、測定光束は受光センサ
の受光エリア全体に均等分配される。被検レンズを測定
光路にセットした場合、(イ)その被検レンズが負のパ
ワーを有するとき、測定光束の一部が受光センサの受光
エリアからはみ出す。(ロ)被検レンズが正のパワーを
有するとき、測定光束は受光センサの受光エリアからは
み出さない。受光エリアから測定光束がはみ出したか否
かは、測定光束の個数により判断する。これにより、被
検レンズが負のパワーを有するか、正のパワーを有する
かの判定が可能である。
In the measuring optical path of the lens meter, a measurement auxiliary lens having a known negative power and having a negative power is inserted. When the lens to be inspected is not arranged, the measurement light beam is evenly distributed over the entire light receiving area of the light receiving sensor. When the lens to be inspected is set in the measuring optical path, (a) when the lens to be inspected has a negative power, a part of the measuring light beam is projected from the light receiving area of the light receiving sensor. (B) When the lens to be inspected has a positive power, the measurement light flux does not extend from the light receiving area of the light receiving sensor. Whether or not the measurement light beam is projected from the light receiving area is determined by the number of measurement light beams. This makes it possible to determine whether the lens under test has negative power or positive power.

【0017】(イ)被検レンズが負のパワーであると判
断されたとき、負のパワーを有する測定補助レンズを測
定光路から離脱させる。この場合に、測定光束が受光セ
ンサの受光エリアからはみ出す場合と、はみ出さない場
合とがある。
(A) When it is determined that the lens under test has negative power, the measurement auxiliary lens having negative power is removed from the measurement optical path. In this case, the measurement light beam may or may not protrude from the light receiving area of the light receiving sensor.

【0018】測定光束が受光センサの受光エリアからは
み出さないと判断された場合、負のパワーを有する測定
補助レンズを測定光路から離脱させた状態で、その被検
レンズの度数分布を測定する。この測定によって得られ
た度数分布がその被検レンズの正しい度数分布である。
When it is determined that the measuring light beam does not extend from the light receiving area of the light receiving sensor, the power distribution of the lens under test is measured with the measurement auxiliary lens having negative power removed from the measurement optical path. The power distribution obtained by this measurement is the correct power distribution of the lens under test.

【0019】測定光束が受光センサの受光エリアからは
み出すと判断された場合、その被検レンズは強度の負の
パワーを有すると判断して、度数分布が既知の正のパワ
ーを有する測定補助レンズを測定光路に挿入し、この状
態で、被検レンズの度数分布と既知の度数分布とを含ん
だ仮度数分布を測定し、この仮度数分布から既知の度数
分布を除去して被検レンズの正しい度数分布を求める。
度数分布が既知の正のパワーを有する測定補助レンズを
測定光路に挿入しても測定光束が受光エリアからはみ出
す場合には、度数分布の測定を中止する。被検レンズが
眼鏡レンズの場合には、このような事態がほとんど生じ
ないように光学系は設計される。
When it is determined that the measurement light beam is out of the light receiving area of the light receiving sensor, it is determined that the lens under test has a negative power of intensity, and a measurement auxiliary lens having a positive power whose power distribution is known is used. It is inserted in the measurement optical path, and in this state, the virtual power distribution including the power distribution of the lens under test and the known power distribution is measured, and the known power distribution is removed from this virtual power distribution to correct the lens under test. Find the frequency distribution.
Even if the measurement auxiliary lens having a known positive frequency power and having a positive power is inserted in the measurement optical path, if the measurement light beam is out of the light receiving area, the measurement of the frequency distribution is stopped. When the lens to be inspected is a spectacle lens, the optical system is designed so that such a situation hardly occurs.

【0020】(ロ)被検レンズが正のパワーであると判
断されたとき、度数分布が既知の負のパワーを有する測
定補助レンズを測定光路に挿入した状態で、被検レンズ
の度数分布と既知の度数分布とを含んだ仮度数分布を測
定し、この仮度数分布からその既知の度数分布を除去し
て被検レンズの正しい度数分布を求める。
(B) When it is determined that the lens to be inspected has positive power, the measurement auxiliary lens having negative power whose known power distribution is known is inserted in the measurement optical path, and A virtual power distribution including the known power distribution is measured, and the known power distribution is removed from the virtual power distribution to obtain the correct power distribution of the lens to be tested.

【0021】というのは、既知の負のパワーを有する測
定補助レンズを測定光路から離脱させて被検レンズの度
数分布を測定したときと、仮度数分布から測定補助レン
ズの既知の度数分布を除去することにより得られた被検
レンズの度数分布とに差がない場合には、既知の負のパ
ワーを有する測定補助レンズを測定光路から離脱させた
ときに、被検レンズを透過した測定光束に交差がないと
考えられ、既知の負のパワーを有する測定補助レンズを
測定光路から離脱させて被検レンズの度数分布を測定し
たときと、仮度数分布から測定補助レンズの既知の度数
分布を除去することにより得られた被検レンズの度数分
布とに差がある場合には、測定補助レンズを測定光路か
ら離脱させたときに、被検レンズを透過した測定光束に
交差があると考えられからである。
This is because when the measurement auxiliary lens having a known negative power is removed from the measurement optical path to measure the power distribution of the lens under test, and the known power distribution of the measurement auxiliary lens is removed from the provisional power distribution. If there is no difference in the power distribution of the test lens obtained by doing, when the measurement auxiliary lens having a known negative power is removed from the measurement optical path, the measurement light flux transmitted through the test lens It is considered that there is no crossing, and when the measurement auxiliary lens having a known negative power is removed from the measurement optical path to measure the power distribution of the lens under test, the known power distribution of the measurement auxiliary lens is removed from the virtual power distribution. If there is a difference in the power distribution of the test lens obtained by doing so, it is considered that the measurement light flux transmitted through the test lens has an intersection when the measurement auxiliary lens is removed from the measurement optical path. This is because is.

【0022】既知の負のパワーを有する測定補助レンズ
を測定光路に挿入した状態でも、測定光束の交差がある
ことは考えられるが、被検レンズが眼鏡レンズの場合に
は、このような事態がほとんど生じないように光学系は
設計される。
It is conceivable that the measurement light beams may intersect even when a known measurement auxiliary lens having negative power is inserted in the measurement optical path. However, in the case where the test lens is a spectacle lens, such a situation occurs. The optical system is designed so that it rarely occurs.

【0023】[0023]

【発明の実施の形態】図1ないし図7は本発明の実施の
形態に係わるレンズメーターの測定光学系を示し、図1
において、1はタングステンランプからなる光源、2は
コリメーターレンズ、3はマイクロレンズアレイ、4は
レンズ受け、5はリレーレンズ、6はCCDカメラ、6
aはCCDカメラ6のレンズ、6bはCCDカメラ6の
受光センサである。タングステンランプ1の直前方には
絞り7、フィルタ8が設けられ、タングステンランプ
1、絞り7、フィルタ8、コリメータレンズ2は1個の
光源部を構成している。フィルタ8はe線近傍の波長の
光を透過し、e線以外の光線を遮光する。タングステン
ランプ1から出射された光束はコリメーターレンズ2に
より平行光束とされて、マイクロレンズアレイ3に導か
れる。このマイクロレンズアレイ3は二次元的に配列さ
れた多数の微小レンズ3aを有する。この微小レンズ3
aは例えば図8に示すような球面レンズである。各微小
レンズ3aは実質的に同一の焦点距離を有し、各微小レ
ンズ3aの個数は約1000個であり、マイクロレンズ
アレイ3は平行光束に基づきこの個数に相当する二次元
的に配列された多数の測定光束Piを生成する光学部材
としての役割を有する。この光学部材としては、マイク
ロレンズアレイ3の代わりに多数のピンホールを有する
ピンホール板であっても良い。
1 to 7 show a measuring optical system of a lens meter according to an embodiment of the present invention.
In FIG. 1, 1 is a light source made of a tungsten lamp, 2 is a collimator lens, 3 is a microlens array, 4 is a lens receiver, 5 is a relay lens, 6 is a CCD camera, and 6
Reference numeral a is a lens of the CCD camera 6, and reference numeral 6b is a light receiving sensor of the CCD camera 6. A diaphragm 7 and a filter 8 are provided in front of the tungsten lamp 1, and the tungsten lamp 1, the diaphragm 7, the filter 8 and the collimator lens 2 constitute one light source unit. The filter 8 transmits light having a wavelength near the e-line and blocks light rays other than the e-line. The light flux emitted from the tungsten lamp 1 is collimated by the collimator lens 2 and guided to the microlens array 3. The microlens array 3 has a large number of microlenses 3a arranged two-dimensionally. This micro lens 3
a is a spherical lens as shown in FIG. 8, for example. Each microlens 3a has substantially the same focal length, the number of each microlens 3a is about 1000, and the microlens array 3 is two-dimensionally arranged corresponding to this number based on the parallel light flux. It has a role as an optical member that generates a large number of measurement light beams Pi. The optical member may be a pinhole plate having a large number of pinholes instead of the microlens array 3.

【0024】レンズ受け4には後述する被検レンズ9、
9´がセットされ、この被検レンズ9、9´はマイクロ
アレイレンズ3の後側焦点位置近傍に位置する。この測
定光学系の測定光路10にはレンズ受け4とリレーレン
ズ5との間に、図1に示すように予め度数分布が既知の
負のパワーを有する測定補助レンズ11が挿入されてい
る。この測定補助レンズ11は、被検レンズ9、9´が
レンズ受け4に未セットのとき、すなわち、被検レンズ
9、9´が測定光路10に未挿入のとき、この測定補助
レンズ11を透過した測定光束Piが図9に示すように
受光センサ6bの受光エリア6cの全体に均等に分配さ
れるように設計されている。図2に示すように、負のパ
ワーを有する被検レンズ9が測定光路10にセットされ
た場合には、この被検レンズ9を通過するによって外側
に向かって屈折された測定光束Piが測定補助レンズ1
1を通過することによって更に外側に向かって屈折され
るため、図10に示すように、測定光束Piの一部が受
光センサ6bの受光エリア6cからはみ出し、この受光
エリア6c上の測定光束Piの個数が減少する。従っ
て、受光エリア6c上の測定光束Piの個数をカウント
することにより、被検レンズ9が負のパワーを有するか
否かが判断できる。
The lens receiver 4 includes a lens 9 to be tested, which will be described later.
9 ′ is set, and the lenses 9 and 9 ′ to be inspected are located near the rear focus position of the microarray lens 3. In the measurement optical path 10 of this measurement optical system, between the lens receiver 4 and the relay lens 5, as shown in FIG. 1, a measurement auxiliary lens 11 having a negative power whose frequency distribution is known in advance is inserted. The measurement-assisting lens 11 transmits the measurement-assisting lens 11 when the lenses 9 and 9 ′ are not set in the lens receiver 4, that is, when the lenses 9 and 9 ′ are not inserted in the measurement optical path 10. The measured luminous flux Pi is designed to be evenly distributed over the entire light receiving area 6c of the light receiving sensor 6b as shown in FIG. As shown in FIG. 2, when the test lens 9 having negative power is set in the measurement optical path 10, the measurement light beam Pi refracted outward by passing through the test lens 9 assists the measurement. Lens 1
Since the light beam is further refracted toward the outside by passing 1, the measurement light beam Pi partially protrudes from the light receiving area 6c of the light receiving sensor 6b, and the measurement light beam Pi on the light receiving area 6c is reflected as shown in FIG. The number decreases. Therefore, by counting the number of the measurement light beams Pi on the light receiving area 6c, it can be determined whether or not the lens 9 under test has a negative power.

【0025】被検レンズ9が負のパワーを有すると判断
された場合には、図3に示すように、度数分布が既知の
負のパワーを有する測定補助レンズ11を測定光路10
から離脱させる。この測定補助レンズ11を測定光路1
0から離脱させたときに、図11に示すように測定光束
Piの全部が受光センサ6bの受光エリア6cからはみ
出していないときには、この図3に示す状態で被検レン
ズ9の度数分布を測定する。この測定によって得られた
度数分布がその被検レンズ9の正しい度数分布である。
When it is determined that the lens 9 to be inspected has negative power, as shown in FIG. 3, the measurement auxiliary lens 11 having negative power whose frequency distribution is known is used as the measurement optical path 10.
Disengage from. This measurement auxiliary lens 11 is connected to the measurement optical path 1
When the measurement light beam Pi is not entirely projected from the light receiving area 6c of the light receiving sensor 6b as shown in FIG. 11 when it is separated from 0, the power distribution of the lens 9 to be measured is measured in the state shown in FIG. . The power distribution obtained by this measurement is the correct power distribution of the lens 9 under test.

【0026】次に、この度数分布の測定について説明す
る。
Next, the measurement of this frequency distribution will be described.

【0027】被検レンズ9にはその微小レンズ3aに対
応する光源像が形成される。この被検レンズ9を透過し
た各光束Piはリレーレンズ5を介してCCDカメラ6
のレンズ6aに導かれ、受光センサ6bの受光エリア6
cに結像される。被検レンズ9に入射する各微小レンズ
3aからの測定光束Piの主光線Psは光軸Oと平行で
ある。この主光線Psは被検レンズ9を透過後に偏向さ
れ、その偏向の度合は入射高さh(被検レンズ9のその
面9aの主光線Psの入射位置)とその入射位置におけ
る被検レンズ9の度数とによって定まる。
A light source image corresponding to the minute lens 3a is formed on the lens 9 to be inspected. Each light beam Pi transmitted through this lens 9 to be inspected passes through the relay lens 5 and the CCD camera 6
Light receiving area 6 of the light receiving sensor 6b guided to the lens 6a of
Imaged at c. The principal ray Ps of the measurement light beam Pi from each microlens 3a incident on the lens 9 to be inspected is parallel to the optical axis O. The principal ray Ps is deflected after passing through the lens 9 to be inspected, and the degree of the deflection depends on the incident height h (the incident position of the principal ray Ps on the surface 9a of the lens 9 to be inspected) and the lens 9 to be inspected at the incident position. It depends on the frequency and.

【0028】面9aの各点における度数S(単位:ディ
オプター)は、透過後の主光線Psの偏向角をθとする
と、 S=tan θ/(10h) …(1) である。
The power S (unit: diopter) at each point on the surface 9a is S = tan θ / (10h) (1) where θ is the deflection angle of the principal ray Ps after transmission.

【0029】各微小レンズ3aに基づく主光線Psの高
さは既知であり、受光エリア6c上での高さをhi、リ
レー倍率をβ、被検レンズ9の裏側の面9bからリレー
レンズ5までの距離をZとすると、 θ=tan-1{(h−βhi)/Z} …(2) の関係式があるので、受光エリア6c上での未知の高さ
hiを求めれば、偏向角θが求められ、従って、度数S
が(1)式により最終的に求まる。
The height of the chief ray Ps based on each minute lens 3a is known, the height on the light receiving area 6c is hi, the relay magnification is β, from the back surface 9b of the lens 9 to be tested to the relay lens 5. Since there is a relational expression of θ = tan −1 {(h−βhi) / Z} (2) where Z is the distance of Z, the deflection angle θ can be obtained by finding the unknown height hi on the light receiving area 6c. Is obtained, and therefore the frequency S
Is finally obtained by the equation (1).

【0030】図3に破線で示すように、測定光束Piの
屈折が外側に向けて大きく、測定光束Piの一部が受光
センサ6bの受光エリア6cからはみ出すと判断された
場合には、その被検レンズ9は強度の負のパワーを有す
るとして、図4に示すように、度数分布が正のパワーを
有する測定補助レンズ11´を測定光路10に挿入す
る。この測定補助レンズ11´を挿入したときに測定光
束Piが受光センサ6bの受光エリア6cからはみ出さ
ないと判断された場合、この測定補助レンズ11´を測
定光路10に挿入して、被検レンズ9の度数分布とこの
既知の度数分布とを含む仮度数分布を測定し、この仮度
数分布から既知の度数分布を除去して被検レンズ9の正
しい度数分布を求める。度数分布が既知の正のパワーを
有する測定補助レンズ11´を測定光路10に挿入して
も測定光束Piが受光センサ6bの受光エリア6cから
はみ出す場合には、度数分布の測定を中止する。被検レ
ンズ9が眼鏡レンズの場合には、このような事態がほと
んど生じないように光学系は設計される。
As shown by the broken line in FIG. 3, when it is determined that the refraction of the measuring light beam Pi is large toward the outside and a part of the measuring light beam Pi is projected from the light receiving area 6c of the light receiving sensor 6b, the object to be detected is judged. Assuming that the inspection lens 9 has a strong negative power, as shown in FIG. 4, a measurement auxiliary lens 11 ′ having a positive power is inserted in the measurement optical path 10. When it is determined that the measurement light beam Pi does not protrude from the light receiving area 6c of the light receiving sensor 6b when the measurement auxiliary lens 11 'is inserted, the measurement auxiliary lens 11' is inserted into the measurement optical path 10 to measure the lens to be inspected. A virtual power distribution including the power distribution of 9 and this known power distribution is measured, and the known power distribution is removed from this virtual power distribution to obtain the correct power distribution of the lens 9 to be tested. Even if the measurement auxiliary lens 11 'having a known positive power and having a positive power is inserted into the measurement optical path 10, if the measurement light beam Pi is out of the light receiving area 6c of the light receiving sensor 6b, the measurement of the frequency distribution is stopped. When the lens 9 to be inspected is a spectacle lens, the optical system is designed so that such a situation hardly occurs.

【0031】図5に示すように、正のパワーを有する被
検レンズ9´が測定光路10にセットされた場合には、
測定光束Piが受光センサ6bの受光エリア6cからは
み出すことは考えられず、被検レンズ9´は正のパワー
を有すると判断される。被検レンズ9´が正のパワーで
あると判断されたとき、度数分布が既知の負のパワーを
有する測定補助レンズ11を測定光路10に挿入した状
態で、被検レンズ9´の度数分布と既知の度数分布とを
含む仮度数分布から既知の度数分布を除去して被検レン
ズ9´の正しい度数分布を求める。
As shown in FIG. 5, when the lens 9'having a positive power is set in the measuring optical path 10,
It is considered that the measurement light beam Pi does not protrude from the light receiving area 6c of the light receiving sensor 6b, and it is determined that the lens 9'to be tested has a positive power. When it is determined that the lens 9 ′ to be inspected has a positive power, the measurement auxiliary lens 11 having a negative power whose power distribution is known is inserted in the measurement optical path 10 to obtain the power distribution of the lens 9 ′ to be inspected. The known power distribution including the known power distribution is removed from the known power distribution to obtain the correct power distribution of the lens 9 ′ to be tested.

【0032】というのは、既知の負のパワーを有する測
定補助レンズ11を測定光路10から離脱させて被検レ
ンズ9´の度数分布を測定したときと、仮度数分布から
測定補助レンズ11の既知の度数分布を除去することに
より得られた被検レンズ9の度数分布とに差がない場合
には、図6に示すように測定補助レンズ11を測定光路
10から離脱させたとき、被検レンズ9´を透過した測
定光束Piに交差がないと考えられ、既知の負のパワー
を有する測定補助レンズ11を測定光路10から離脱さ
せて被検レンズ9´の度数分布を測定したときと、仮度
数分布から既知の度数分布を除去することにより得られ
た被検レンズ9´の度数分布とに差がある場合には、測
定補助レンズ11を測定光路10から離脱させたとき
に、被検レンズ9´を透過した測定光束Piに図7に示
すように交差があると判断されるからである。
This is because when the measurement auxiliary lens 11 having a known negative power is removed from the measurement optical path 10 to measure the power distribution of the lens 9'to be measured, and when the measurement auxiliary lens 11 is known from the provisional power distribution. When there is no difference in the power distribution of the lens under test 9 obtained by removing the power distribution of the lens under test, the lens under test is removed when the measurement auxiliary lens 11 is removed from the measurement optical path 10 as shown in FIG. It is considered that the measurement light beam Pi transmitted through 9 ′ has no crossing, and the measurement auxiliary lens 11 having a known negative power is detached from the measurement optical path 10 to measure the power distribution of the lens 9 ′ to be measured. When there is a difference in the power distribution of the lens 9 ′ to be measured obtained by removing the known power distribution from the power distribution, when the measurement auxiliary lens 11 is separated from the measurement optical path 10, the lens to be tested is Through 9 ' This is because it is determined that the excess measurement light beam Pi has an intersection as shown in FIG.

【0033】度数分布が既知の負のパワーを有する測定
補助レンズ11を測定光路10に挿入した状態でも、測
定光束Piの交差があることは考えられるが、被検レン
ズ9´が眼鏡レンズの場合には、このような事態がほと
んど生じないように光学系は設計される。
Even if the measurement auxiliary lens 11 having a known negative power and having a negative power is inserted in the measurement optical path 10, it is conceivable that the measurement light beams Pi intersect, but when the lens 9'to be tested is a spectacle lens. The optical system is designed so that such a situation hardly occurs.

【0034】なお、リレーレンズ5の代わりに、スクリ
ーンを配置し、CCDカメラ6で測定光束Piを受光
し、被検レンズ9、9´の度数分布を測定しても良い。
Instead of the relay lens 5, a screen may be arranged so that the CCD camera 6 receives the measurement light beam Pi to measure the power distribution of the lenses 9, 9 '.

【0035】[0035]

【発明の効果】本発明に係わるレンズメーターは、以上
説明したように構成したので、強度のパワーを有する被
検レンズの測定を簡便に行うことができる。
Since the lens meter according to the present invention is constructed as described above, it is possible to easily measure the lens to be inspected having a strong power.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 被検レンズが測定光路に未セットでかつ度数
分布が既知の負のパワーを有する測定補助レンズが挿入
されている状態を示す光学図である。
FIG. 1 is an optical diagram showing a state in which a lens to be inspected has not been set in a measurement optical path and a measurement auxiliary lens having negative power with a known frequency distribution is inserted.

【図2】 負のパワーを有する被検レンズと度数分布が
既知の負のパワーを有する測定補助レンズとが測定光路
に挿入されている状態を示す光学図である。
FIG. 2 is an optical diagram showing a state in which a test lens having negative power and a measurement auxiliary lens having negative power whose power distribution is known are inserted in the measurement optical path.

【図3】 負のパワーを有する被検レンズが測定光路に
挿入されかつ度数分布が既知の負のパワーを有する測定
補助レンズが測定光路から離脱されている状態を示す光
学図である。
FIG. 3 is an optical diagram showing a state in which a lens to be inspected having negative power is inserted in the measurement optical path and a measurement auxiliary lens having negative power whose power distribution is known is removed from the measurement optical path.

【図4】 負のパワーを有する被検レンズと度数分布が
既知の正のパワーを有する測定補助レンズとが測定光路
に挿入されている状態を示す光学図である。
FIG. 4 is an optical diagram showing a state in which a test lens having negative power and a measurement auxiliary lens having positive power whose power distribution is known are inserted in the measurement optical path.

【図5】 正のパワーを有する被検レンズと度数分布が
既知の負のパワーを有する測定補助レンズとが測定光路
に挿入されている状態を示す光学図である。
FIG. 5 is an optical diagram showing a state in which a test lens having a positive power and a measurement auxiliary lens having a negative power whose power distribution is known are inserted in a measurement optical path.

【図6】 正のパワーを有する被検レンズを測定光路に
挿入しかつ度数分布が既知の負のパワーを有する測定補
助レンズを測定光路から離脱させたときに測定光束の交
差がないことを説明するための光学図である。
FIG. 6 illustrates that there is no intersection of measurement light fluxes when a test lens having positive power is inserted in the measurement optical path and a measurement auxiliary lens having negative power with a known frequency distribution is removed from the measurement optical path. It is an optical diagram for doing.

【図7】 正のパワーを有する被検レンズを測定光路に
挿入しかつ度数分布が既知の負のパワーを有する測定補
助レンズを測定光路から離脱させたときに測定光束の交
差があることを説明するための光学図である。
FIG. 7 illustrates that the measurement light flux intersects when a lens to be inspected having a positive power is inserted in the measurement optical path and a measurement auxiliary lens having a negative power with a known frequency distribution is removed from the measurement optical path. It is an optical diagram for doing.

【図8】 図1に示すマイクロレンズアレイの平面図で
ある。
FIG. 8 is a plan view of the microlens array shown in FIG.

【図9】 度数分布が既知の負のパワーを有する測定補
助レンズを測定光路に挿入したときに測定光束の光点像
が受光センサの受光エリアの全体に均等に分配されてい
ることを示す説明図である。
FIG. 9 is an illustration showing that the light spot image of the measurement light beam is evenly distributed over the entire light receiving area of the light receiving sensor when a measurement auxiliary lens having a known negative frequency distribution and having a negative power is inserted into the measurement optical path. It is a figure.

【図10】 受光センサの受光エリアから測定光束の光
点像の一部がはみ出していることを示す説明図である。
FIG. 10 is an explanatory diagram showing that part of the light spot image of the measurement light beam is protruding from the light receiving area of the light receiving sensor.

【図11】 負のパワーを有する度数分布が未知の被検
レンズを測定光路にセットし、度数分布が既知の負のパ
ワーを有する測定補助レンズを測定光路から離脱させた
ときに測定光束の光点像が受光センサの受光エリアから
はみ出していないことを示す説明図である。
FIG. 11 shows a light beam of a measurement light flux when a test lens having a negative power and an unknown power distribution is set in a measurement optical path, and a measurement auxiliary lens having a known power and having a negative power is removed from the measurement optical path. It is explanatory drawing which shows that a point image has not protruded from the light-receiving area of a light-receiving sensor.

【符号の説明】[Explanation of symbols]

1…タングステンランプ(光源部) 2…コリメータレンズ(光源部) 3…マイクロレンズアレイ(光学部材) 3a…微小レンズ 6b…受光センサ 6c…受光エリア 9、9´…被検レンズ 10…測定光路 11、11´…測定補助レンズ Pi…測定光束 DESCRIPTION OF SYMBOLS 1 ... Tungsten lamp (light source part) 2 ... Collimator lens (light source part) 3 ... Micro lens array (optical member) 3a ... Micro lens 6b ... Light receiving sensor 6c ... Light receiving area 9, 9 '... Test lens 10 ... Measuring optical path 11 , 11 '... Measuring auxiliary lens Pi ... Measuring luminous flux

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光源部からの光束を被検レンズに入射さ
せ、該被検レンズ透過後の光束の変位量を受光センサに
より検出し、この検出結果に基づいて前記被検レンズの
面の各位置における度数を測定することにより度数分布
を測定するレンズメーターにおいて、 前記光源部と前記被検レンズとの間に二次元的に配列さ
れた多数の測定光束を形成する光学部材が配設され、前
記被検レンズの配設箇所後方の測定光路に、度数分布が
既知でかつ前記受光センサの受光エリア内に前記測定光
束を収束させる測定補助レンズが挿脱可能に配置されて
いることを特徴とするレンズメーター。
1. A light beam from a light source is made incident on a lens to be inspected, a displacement amount of the light beam after passing through the lens to be inspected is detected by a light receiving sensor, and each surface of the lens to be inspected is detected based on the detection result. In a lens meter that measures a power distribution by measuring the power at a position, an optical member that forms a large number of measurement light fluxes that are two-dimensionally arranged between the light source unit and the lens to be tested is disposed, In the measurement optical path behind the location of the lens to be inspected, a measurement auxiliary lens that has a known frequency distribution and that converges the measurement light beam in the light receiving area of the light receiving sensor is removably disposed. Lens meter to do.
【請求項2】 光源部からの光束を被検レンズに入射さ
せ、該被検レンズ透過後の光束の変位量を受光センサに
より検出し、この検出結果に基づいて前記被検レンズの
面の各位置における度数を測定することにより度数分布
を測定するレンズメーターにおいて、 前記光源部と前記被検レンズとの間に二次元的に配列さ
れた多数の測定光束を形成する光学部材が配設され、前
記被検レンズの配設箇所後方の測定光路に、度数分布が
既知でかつ前記被検レンズが前記測定光路に未セットの
ときに前記受光センサの受光エリア全体に前記測定光束
を分配する測定補助レンズが挿脱可能に配置され、前記
測定光束の前記受光エリアからのはみ出しにより前記被
検レンズのパワーの正負を判定することを特徴とするレ
ンズメーター。
2. A light beam from a light source is made incident on a lens to be inspected, a displacement amount of the light beam after passing through the lens to be inspected is detected by a light receiving sensor, and each surface of the lens to be inspected is detected based on the detection result. In a lens meter that measures a power distribution by measuring the power at a position, an optical member that forms a large number of measurement light fluxes that are two-dimensionally arranged between the light source unit and the lens to be tested is disposed, A measurement auxiliary that distributes the measurement light beam to the entire light receiving area of the light receiving sensor when the power distribution is known in the measurement optical path behind the location of the lens to be inspected and when the lens to be inspected is not set in the measurement optical path. A lens meter, wherein a lens is arranged so that it can be inserted and removed, and whether the power of the lens under test is positive or negative is determined by the protrusion of the measurement light beam from the light receiving area.
【請求項3】 前記測定光束の前記受光エリア上での個
数に基づき前記被検レンズを透過した測定光束の前記受
光エリアからのはみ出しを判断することを特徴とする請
求項2に記載のレンズメーター。
3. The lens meter according to claim 2, wherein the protrusion of the measurement light flux transmitted through the lens to be measured from the light reception area is determined based on the number of the measurement light flux on the light reception area. .
【請求項4】 前記測定補助レンズが負のパワーを有
し、該負のパワーを有する測定補助レンズを前記測定光
路に挿入した状態で、前記被検レンズを前記測定光路に
セットしたときに、前記測定光束が前記受光エリアから
はみ出したときには負のパワーを有する被検レンズが前
記測定光路にセットされたと判断し、前記測定光束が前
記受光エリアからはみ出さなかったときには正のパワー
を有する被検レンズが前記測定光路にセットされたと判
断する請求項2に記載のレンズメーター。
4. The measurement auxiliary lens has a negative power, and when the measurement lens is set in the measurement optical path with the measurement auxiliary lens having the negative power inserted in the measurement optical path, It is determined that the lens to be inspected having negative power is set in the measurement optical path when the measurement light beam extends out of the light receiving area, and the test lens having positive power when the measurement light beam does not extend out of the light receiving area. The lens meter according to claim 2, wherein it is determined that a lens is set in the measurement optical path.
【請求項5】 前記被検レンズが負のパワーを有すると
きは、前記測定光路から前記負のパワーを有する測定補
助レンズを離脱させた状態で、前記測定光束が前記受光
エリアからはみ出したか否かを判断し、前記測定光束が
前記受光エリアからはみ出さないと判断されたときに
は、この状態で前記被検レンズの度数分布を測定し、前
記測定光束が前記受光エリアからはみ出したと判断され
たときには度数分布が既知の正のパワーを有する測定補
助レンズを前記測定光路に挿入した状態で、前記被検レ
ンズの度数分布と前記正のパワーを有する測定補助レン
ズの既知の度数分布とを含んだ仮度数分布を測定し、該
仮度数分布から前記既知の度数分布を除去して前記被検
レンズの度数分布を求めることを特徴とする請求項4に
記載のレンズメーター。
5. When the lens to be inspected has a negative power, it is determined whether or not the measurement light flux is out of the light receiving area in a state where the measurement auxiliary lens having the negative power is detached from the measurement optical path. When it is determined that the measurement light flux does not protrude from the light receiving area, the diopter distribution of the lens to be measured is measured in this state, and when it is determined that the measurement light flux extends from the light receiving area, A provisional diopter including a power distribution of the lens under test and a known power distribution of the measurement auxiliary lens having the positive power in a state where a measurement auxiliary lens having a known positive power is inserted in the measurement optical path. The lens meter according to claim 4, wherein a distribution is measured, and the known power distribution is removed from the provisional power distribution to obtain a power distribution of the lens to be tested. .
【請求項6】 前記被検レンズが正のパワーを有すると
判断されたときには、負のパワーを有する測定補助レン
ズを前記測定光路に挿入した状態で、前記被検レンズの
度数分布と前記負のパワーを有する測定補助レンズの既
知の度数分布とを含んだ仮度数分布を測定し、該仮度数
分布から前記既知の度数分布を除去して前記被検レンズ
の度数分布を求めることを特徴とする請求項4に記載の
レンズメーター。
6. When it is determined that the lens to be inspected has a positive power, a measurement auxiliary lens having a negative power is inserted in the measurement optical path, and the power distribution of the lens to be inspected and the negative It is characterized by measuring a provisional power distribution including a known power distribution of a measurement auxiliary lens having power, and removing the known power distribution from the provisional power distribution to obtain a power distribution of the lens under test. The lens meter according to claim 4.
JP29443695A 1995-11-13 1995-11-13 Lens meter Pending JPH09133608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29443695A JPH09133608A (en) 1995-11-13 1995-11-13 Lens meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29443695A JPH09133608A (en) 1995-11-13 1995-11-13 Lens meter

Publications (1)

Publication Number Publication Date
JPH09133608A true JPH09133608A (en) 1997-05-20

Family

ID=17807752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29443695A Pending JPH09133608A (en) 1995-11-13 1995-11-13 Lens meter

Country Status (1)

Country Link
JP (1) JPH09133608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296206A (en) * 2000-04-13 2001-10-26 Nikon Corp Apparatus and method for double refraction measuring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296206A (en) * 2000-04-13 2001-10-26 Nikon Corp Apparatus and method for double refraction measuring

Similar Documents

Publication Publication Date Title
US3721827A (en) Arrangement for automatically focussing an optical instrument
US4690561A (en) Particle analyzing apparatus
US10458781B2 (en) Sample shape measuring method and sample shape measuring apparatus
US5917586A (en) Lens meter for measuring the optical characteristics of a lens
CN112747904B (en) Method for assembling and adjusting infrared transfer function measuring instrument
JPH0434092B2 (en)
KR101126150B1 (en) Lens meter
KR20050099476A (en) Lens meter
JPS63118112A (en) Focus detector
KR20000057176A (en) Method for telemeasuring and telemeter
US4488799A (en) Metering system using a focus detecting optical system
JPH0933396A (en) Lens meter
WO2023098349A1 (en) Optical lens parameter measurement device and method
JP2008026049A (en) Flange focal distance measuring instrument
US4322616A (en) Focus detecting device with shielding
JPH0365488B2 (en)
JPH09133608A (en) Lens meter
US4712901A (en) Sharp focus detecting device
US4322615A (en) Focus detecting device with shielding
US4637720A (en) Lens meter having a focusing indication system with divided-image registration focusing
JPS5863906A (en) Focused position detector for microscope
JPH11125581A (en) Automatic lens meter
JPH05340723A (en) Clearance size measuring method
JPH09257643A (en) Lens meter
US4496231A (en) Mirror reflex camera with exposure meter