JPH11124095A - Moored gliding object utilizing westerly winds at high altitude - Google Patents

Moored gliding object utilizing westerly winds at high altitude

Info

Publication number
JPH11124095A
JPH11124095A JP9307966A JP30796697A JPH11124095A JP H11124095 A JPH11124095 A JP H11124095A JP 9307966 A JP9307966 A JP 9307966A JP 30796697 A JP30796697 A JP 30796697A JP H11124095 A JPH11124095 A JP H11124095A
Authority
JP
Japan
Prior art keywords
moored
high altitude
wind
westerly
glide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9307966A
Other languages
Japanese (ja)
Inventor
Keigoro Shigiyama
桂五郎 鴫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9307966A priority Critical patent/JPH11124095A/en
Publication of JPH11124095A publication Critical patent/JPH11124095A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To utilize enormous wind power energy at a high altitude so far not used as an energy of nature. SOLUTION: This moored gliding object, positioned in an area where the current is particularly fast in the westerly winds at a high altitude, is moored from the ground by a mooring cable using transmittable conductor lines, and is loaded with wind power generation equipment. This device is also loaded with at least one of the following: a visible light monitoring camera, infrared or far infrared measurement equipment always monitoring thermal radiation on the earth, a radio wave interruptor, a solar cell panel, and astronomic observation equipment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自然エネルギーを
利用した発電、地球や宇宙空間の観測、遠距離通信・放
送などの基地として高空で使用する滑空体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glider used at high altitudes as a base for power generation using natural energy, observation of the earth and outer space, telecommunications / broadcasting, and the like.

【0002】[0002]

【従來の技術】現在、環境に優しい自然エネルギーとし
て風力発電が各地で実用化されている。風力発電は、年
間を通じて風速の速い山岳地帯や海岸地帯あるいは海上
に設置されており、発電力を大きくするために風車の翼
の長さを数十メートルとしたものが用いられる。また、
風車の翼の長さの短い小型のものでは、それを多数一か
所に設置することも行われている。また、人工衛星を用
いて太陽熱発電し、その電力を電磁波により地上に送る
太陽熱発電衛星構想をNASAが発表している。
2. Description of the Related Art At present, wind power generation is being used in various places as environmentally friendly natural energy. Wind power generation is installed in mountainous areas, coastal areas or seas where the wind speed is high throughout the year, and wind turbines with wings of several tens of meters in length are used to increase power generation. Also,
Many small wind turbines with short wings are installed in one place. Also, NASA has announced a solar thermal power generation satellite concept in which solar thermal power is generated using artificial satellites and the power is transmitted to the ground by electromagnetic waves.

【0003】[0003]

【発明が解決しようとする課題】風力発電は、クリーン
な自然エネルギーとして期待されているが、風力が年間
を通じて変動するために、特定地域へ年間を通じて安定
した電力を供給するためには、火力発電、原子力発電な
どの主たる電源を必要として、あくまで補助電源の役割
しか果たせない。
[0005] Wind power generation is expected as clean renewable energy. However, since wind power fluctuates throughout the year, thermal power generation is required to supply stable power to specific areas throughout the year. It requires a main power source such as nuclear power, and can only serve as an auxiliary power source.

【0004】[0004]

【課題を解決するための手段】本発明は、エネルギー源
として従来全く考慮されたことのない高空の気象現象の
うち、偏西風中の特に流速の速い部分であるジェット気
流といわれる高速の風を有効活用することにより、風力
発電の従来の欠点を解消するとともに、偏西風帯域に設
けた構造体を新規な高空ステーションとして様々に活用
するものである。 偏西風は、周知のとおり日本の上空
を常時流れている西から東への強い気流(太陽光により
発生する上昇気流と地球の自転により発生する気流)で
ある。ジェット気流は、「緯度30〜40°の圏界面付
近で強く吹いている西風で、高さ約10km前後の30
0mbの等圧面付近にある。周囲の偏西風の中を吹き出
すように流れており、冬は速さが80m/s以上に達す
ることもある。」(「理化学辞典」による)。その風速
は、弱い時(夏の終期)でも10m/秒以上である。
SUMMARY OF THE INVENTION According to the present invention, among high-altitude meteorological phenomena which have never been considered as an energy source, a high-speed wind called a jet stream, which is a particularly high-velocity portion of a westerly wind, is effectively used. Utilizing this technology will solve the conventional drawbacks of wind power generation, and will make various use of the structure provided in the westerly wind zone as a new altitude station. As is well known, the westerly wind is a strong airflow from west to east that constantly flows over Japan (an updraft generated by sunlight and an airflow generated by the rotation of the earth). The jet stream is a west wind that blows strongly near the tropopause at a latitude of 30 to 40 degrees.
It is near the 0 mb isobar. It flows in the surrounding westerly wind, and in winter the speed can reach 80 m / s or more. ”(Based on“ The Dictionary of Physical and Chemical Research ”). The wind speed is more than 10 m / sec even when it is weak (end of summer).

【0005】本発明は、山頂などの高所に一端を固定し
た軽量で高強度の係留ケーブルを用いて偏西風のジエッ
ト気流中に揚力と抗力のバランスをとって係留した滑空
体であり、例えば、グライダーや大型の凧状の構造体で
あり、エンジンなどの駆動源を特に有しないものであ
る。滑空体の先端には係留ケーブルを固定する。滑空体
の構造材料としては、グライダー材料や宇宙基地用の構
造材料として開発され利用が可能な材料等が使用でき
る。山頂を地上固定地とすれば、ケーブルの長さが短く
て済むが、海岸部などを地上固定地とすることも可能で
ある。
[0005] The present invention is a glide body moored with a balance between lift and drag in a jet stream of westerly wind using a lightweight, high-strength mooring cable fixed at one end to a high place such as a mountaintop. It is a glider or a large kite-shaped structure, and does not particularly have a drive source such as an engine. A mooring cable is fixed to the tip of the glider. As a structural material of the glider, a glider material, a material developed and used as a structural material for a space station, or the like can be used. If the summit is fixed on the ground, the length of the cable can be shortened, but it is also possible to fix the seashore on the ground.

【0006】滑空体の構造は、原理的にはグライダーや
凧と同じく、翼によって生じる揚力と翼の受ける空気抵
抗である抗力の関係に基づく航空力学に基づいて設計す
る。翼の揚力L(kg)は、L=1/2・ρCL Sv2
であり、抗力Dは、D=1/2・ρCD Sv2で表され
る。ここでρは空気密度(kg・/m-3)、CL は揚力
係数、Sは翼面積(m2)、vは速度(m/秒)であ
る。CD は抗力係数である。すなわち、揚力、抗力とも
空気密度、翼面積に比例し、速度の2乗に比例する。C
L 、CD は単位のない定数で、翼面積の形状と気流に対
する翼の角度(θ=迎え角という)によって変化する。
例えば、軽飛行機と同様の翼断面で翼断面積が100m
2 の場合について揚力および抗力の概算を下記に示す。 揚力(トン) 抗力(kgr) θ=1.5° θ=6° θ=1.5° θ=6° 風速 40mで 約4 8 120 360 風速 20mで 約1 2 40 120 風速 10mで 約0.25 0.5 10 30 それ故、一辺100mの平面状(翼面積10000m
2)とした場合の揚力はこの10倍になる。すなわち、
風速20mで、揚力は、θ=1.5°で約10トン、θ
=6°で約20トンとなる。偏西風域の高空における気
圧300mbの場合、ρ=×0.3として風速20m
で、揚力は、θ=1.5°で約3トン、θ=6°で約6
トンとなる。また、風速40mで、揚力は、θ=1.5
°で約12トン、θ=6°で約24トンとなる。抗力の
値は、上記のとおり小さいので、係留(抗力相当)は全
く問題ない。
The structure of the glider is designed based on aerodynamics based on the relationship between the lift generated by the wing and the drag, which is the air resistance received by the wing, in principle, like a glider or a kite. The lift L (kg) of the wing is L = 1/2 · ρCL Sv2
And the drag D is represented by D = 1/2 · ρCD Sv2. Here, ρ is the air density (kg · / m−3), CL is the lift coefficient, S is the blade area (m 2), and v is the velocity (m / sec). CD is the drag coefficient. That is, both the lift and the drag are proportional to the air density and the wing area, and are proportional to the square of the velocity. C
L and CD are unitless constants, which vary depending on the shape of the blade area and the angle of the blade with respect to the airflow (θ = angle of attack).
For example, the wing cross section is 100m with the same wing cross section as a light aircraft
Estimates of lift and drag for case 2 are shown below. Lifting force (ton) Drag (kgr) θ = 1.5 ° θ = 6 ° θ = 1.5 ° θ = 6 ° Approx. 48 120 360 at a wind speed of 40 m Approx. 1 240 120 at a wind speed of 20 m Approx. 25 0.5 10 30 Therefore, a flat shape with a side of 100 m (wing area 10,000 m
In the case of 2), the lift becomes 10 times this. That is,
At a wind speed of 20 m, the lift is about 10 tons at θ = 1.5 °, θ
= 6 ° gives about 20 tons. In the case of a pressure of 300 mb at high altitude in the westerly wind area, the wind speed is 20 m with ρ = × 0.3.
The lift is about 3 tons at θ = 1.5 ° and about 6 at θ = 6 °.
Tons. At a wind speed of 40 m, the lift is θ = 1.5
And about 24 tons at θ = 6 °. Since the value of the drag is small as described above, mooring (equivalent to the drag) has no problem.

【0007】滑空体は、例えば、操舵制御機器を搭載
し、係留ケーブルの可動な一定の範囲内で偏西風内の最
も風速の速いジエットストリーム部分を探索し、その最
大風速部分へ操舵して最高出力の発電を自動的に行うよ
うにすることができる。発電用の高速回転プロペラは、
三角翼航空機の形態の場合、両翼最後部端と両翼中央端
の4か所に設けたり、菱形翼の形態の場合、翼の後端線
上に小型の高速回転プロペラを多数並べて設けるとよ
い。
[0007] The glide body is equipped with, for example, a steering control device, searches for the jet stream portion having the fastest wind speed in the westerly wind within a movable fixed range of the mooring cable, and steers to the maximum wind speed portion to output the maximum output. Can be automatically generated. High-speed rotating propeller for power generation
In the case of a triangular wing aircraft, it may be provided at four places at the rearmost end of the two wings and the center end of the two wings. In the case of a rhombic wing, a large number of small high-speed rotating propellers may be provided side by side on the rear end line of the wing.

【0008】ジエットストリームのコア部分の探索技術
は、赤外線測定法による高空の垂直温度分布の計測など
により、炭酸ガス温度差でコア境界を知る方法などの
他、国際航空便の運航のための必要な情報を得る手段と
して、古くから開発されているジェット気流帯の観測の
ための公知手段を利用すればよい。
[0008] The technology for searching for the core portion of the jet stream includes a method for finding the core boundary based on the carbon dioxide gas temperature difference by measuring the vertical temperature distribution in the high altitude by infrared measurement, and the like. Known means for observing the jet stream zone, which has been developed for a long time, may be used as a means for obtaining important information.

【0009】風速が時間とともに変動する海洋上の大規
模な水平方向の風を利用する海鳥のアホウドリのように
動的ソアリング(飛翔)により偏西風のせん断層を利用
して飛翔させながら、人工衛星を利用した自動位置制御
による滑空体の操縦を略8の字の軌跡を描くように降下
上昇の繰り返し飛翔を可能とすれば、係留ケーブルに頼
らなくても高空ステーションを偏西風中のほぼ任意の所
定半径の位置に飛翔状態で位置決めさせることができ、
風速の遅い場合でも滑空を続けることができる。また、
風速が10m/sec.以下のように遅い場合は、航空
機に採用されているフラップ機構の採用による揚力の増
加を図ればよい。なお、ジェット気流の風速が一定以下
となったり、補修点検等の際には、自動操縦または遠隔
操縦により滑空降下して安全に着地可能とする。
[0009] Like a seabird albatross using a large horizontal wind on the ocean where the wind speed fluctuates with time, the artificial satellite is made to fly using the shear layer of the westerly wind by dynamic soaring (flying). If the glider can be maneuvered by automatic position control using descending and rising repeatedly so as to draw a trajectory of approximately figure 8, it is possible to move the high altitude station to almost any predetermined radius in the westerly wind without relying on mooring cables Can be positioned in the flying state at the position of
Gliding can be continued even when the wind speed is slow. Also,
Wind speed is 10m / sec. In the case of a slow speed as described below, the lift may be increased by employing the flap mechanism employed in the aircraft. In addition, when the wind speed of the jet stream becomes lower than a certain level, or when performing repair inspection, gliding down by automatic piloting or remote piloting, the aircraft can land safely.

【0010】滑空体を偏西風帯域まで上げるには、気象
ゾンデや飛行船状のHeガスを利用する多数の気球を用
いることができる。また、冬季などの強い西風を利用し
て、地上から徐々に上昇させたり、航空機による牽引旋
回を利用して一定高度まで上げることも可能である。な
お、本発明の実施に当たっては、航空法規など関連法規
をクリアする条件、地域で実施すべきことは当然であ
る。
In order to raise the glide body to the westerly wind zone, a number of balloons utilizing He gas in the form of a weather sonde or an airship can be used. It is also possible to gradually rise from the ground by using a strong west wind in winter or the like, or to raise the altitude to a certain altitude by using a towing turn by an aircraft. When implementing the present invention, it is natural that the present invention should be implemented under conditions that satisfy related laws and regulations, such as aviation regulations, and in regions.

【0011】本発明に用いる係留ケーブルについては、
10数キロメートルが必要となるが、直径1cm程度で
数トンの張力に耐えられるスーパー繊維といわれるパラ
系アラミド、全芳香族ポリエステル、ポリエチレン、P
AN系炭素繊維等の軽量、高強度・高弾性率繊維と導電
線用アルミニウム合金線材を一体化したケーブルが好適
なケーブルとして使用することができる。また、長大橋
ケーブルやロープウエイケーブルとして使用されるピア
ノ線等の冷間引き抜き加工した高抗張力鋼線は400k
gf/mm2以上の強度を有しており、直径1mmで長
さが10kmでも重量は80kg以下であり、翼断面が
100mm程度の滑空体であればこの程度のケーブルで
抗力、自重による張力に十分に耐えられるが、係留滑空
体の規模や振動疲労等を考慮して強度設計をする必要が
ある。
Regarding the mooring cable used in the present invention,
Ten kilometers are required, but para-aramids, wholly aromatic polyesters, polyethylene, P
A cable in which a lightweight, high-strength, high-modulus fiber such as AN-based carbon fiber and an aluminum alloy wire for a conductive wire are integrated can be used as a suitable cable. Cold drawn high tensile strength steel wires such as piano wires used as long bridge cables and ropeway cables are 400k.
It has a strength of at least gf / mm 2, weighs 80 kg or less even if the diameter is 1 mm and the length is 10 km, and if it is a glide with a wing cross section of about 100 mm, this cable is enough for drag and tension due to its own weight. However, it is necessary to design the strength in consideration of the scale of the mooring glide, vibration fatigue, etc.

【0012】[0012]

【発明の効果】本発明の滑空体は、自然エネルギーとし
て未利用の高空の膨大な風力エネルギーを有効利用した
風力発電装置として有用である他に、太陽光発電装置、
電波通信機器、地上・海上の監視・計測機器等を搭載す
ることにより、赤道上の静止軌道にこれまで多数打ち上
げられ、その過密さが問題になってきている人工衛星に
代わる新規ステーションとして極めて有用である。
The glide according to the present invention is useful as a wind power generator that effectively utilizes enormous wind energy in high altitudes that are not used as natural energy.
Equipped with radio wave communication equipment, monitoring / measuring equipment on the ground and at sea, etc., it is extremely useful as a new station replacing artificial satellites, which have been launched many times in geosynchronous orbits on the equator and their overcrowding has become a problem. It is.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地上から係留されてなり、高空偏西風中
の特に流速の速い部分に位置決めされてなる係留滑空
体。
1. A mooring glide moored from the ground and positioned in a portion of a high altitude westerly wind having a particularly high flow velocity.
【請求項2】 送電可能な導線を有する係留ケーブルに
より係留され、かつ風力発電用の機器を搭載してなる請
求項1記載の滑空体。
2. The glide body according to claim 1, which is moored by a mooring cable having a conductive wire capable of transmitting power, and on which a device for wind power generation is mounted.
【請求項3】 可視光監視カメラ、地球上の熱放射を高
空から常時監視する赤外、遠赤外測定機器、電波中継機
器、太陽電池パネル、天体観測機器のいずれか一以上を
搭載した請求項1または2記載の滑空体。
3. A claim equipped with at least one of a visible light monitoring camera, an infrared and far-infrared measuring device, a radio relay device, a solar panel, and an astronomical observation device that constantly monitors thermal radiation on the earth from a high altitude. Item 3. The glide according to item 1 or 2.
JP9307966A 1997-10-22 1997-10-22 Moored gliding object utilizing westerly winds at high altitude Pending JPH11124095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9307966A JPH11124095A (en) 1997-10-22 1997-10-22 Moored gliding object utilizing westerly winds at high altitude

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9307966A JPH11124095A (en) 1997-10-22 1997-10-22 Moored gliding object utilizing westerly winds at high altitude

Publications (1)

Publication Number Publication Date
JPH11124095A true JPH11124095A (en) 1999-05-11

Family

ID=17975314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9307966A Pending JPH11124095A (en) 1997-10-22 1997-10-22 Moored gliding object utilizing westerly winds at high altitude

Country Status (1)

Country Link
JP (1) JPH11124095A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145090A (en) * 2003-11-11 2005-06-09 Fuji Heavy Ind Ltd Autonomous movable body, unmanned airship, and method of guiding autonomous movable body
JP2009536131A (en) * 2006-05-10 2009-10-08 キテ ゲン リサーチ ソシエタ ア レスポンサビリタ リミタータ System and method for automatically controlling airfoil flight of a drive wing
JP2015530954A (en) * 2012-08-23 2015-10-29 アンピックス パワー ベスローテン ベンノートシャップ A glider for producing wind energy in the air

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145090A (en) * 2003-11-11 2005-06-09 Fuji Heavy Ind Ltd Autonomous movable body, unmanned airship, and method of guiding autonomous movable body
JP2009536131A (en) * 2006-05-10 2009-10-08 キテ ゲン リサーチ ソシエタ ア レスポンサビリタ リミタータ System and method for automatically controlling airfoil flight of a drive wing
JP2015530954A (en) * 2012-08-23 2015-10-29 アンピックス パワー ベスローテン ベンノートシャップ A glider for producing wind energy in the air

Similar Documents

Publication Publication Date Title
US20110101692A1 (en) Airborne wind powered generator
US6540178B1 (en) Solar cell array orientation in an airship
GB2504132A (en) A solar powered UAV launched from a high altitude balloon
MacCready et al. Sun-powered aircraft designs
Aglietti et al. Harnessing high-altitude solar power
US5470032A (en) Airborne monitoring system and method
Roberts Quad-rotorcraft to harness high-altitude wind energy
KR101429567B1 (en) Opration system of flying object
Aglietti et al. Solar power generation using high altitude platforms feasibility and viability
JPH08198188A (en) Fixed type satellite balloon
CN104806451A (en) Power generation equipment floating at high altitudes
JPH0321592A (en) High altitude mooring floating device and floating method
Bolonkin Utilization of wind energy at high altitude
JPH0224295A (en) Air flying body connected to ground by wire
JPH11124095A (en) Moored gliding object utilizing westerly winds at high altitude
Manalis Airborne windmills and communication aerostats
JP5811384B1 (en) Air levitation device and its air navigation
Aaron et al. A method for balloon trajectory control
JPH04350369A (en) High-altitude wind power generation
Ardema Vehicle concepts and technology requirements for buoyant heavy-lift systems
CN114030585A (en) High-attendance-rate stratospheric airship comprehensive flight layout
RU2506204C1 (en) Method of locating high-altitude platform and high-altitude platform
CN114802749A (en) Water traction type over-the-horizon detection and communication system and use method
JP2003320996A (en) Floatation apparatus floating in jet stream
Manalis Airborne windmills-Energy source for communication aerostats