JP2005145090A - Autonomous movable body, unmanned airship, and method of guiding autonomous movable body - Google Patents

Autonomous movable body, unmanned airship, and method of guiding autonomous movable body Download PDF

Info

Publication number
JP2005145090A
JP2005145090A JP2003380955A JP2003380955A JP2005145090A JP 2005145090 A JP2005145090 A JP 2005145090A JP 2003380955 A JP2003380955 A JP 2003380955A JP 2003380955 A JP2003380955 A JP 2003380955A JP 2005145090 A JP2005145090 A JP 2005145090A
Authority
JP
Japan
Prior art keywords
mobile body
autonomous mobile
wind
fixed point
guidance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003380955A
Other languages
Japanese (ja)
Other versions
JP4351897B2 (en
Inventor
Mitsuru Kono
充 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2003380955A priority Critical patent/JP4351897B2/en
Publication of JP2005145090A publication Critical patent/JP2005145090A/en
Application granted granted Critical
Publication of JP4351897B2 publication Critical patent/JP4351897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an autonomous movable body capable of automatically realizing duration flight in a limited air area about a ground fixed point in both calms and strong wind. <P>SOLUTION: This unmanned airship 1 having a hull 10 and a steering device comprises wind velocity and wind orientation estimating part 51 estimating wind velocity/wind orientation around the hull 10 and a guide part 52 generating guide instructions for controlling the steering device according to the wind velocity. The guide part 52 comprises a means 53 generating guide instructions for turning the hull 10 about the ground fixed point P when the wind velocity is less than a specified threshold and a means 54 for generating guide instruction for moving the hull 10 toward virtual target points by setting two virtual target points near the ground fixed point P when the wind velocity exceeds a specified threshold. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自律移動体、無人飛行船及び自律移動体の誘導方法に関し、特に、対地定点を中心とした所定の有限空域内で滞空する自律移動体及び無人飛行船と、所定の流体内を移動する各種自律移動体の移動領域を有限領域内に制限する自律移動体の誘導方法と、に関する。   The present invention relates to an autonomous mobile body, an unmanned airship, and a method for guiding an autonomous mobile body, and in particular, moves within a predetermined fluid and an autonomous mobile body and an unmanned airship that are stagnant within a predetermined finite airspace centered on a ground fixed point. The present invention relates to a method for guiding an autonomous mobile body that limits the movement area of various autonomous mobile bodies to a finite area.

従来より、ヘリウム等の浮揚ガスの浮力を利用して浮揚し、推進装置や操縦装置によって自在に飛行する飛行船が提案され、実用化されている。特に現在においては、情報中継、監視、気象観測等を目的として、高度約15km以上の成層圏で飛行可能な無人飛行船の開発が進められている(例えば、特許文献1参照。)。近年においては、このような無人飛行船を対地的にほぼ静止させる目的で、所定の対地定点を中心とした有限空域内で滞空飛行させる技術が模索されている。
特開2000−280989号公報(第1頁、第1図)
Conventionally, airships that have been levitated using the buoyancy of a buoyant gas such as helium and that can fly freely with a propulsion device or a control device have been proposed and put to practical use. In particular, unmanned airships capable of flying in the stratosphere at an altitude of about 15 km or more are currently being developed for the purpose of information relay, monitoring, weather observation, and the like (see, for example, Patent Document 1). In recent years, for the purpose of making such an unmanned airship almost stationary on the ground, a technique for flying in a finite airspace centered on a predetermined ground fixed point has been sought.
JP 2000-280989 A (first page, FIG. 1)

しかし、所定の対地定点を中心とした有限空域内で無人飛行船を滞空飛行させる「対地静止飛行」を実現させるためには、以下のような問題がある。   However, there are the following problems in order to realize “geographically stationary flight” in which an unmanned airship flies over the air in a finite airspace centered on a predetermined ground fixed point.

まず、無人飛行船は、船体に作用する浮力のみならず揚力を使用して自重を支持しているため、所定の対気速度を確保しながら飛行する必要があるが、無風時ないし弱風時においては、この対気速度が零ないし小さい値となるため、飛行に必要な揚力が確保できなくなるという問題がある。この結果、「対地静止飛行」が不可能となってしまう。   First, since an unmanned airship supports its own weight using lift as well as buoyancy acting on the hull, it is necessary to fly while ensuring a predetermined airspeed. However, since this airspeed is zero or small, there is a problem that it is impossible to secure the lift necessary for flight. As a result, “geostatic flight” becomes impossible.

一方、強風時においては、無人飛行船を風に正対させて飛行させることにより理論的には「対地静止飛行」が可能となるが、無人飛行船は、浮力を得るための巨大な船体を有するため、動きがきわめて鈍重であるとともに、風に流され易いという特性を有している。従って、風向が変動すると、この風向変動に対処するだけの速やかな動きができず、「対地静止飛行」の維持が困難となる。そして、強風時において一度有限空域から外れた船体を再び有限空域に戻すためには、きわめて大きな旋回半径を要するという問題がある。   On the other hand, in strong winds, it is theoretically possible to “fly to the ground” by flying an unmanned airship in front of the wind. However, an unmanned airship has a huge hull to obtain buoyancy. , The movement is extremely slow and it is easy to be swept away by the wind. Therefore, when the wind direction fluctuates, it is impossible to move quickly enough to cope with the fluctuation of the wind direction, and it becomes difficult to maintain “geographically stationary flight”. In order to return the hull once deviated from the finite airspace to the finite airspace again in a strong wind, there is a problem that a very large turning radius is required.

また、近年の制御技術の進展により、無人飛行船以外の自律移動体が種々提案されているが、所定の流体内を移動するこのような各種自律移動体の移動領域を、流体の速度や方向に関わらず、対地定点を中心とした所定の有限領域に制限するための誘導技術の開発が待望されている。   In addition, various autonomous moving bodies other than unmanned airships have been proposed due to recent advances in control technology, but the movement area of such various autonomous moving bodies that move within a predetermined fluid can be set according to the speed and direction of the fluid. Regardless, there is a need for the development of a guidance technique for limiting to a predetermined finite area centered on the ground fixed point.

本発明の課題は、無風時(弱風時)及び強風時の双方において、所定の対地定点を中心とした有限空域内における滞空飛行を自動的に実現させることができる自律移動体及び無人飛行船を提供することである。   An object of the present invention is to provide an autonomous mobile body and an unmanned airship capable of automatically realizing a stray flight in a finite airspace centered on a predetermined ground fixed point in both no wind (light wind) and strong wind. Is to provide.

また、本発明の課題は、所定の流体内を移動する各種自律移動体の移動領域を、流体の速度や方向に関わらず、所定の対地定点を中心とした有限領域内に制限することができる自律移動体の誘導方法を提供することである。   In addition, an object of the present invention is to limit the movement area of various autonomous moving bodies that move in a predetermined fluid to a finite area centered on a predetermined ground fixed point regardless of the speed and direction of the fluid. It is to provide a method for guiding an autonomous mobile body.

以上の課題を解決するために、請求項1に記載の発明は、所定の操縦装置を備える自律移動体であって、前記自律移動体の周囲の風速及び風向を推定する風速風向推定部と、前記風速風向推定部で推定された風速に応じて前記操縦装置を制御するための誘導指令を生成する誘導部と、を備え、前記誘導部は、前記風速風向推定部で推定された風速が所定の閾値以下の場合に、所定の対地定点を中心として前記自律移動体を旋回飛行させるような誘導指令を生成する旋回誘導手段と、前記風速風向推定部で推定された風速が所定の閾値を超えた場合に、前記風速風向推定部で推定された風向に平行でかつ前記対地定点を通る第1仮想直線と、この第1仮想直線に直交しかつ前記対地定点を通る第2仮想直線と、前記第2仮想直線上に前記対地定点を挟んで略対称の位置に配置される2つの仮想目標点と、を設定する目標設定手段と、前記第1仮想直線を隔てて前記自律移動体と反対側に位置する前記仮想目標点に向けて前記自律移動体を移動させるための誘導指令を生成する目標誘導手段と、を有することを特徴とする。   In order to solve the above problems, the invention according to claim 1 is an autonomous mobile body including a predetermined control device, and a wind speed and wind direction estimating unit that estimates a wind speed and a wind direction around the autonomous mobile body, A guidance unit that generates a guidance command for controlling the control device according to the wind speed estimated by the wind speed and wind direction estimation unit, and the guidance unit has a predetermined wind speed estimated by the wind speed and wind direction estimation unit. The wind speed estimated by the wind speed and wind direction estimation unit exceeds a predetermined threshold value, and a turn guidance means for generating a guidance command for turning the autonomous mobile body around the predetermined ground fixed point The first virtual straight line passing through the ground fixed point parallel to the wind direction estimated by the wind speed and wind direction estimating unit, the second virtual straight line orthogonal to the first virtual straight line and passing through the ground fixed point, On the second virtual straight line A target setting means for setting two virtual target points arranged at substantially symmetrical positions with respect to each other, and toward the virtual target point located on the opposite side of the autonomous mobile body with the first virtual line therebetween Target guidance means for generating a guidance command for moving the autonomous mobile body.

請求項1に記載の発明によれば、誘導部は、推定された風速が所定の閾値以下の場合(例えば無風時ないし弱風時)に、所定の対地定点を中心として船体を旋回飛行させるような誘導指令を生成する旋回誘導手段を有している。従って、自律移動体は、無風時ないし弱風時において、対地定点を中心とした旋回飛行を行うことができるので、所定の対気速度を確保して飛行に必要な揚力を発生させることができ、なおかつ、対地定点を中心とした有限空域内で滞空飛行を行うことができる。   According to the first aspect of the present invention, when the estimated wind speed is equal to or less than a predetermined threshold value (for example, when there is no wind or light wind), the guide unit turns the hull around a predetermined ground fixed point. A turning guidance means for generating a simple guidance command. Therefore, since the autonomous mobile body can perform a turning flight centering on the ground fixed point when there is no wind or light wind, it can generate a lift necessary for the flight while ensuring a predetermined airspeed. In addition, it is possible to fly in the finite airspace centered on the ground fixed point.

また、請求項1に記載の発明によれば、誘導部は、推定された風速が所定の閾値を超えた場合(例えば強風時)に、推定された風向に平行でかつ対地定点を通る第1仮想直線と、この第1仮想直線に直交しかつ対地定点を通る第2仮想直線と、第2仮想直線上に対地定点を挟んで略対称の位置に配置される2つの仮想目標点と、を設定する目標設定手段を有している。そして、第1仮想直線を隔てて自律移動体と反対側に位置する仮想目標点に向けて自律移動体を移動させるための誘導指令を生成する目標誘導手段を有している。   According to the first aspect of the present invention, when the estimated wind speed exceeds a predetermined threshold (for example, during strong winds), the guiding unit is parallel to the estimated wind direction and passes through the ground fixed point. A virtual straight line, a second virtual straight line that is orthogonal to the first virtual straight line and passes through the ground fixed point, and two virtual target points that are disposed on the second virtual straight line at substantially symmetrical positions with the ground fixed point interposed therebetween. It has target setting means for setting. And it has the target guidance means which produces | generates the guidance command for moving an autonomous mobile body toward the virtual target point located on the opposite side to an autonomous mobile body across the 1st virtual straight line.

従って、自律移動体は、強風時において、風向に平行で対地定点を通る仮想直線(第1仮想直線)を挟んで左右に配置された仮想点(仮想目標点)に向けて飛行するように誘導されることとなる。この結果、自律移動体は、強風時において風向変動があった場合においても、対地定点を中心とした有限空域内で、風上側に機首を向けた状態で対地的に8の字を描くような滞空飛行を行うことができる。   Accordingly, the autonomous mobile body is guided to fly toward the virtual points (virtual target points) arranged on the left and right sides of the virtual straight line (first virtual straight line) passing through the ground fixed point parallel to the wind direction in strong winds. Will be. As a result, the autonomous mobile body draws a figure of 8 in the ground with the nose pointing toward the windward side in a finite airspace centered on the ground fixed point even when the wind direction fluctuates during strong winds. Can perform a long flight.

請求項2に記載の発明は、請求項1に記載の自律移動体において、前記自律移動体は、無人飛行船であることを特徴とする。   The invention according to claim 2 is the autonomous mobile body according to claim 1, wherein the autonomous mobile body is an unmanned airship.

請求項3に記載の発明は、無人飛行船であって、所定の有限空域内で風上に向かって上下左右に移動しながら飛行することを特徴とする。   The invention described in claim 3 is an unmanned airship, and is characterized by flying while moving up, down, left, and right in a predetermined finite airspace toward the windward.

請求項3に記載の発明によれば、無人飛行船は、所定の有限空域内で風上に向かって上下左右に移動しながら飛行を行うことができる。   According to the third aspect of the present invention, the unmanned airship can fly while moving up, down, left and right toward the windward within a predetermined finite airspace.

請求項4に記載の発明は、所定の流体内を移動する自律移動体の移動領域を所定の対地定点を中心とした有限領域内に制限するように前記自律移動体を誘導する自律移動体の誘導方法であって、前記自律移動体の周囲における前記流体の速度が所定の閾値以下の場合に、前記対地定点を中心として前記自律移動体を旋回させる旋回誘導工程と、前記自律移動体の周囲における前記流体の速度が所定の閾値を超えた場合に、前記流体の流れの方向に平行でかつ前記対地定点を通る第1仮想直線と、前記第1仮想直線に直交しかつ前記対地定点を通る第2仮想直線と、前記第2仮想直線上に前記対地定点を挟んで略対称の位置に配置される2つの仮想目標点と、を設定する目標設定工程と、前記第1仮想直線を隔てて前記自律移動体と反対側に位置する前記仮想目標点に向けて前記自律移動体を移動させる目標誘導工程と、を備えることを特徴とする。   According to a fourth aspect of the present invention, there is provided an autonomous mobile body that guides the autonomous mobile body so as to limit a movement area of the autonomous mobile body that moves in a predetermined fluid to a limited area centered on a predetermined ground fixed point. A guidance method for turning the autonomous mobile body around the fixed point when the velocity of the fluid around the autonomous mobile body is equal to or less than a predetermined threshold, and surrounding the autonomous mobile body A first imaginary line passing through the ground fixed point parallel to the fluid flow direction and perpendicular to the first imaginary straight line and passing through the ground fixed point when the velocity of the fluid exceeds a predetermined threshold value A target setting step for setting a second virtual straight line and two virtual target points arranged on the second virtual straight line at substantially symmetrical positions across the ground fixed point, with the first virtual straight line being separated Positioned on the opposite side of the autonomous mobile body A target induction step of moving the autonomous moving body toward the virtual target points, characterized in that it comprises a.

請求項4に記載の発明によれば、自律移動体の周囲における流体の速度が所定の閾値以下の場合に、所定の対地定点を中心として自律移動体を旋回させるような旋回誘導工程を有している。従って、自律移動体の周囲における流体の速度が低い場合において、自律移動体の移動領域を、対地定点を中心とした有限領域内に制限することができる。   According to the invention described in claim 4, there is provided a turning guidance step for turning the autonomous moving body around a predetermined ground fixed point when the velocity of the fluid around the autonomous moving body is a predetermined threshold value or less. ing. Therefore, when the fluid velocity around the autonomous mobile body is low, the movement area of the autonomous mobile body can be limited to a finite area centered on the ground fixed point.

また、請求項4に記載の発明によれば、自律移動体の周囲における流体の速度が所定の閾値を超えた場合に、この流体の流れの風向に平行でかつ対地定点を通る第1仮想直線と、この第1仮想直線に直交しかつ対地定点を通る第2仮想直線と、第2仮想直線上に対地定点を挟んで略対称の位置に配置される2つの仮想目標点と、を設定する目標設定工程を有している。そして、第1仮想直線を隔てて船体と反対側に位置する仮想目標点に向けて自律移動体を移動させるような目標誘導工程を有している。   According to the fourth aspect of the present invention, when the velocity of the fluid around the autonomous mobile body exceeds a predetermined threshold value, the first virtual straight line that is parallel to the wind direction of the fluid flow and passes through the ground fixed point. And a second virtual straight line that is orthogonal to the first virtual straight line and passes through the ground fixed point, and two virtual target points that are arranged on the second virtual straight line at substantially symmetrical positions with the ground fixed point interposed therebetween. It has a goal setting process. And it has the target guidance process which moves an autonomous mobile body toward the virtual target point located on the opposite side to a ship body across the 1st virtual straight line.

従って、自律移動体は、その周囲の流体の速度が高い場合において、流体の流れの方向に平行で対地定点を通る仮想直線(第1仮想直線)を挟んで左右に配置された仮想点(仮想目標点)に向けて蛇行するように誘導されることとなる。この結果、自律移動体の周囲における流体の速度が高くかつ流体の流れの方向が変動した場合においても、自律移動体の移動領域を、対地定点を中心とした有限領域内に制限することができる。   Accordingly, the autonomous mobile body has virtual points (virtual points) arranged on the left and right sides of a virtual straight line (first virtual straight line) passing through a fixed point parallel to the direction of fluid flow when the velocity of the surrounding fluid is high. It will be guided to meander toward the target point. As a result, even when the fluid velocity around the autonomous mobile body is high and the direction of fluid flow fluctuates, the movement area of the autonomous mobile body can be limited to a finite area centered on the ground fixed point. .

請求項1又は2に記載の発明によれば、自律移動体の誘導部は、無風時(弱風時)において、対地定点を中心として自律移動体を旋回飛行させるような誘導指令を生成する一方、強風時において、対地定点近傍に2つの仮想目標点を自動的に設定し、これら仮想目標点に向けて自律移動体を移動させるような誘導指令を生成する。この結果、自律移動体は、無風時(弱風時)及び強風時の双方において、所定の対地定点を中心とした有限空域内における滞空飛行を自動的に実現させることができる。   According to the first or second aspect of the invention, the guidance unit of the autonomous mobile body generates a guidance command for turning the autonomous mobile body around the ground fixed point when there is no wind (light wind). In a strong wind, two virtual target points are automatically set in the vicinity of the ground fixed point, and a guidance command for moving the autonomous moving body toward these virtual target points is generated. As a result, the autonomous mobile body can automatically realize a flying flight in a finite airspace centered on a predetermined ground fixed point both in the absence of wind (when the wind is weak) and when the wind is strong.

請求項3に記載の発明によれば、無人飛行船は、所定の有限空域内で風上に向かって上下左右に移動しながら飛行を行うことができる。   According to the third aspect of the present invention, the unmanned airship can fly while moving up, down, left and right toward the windward within a predetermined finite airspace.

請求項4に記載の発明によれば、自律移動体の周囲における流体の速度が所定の閾値以下の場合に、対地定点を中心として自律移動体を旋回させる一方、自律移動体の周囲における流体の速度が所定の閾値を超えた場合に、対地定点近傍に2つの仮想目標点を設定し、これら仮想目標点に向けて自律移動体を移動させる。この結果、自律移動体の周囲における流体の速度や方向に関わらず、自律移動体の移動領域を、対地定点を中心とした有限領域内に制限することができる。   According to the invention described in claim 4, when the velocity of the fluid around the autonomous mobile body is equal to or lower than the predetermined threshold, the autonomous mobile body is turned around the ground fixed point, while the fluid around the autonomous mobile body When the speed exceeds a predetermined threshold, two virtual target points are set near the ground fixed point, and the autonomous mobile body is moved toward these virtual target points. As a result, the moving area of the autonomous moving body can be limited to a finite area centered on the ground fixed point regardless of the speed and direction of the fluid around the autonomous moving body.

以下、本発明の実施の形態を、図を用いて詳細に説明する。なお、本実施の形態においては、本発明に係る自律移動体の一例として、情報中継等を目的として所定の対地定点を中心とした有限空域内で滞空飛行を行う比較的大型の無人飛行船を挙げて説明することとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, as an example of the autonomous mobile body according to the present invention, a relatively large unmanned airship that performs aerial flight in a finite airspace centered on a predetermined ground fixed point for the purpose of information relay or the like. Will be explained.

まず、図1及び図2を用いて、本実施の形態に係る無人飛行船1の構成について説明する。無人飛行船1は、図1に示すように、柔軟な外皮で構成された船体10、船体10の下面に設けられたゴンドラ20、ゴンドラ20の内部に搭載される誘導制御装置50(図2参照)、等を備えて構成されている。   First, the configuration of the unmanned airship 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the unmanned airship 1 includes a hull 10 formed of a flexible outer skin, a gondola 20 provided on the lower surface of the hull 10, and a guidance control device 50 mounted inside the gondola 20 (see FIG. 2). , Etc. are provided.

船体10は、合成樹脂製又は軽金属製の柔軟性を有する外皮で構成されている。船体10内には、空気が充填されるバロネットが複数設けられている。また、船体10内のバロネットを除いた空間には浮揚ガスが充填されており、この浮揚ガスの圧力と、バロネットに充填された空気の圧力と、によって船体10の形状が保持されている。   The hull 10 is composed of a flexible outer skin made of synthetic resin or light metal. A plurality of baronets filled with air are provided in the hull 10. Further, the space excluding the baronet in the hull 10 is filled with levitation gas, and the shape of the hull 10 is maintained by the pressure of the levitation gas and the pressure of air filled in the baronet.

船体10の船尾寄りの上下面には、図1に示すように、方向舵12を備える垂直尾翼11が設けられており、船体10の船尾寄りの側面には、(図示されていない)昇降舵を備える水平尾翼13が設けられている。これら方向舵12及び昇降舵は、ゴンドラ20に搭載された(図示されていない)操縦装置によって駆動される。   As shown in FIG. 1, a vertical tail 11 having a rudder 12 is provided on the upper and lower surfaces near the stern of the hull 10, and an elevator (not shown) is provided on the side near the stern of the hull 10. The horizontal tail 13 provided is provided. The rudder 12 and the elevator are driven by a control device (not shown) mounted on the gondola 20.

ゴンドラ20は、方向舵12や昇降舵を駆動する操縦装置、エンジン・プロペラ等の推進装置、船体10の対地速度を取得する対地速度センサ30(図2参照)、船体10の対気速度を取得する対気速度センサ40(図2参照)、これら対地速度センサ30及び対気速度センサ40によって取得された速度情報に基づいて船体10の周囲の風速・風向を推定するとともに、推定された風速・風向に基づいて特定の誘導指令を生成して操縦装置等を駆動制御する誘導制御装置50(図2参照)、等を搭載するためのものである。   The gondola 20 acquires a steering device that drives the rudder 12 and the elevator, a propulsion device such as an engine / propeller, a ground speed sensor 30 that acquires the ground speed of the hull 10 (see FIG. 2), and the air speed of the hull 10. The air speed sensor 40 (see FIG. 2), the wind speed and the wind direction around the hull 10 are estimated based on the speed information acquired by the ground speed sensor 30 and the air speed sensor 40, and the estimated wind speed and wind direction are estimated. A guidance control device 50 (see FIG. 2) for generating a specific guidance command based on the control and drivingly controlling the steering device or the like is mounted.

なお、本実施の形態においては、対地速度センサ30としてGPS(Global Positioning System)を採用しており、所定のGPS衛星から送信される情報を、ゴンドラ20内に搭載されたGPS受信機で受信することにより、船体10の対地速度情報や船体10の対地的な位置情報を取得している。また、本実施の形態においては、対気速度センサ40としてADS(Air Data System)を採用しており、船体10に設けられたピトー管や温度計等で計測された静圧、動圧、外気温度等に基づいて対気速度を算出している。   In the present embodiment, a GPS (Global Positioning System) is adopted as the ground speed sensor 30, and information transmitted from a predetermined GPS satellite is received by a GPS receiver mounted in the gondola 20. Thus, the ground speed information of the hull 10 and the ground position information of the hull 10 are acquired. In the present embodiment, an ADS (Air Data System) is adopted as the airspeed sensor 40, and static pressure, dynamic pressure, and outside air measured by a pitot tube or a thermometer provided in the hull 10 are used. The airspeed is calculated based on temperature and the like.

誘導制御装置50は、無人飛行船1全体を統合制御するCPU(Central Processing Unit)や、各種制御プログラムや制御データを格納したROM(Read Only Memory)等から構成されており、図2に示すような機能的構成を有している。すなわち、誘導制御装置50は、対地速度センサ30及び対気速度センサ40によって取得された速度情報に基づいて船体10の周囲に風速・風向を推定する風速風向推定部51と、推定された風速・風向に基づいて特定の誘導制御指令を生成する誘導部52と、を有している。   The guidance control device 50 includes a CPU (Central Processing Unit) for integrated control of the entire unmanned airship 1, a ROM (Read Only Memory) storing various control programs and control data, and the like as shown in FIG. It has a functional configuration. That is, the guidance control device 50 includes a wind speed / wind direction estimation unit 51 that estimates the wind speed / wind direction around the hull 10 based on the speed information acquired by the ground speed sensor 30 and the air speed sensor 40, and the estimated wind speed / And a guidance unit 52 that generates a specific guidance control command based on the wind direction.

誘導部52は、図2に示すように、風速風向推定部51で推定された風速が所定の閾値以下の場合における誘導指令を生成する弱風時誘導部53と、風速風向推定部51で推定された風速が所定の閾値を超えた場合における誘導指令を生成する強風時誘導部54と、を有している。本実施の形態においては、前記した閾値を「7(m/s)」に設定している。また、本実施の形態においては、誘導指令として「方位角指令」、「対気速度指令」及び「迎角指令」を採用している。   As shown in FIG. 2, the guidance unit 52 is estimated by the weak wind guidance unit 53 that generates a guidance command when the wind speed estimated by the wind speed / wind direction estimation unit 51 is equal to or less than a predetermined threshold, and the wind speed / wind direction estimation unit 51 estimates the wind speed. And a strong wind guidance unit 54 that generates a guidance command when the wind speed exceeds a predetermined threshold. In the present embodiment, the threshold value is set to “7 (m / s)”. In the present embodiment, “azimuth angle command”, “airspeed command”, and “attack angle command” are adopted as the guidance commands.

弱風時誘導部53は、本発明における旋回誘導手段であり、風速風向推定部51で推定された風速が所定の閾値(7(m/s))以下の場合に、所定の対地定点を中心として船体10を旋回飛行させるような誘導指令を生成する。前記した操縦装置や推進装置は、この弱風時誘導部53によって生成された誘導指令に基づいて駆動制御される。本実施の形態においては、地上で作業者が所定の操作部を操作することにより、前記した対地定点(目標水平面位置)に係る情報を飛行前に誘導制御装置50に予め入力することとしている。なお、対地定点は飛行目標高度に設定するのが好ましいが、飛行目標高度より高い(又は低い)高度に設定することもできる。   The weak wind guidance unit 53 is a turning guidance unit in the present invention, and when the wind speed estimated by the wind speed / wind direction estimation unit 51 is equal to or less than a predetermined threshold (7 (m / s)), the predetermined ground fixed point is the center. A guidance command for turning the hull 10 is generated. The above-described control device and propulsion device are driven and controlled based on the guidance command generated by the light wind guidance unit 53. In the present embodiment, when the operator operates a predetermined operation unit on the ground, information related to the ground fixed point (target horizontal plane position) is input to the guidance control device 50 in advance before the flight. Although the ground fixed point is preferably set to the flight target altitude, it can also be set to an altitude higher (or lower) than the flight target altitude.

強風時誘導部54は、本発明における目標設定手段及び目標誘導手段であり、風速風向推定部51で推定された風速が所定の閾値(7(m/s))を超えた場合に、風速風向推定部51で推定された風向に平行でかつ対地定点を通る第1仮想直線と、この第1仮想直線に直交しかつ対地定点を通る第2仮想直線と、第2仮想直線上に対地定点を挟んで略対称の位置に配置される2つの仮想目標点と、を設定し、かつ、第1仮想直線を隔てて船体10と反対側に位置する仮想目標点に向けて船体10を移動させるような誘導指令を生成する。前記した操縦装置や推進装置は、この強風時誘導部54によって生成された誘導指令に基づいて駆動制御される。なお、強風時誘導部54で誘導指令を生成する際に用いられる船体10の位置(現在水平面位置)は、前記したGPSによって取得される。   The strong wind guidance unit 54 is a target setting unit and a target guidance unit according to the present invention. When the wind speed estimated by the wind speed / wind direction estimation unit 51 exceeds a predetermined threshold (7 (m / s)), the wind speed / wind direction is determined. A first virtual line parallel to the wind direction estimated by the estimating unit 51 and passing through the ground fixed point, a second virtual line orthogonal to the first virtual line and passing through the ground fixed point, and a ground fixed point on the second virtual line Two virtual target points that are arranged at substantially symmetrical positions are set, and the hull 10 is moved toward a virtual target point that is located on the opposite side of the hull 10 across the first virtual straight line. A simple guidance command is generated. The aforementioned steering device and propulsion device are driven and controlled based on the guidance command generated by the strong wind guidance unit 54. In addition, the position (current horizontal plane position) of the hull 10 used when the guidance command is generated by the strong wind guidance unit 54 is acquired by the GPS described above.

なお、強風時誘導部54においては、風速風向推定部51で推定された風向に「平行」に第1仮想直線を設定するが、この「平行」は、風速風向推定部51で推定された風向に対して厳密に平行であることを意味しているのではなく、多少の狂いを許容するものである。第1仮想直線が風向に対して厳密に平行であれば、広い風速範囲に対応できるとともにより少ないエネルギ消費及びより少ない制御動作で効率的に制御を行うことができるので好ましいが、平行性に多少の狂いがある場合においても、推進装置の推力を変化させることによって対応することができる。   The strong wind guidance unit 54 sets the first virtual straight line “parallel” to the wind direction estimated by the wind speed / wind direction estimation unit 51, and this “parallel” is the wind direction estimated by the wind speed / wind direction estimation unit 51. It is not meant to be strictly parallel to, but tolerates some madness. If the first imaginary straight line is strictly parallel to the wind direction, it is preferable because it can deal with a wide range of wind speeds and can be efficiently controlled with less energy consumption and less control operation. Even if there is a deviation, it can be dealt with by changing the thrust of the propulsion device.

なお、風速風向推定部51は、ROMに格納された風速風向推定プログラム、対地速度センサ30及び対気速度センサ40で取得された速度情報を受けてこの風速風向推定プログラムを実行するCPU、等により構成されている。また、誘導部52は、ROMに格納された各種誘導用プログラム(旋回誘導プログラム、目標設定プログラム、目標誘導プログラム等)、風速風向推定部51で推定された風速の値に応じて各種プログラムを選択して実行するCPU、等により構成されている。   The wind speed / wind direction estimating unit 51 receives a wind speed / wind direction estimation program stored in a ROM, a speed information acquired by the ground speed sensor 30 and the air speed sensor 40, and a CPU that executes the wind speed / wind direction estimation program. It is configured. The guiding unit 52 selects various programs according to various guidance programs (turning guidance program, target setting program, target guidance program, etc.) stored in the ROM, and the wind speed value estimated by the wind speed / wind direction estimating unit 51. The CPU is executed and the like.

次に、図3及び図4を用いて、本実施の形態に係る無人飛行船1の誘導制御について説明する。なお、本実施の形態に係る誘導制御は、図3及び図4に示すような対地定点Pを中心とした半径1000mの仮想円Vを含む平面を中心として鉛直方向に上下150mずつ延在する有限空域(仮想円柱形有限空域)内で無人飛行船1を滞空飛行させることを目的としたものである。   Next, guidance control of the unmanned airship 1 according to the present embodiment will be described with reference to FIGS. 3 and 4. In addition, the guidance control according to the present embodiment is a finite that extends vertically 150 m above and below about a plane including a virtual circle V with a radius of 1000 m centered on the ground fixed point P as shown in FIGS. 3 and 4. The purpose is to make the unmanned airship 1 fly over in the airspace (virtual cylindrical finite airspace).

<無風時(弱風時)における誘導制御>
まず、図3を用いて、無風時ないし弱風時(風速風向推定部51で推定された風速が所定の閾値以下の場合)における誘導制御について説明する。
<Guidance control during no wind (light wind)>
First, with reference to FIG. 3, description will be given of the guidance control when there is no wind or light wind (when the wind speed estimated by the wind speed and wind direction estimation unit 51 is equal to or less than a predetermined threshold).

誘導制御装置50の弱風時誘導部53は、風速風向推定部51で推定された風速が所定の閾値(7(m/s))以下である場合に、対地定点Pを中心として船体10を旋回飛行させるような誘導指令(例えば、船体10の機首を常に対地定点Pに向けるような方位角指令)を生成する。また、弱風時誘導部53は、船体10が仮想円柱形有限空域内にとどまることができるような揚力を発生させるための対気速度指令及び迎角指令を生成する。   When the wind speed estimated by the wind speed / wind direction estimating unit 51 is equal to or less than a predetermined threshold (7 (m / s)), the light wind guidance unit 53 of the guidance control device 50 moves the hull 10 around the ground fixed point P. A guidance command (for example, an azimuth command that always points the nose of the hull 10 toward the fixed point P) is generated so as to make a turn flight. Moreover, the weak wind time guidance | induction part 53 produces | generates the airspeed command and the angle-of-attack command for generating the lift which the hull 10 can stay in a virtual cylindrical finite airspace.

このように弱風時誘導部53で生成された誘導指令(方位角指令、対気速度指令及び迎角指令)により、操縦装置の方向舵12が駆動制御されるとともに、推進装置が駆動制御される。この結果、無人飛行船1は、図3に示すように、仮想円柱形有限空域内で、対地定点Pを中心とした略円軌道Sを描くような所定速度の旋回滞空飛行を行う(旋回誘導工程)。   Thus, the rudder 12 of the steering device is driven and controlled, and the propulsion device is driven and controlled by the guidance commands (azimuth angle command, airspeed command and angle of attack command) generated by the low wind guidance unit 53. . As a result, as shown in FIG. 3, the unmanned airship 1 performs a turnover flight at a predetermined speed so as to draw a substantially circular orbit S centered on the ground fixed point P in the virtual cylindrical finite airspace (turning guidance step). ).

<強風時における誘導制御>
次に、図4を用いて、強風時(風速風向推定部51で推定された風速が所定の閾値を超える場合)における誘導制御について説明する。
<Guidance control in strong wind>
Next, with reference to FIG. 4, guidance control in a strong wind (when the wind speed estimated by the wind speed / wind direction estimating unit 51 exceeds a predetermined threshold) will be described.

誘導制御装置50の強風時誘導部54は、風速風向推定部51で推定された風速が所定の閾値(7(m/s))を超える場合に、風速風向推定部51で推定された風向(例えば、図4の矢印W方向)に平行でかつ対地定点Pを通る第1仮想直線L1と、この第1仮想直線L1に直交しかつ対地定点Pを通る第2仮想直線L2と、第2仮想直線L2上に対地定点Pを挟んで略対称の位置に配置される2つの仮想目標点A1、A2と、を設定する(目標設定工程)。 When the wind speed estimated by the wind speed / wind direction estimating unit 51 exceeds a predetermined threshold value (7 (m / s)), the strong wind guidance unit 54 of the guidance control device 50 determines the wind direction estimated by the wind speed / wind direction estimating unit 51 ( For example, a first virtual straight line L 1 that is parallel to the ground fixed point P and parallel to the ground fixed point P, and a second virtual straight line L 2 that is orthogonal to the first virtual straight line L 1 and passes through the ground fixed point P; Two virtual target points A 1 and A 2 are set on the second virtual straight line L 2 at substantially symmetrical positions with the ground fixed point P in between (target setting step).

対地定点Pから仮想目標点A1、A2までの距離は、無人飛行船1の船体10の大きさ・重量や制御性能等に応じて、適宜決定することができる。本実施の形態においては、図4に示すように、対地定点Pから仮想目標点A1、A2までの距離を、仮想円柱形有限空域の仮想円Vの半径(1000m)の約1/3の長さに設定している。 The distance from the ground fixed point P to the virtual target points A 1 and A 2 can be appropriately determined according to the size / weight of the hull 10 of the unmanned airship 1, the control performance, and the like. In the present embodiment, as shown in FIG. 4, the distance from the ground fixed point P to the virtual target points A 1 and A 2 is set to about 1/3 of the radius (1000 m) of the virtual circle V of the virtual cylindrical finite airspace. The length is set.

次に、誘導制御装置50の強風時誘導部54は、第1仮想直線L1を隔てて船体10と反対側に位置する仮想目標点A1又はA2に向けて船体10を移動させるような誘導指令を生成する。 Next, the strong wind guidance unit 54 of the guidance control device 50 moves the hull 10 toward the virtual target point A 1 or A 2 located on the opposite side of the hull 10 across the first virtual straight line L 1. Generate a guidance command.

例えば、図4に示した仮想円V内において、仮想目標点A1が含まれる半円領域内に船体10が位置するような場合には、強風時誘導部54は、仮想目標点A2に向けて船体10を移動させるような誘導指令を生成する。逆に、図4に示した仮想円V内において、仮想目標点A2が含まれる半円領域内に船体10が位置するような場合には、強風時誘導部54は、仮想目標点A1に向けて船体10を移動させるような誘導指令を生成する。また、強風時誘導部54は、弱風時誘導部53と同様に、船体10が仮想円柱形有限空域内にとどまることができるような揚力を発生させるための対気速度指令及び迎角指令を生成する。 For example, in the virtual circle V shown in FIG. 4, when the hull 10 is located in a semicircular region including the virtual target point A 1 , the strong wind guidance unit 54 moves to the virtual target point A 2 . A guidance command for moving the hull 10 toward the head is generated. On the other hand, when the hull 10 is located in the semicircular region including the virtual target point A 2 in the virtual circle V shown in FIG. 4, the strong wind guidance unit 54 uses the virtual target point A 1. A guidance command for moving the hull 10 toward is generated. Similarly to the weak wind guidance unit 53, the strong wind guidance unit 54 issues an airspeed command and an attack angle command for generating lift that allows the hull 10 to remain in the virtual cylindrical finite airspace. Generate.

このように強風時誘導部54で生成された誘導指令(方位角指令、対気速度指令及び迎角指令)により、操縦装置の方向舵12が駆動制御されるとともに、推進装置が駆動制御される。この結果、無人飛行船1は、図4に示すように、仮想円柱形有限空域内の対地定点P近傍において滞空飛行を行う。すなわち、風上側に向かって蛇行飛行を行わせるような誘導指令により、無人飛行船1は、結果的に、対地定点P近傍に対地的に略8の字を描くような滞空飛行を行うこととなる(目標誘導工程)。   Thus, the rudder 12 of the steering device is driven and controlled, and the propulsion device is driven and controlled by the guidance commands (azimuth angle command, airspeed command, and attack angle command) generated by the strong wind guidance unit 54. As a result, as shown in FIG. 4, the unmanned airship 1 flies in the vicinity of the ground fixed point P in the virtual cylindrical finite airspace. In other words, the unmanned airship 1 as a result of the guidance command that causes the meandering flight toward the windward side results in a flying flight that draws approximately 8 characters in the vicinity of the ground fixed point P. (Target guidance process).

この目標誘導工程において、無人飛行船1は、対地定点Pを中心とした仮想円Vを含む仮想円柱形有限空域内で、方位角指令に基づいて風上に向かって左右方向に移動しながら飛行するとともに、対気速度指令及び迎角指令に基づいて上下方向に移動しながら飛行する。なお、この「上下方向の移動」には、斜め上方向への移動や斜め下方向への移動も含まれるものとする。   In this target guidance process, the unmanned airship 1 flies in a virtual cylindrical finite airspace including a virtual circle V centered on the ground fixed point P while moving in the horizontal direction toward the windward based on the azimuth command. At the same time, the aircraft flies up and down based on the airspeed command and the angle-of-attack command. It should be noted that this “movement in the vertical direction” includes movement in the diagonally upward direction and movement in the diagonally downward direction.

以上説明した実施の形態に係る無人飛行船1においては、風向風速推定部51によって推定された風速が所定の閾値以下の場合(無風時ないし弱風時)に、誘導制御装置50の弱風時誘導部53が、対地定点Pを中心として船体10を旋回飛行させるような誘導指令を生成する。従って、無人飛行船1は、無風時ないし弱風時において、所定の対気速度を確保して飛行に必要な揚力を発生させることができ、なおかつ、対地定点Pを中心とした仮想円Vを含む仮想円柱形有限空域内で旋回滞空飛行を行うことができる(図3参照)。   In the unmanned airship 1 according to the embodiment described above, when the wind speed estimated by the wind direction wind speed estimation unit 51 is equal to or less than a predetermined threshold (no wind or light wind), the guidance control device 50 performs guidance during the weak wind. The unit 53 generates a guidance command for turning the hull 10 around the ground fixed point P. Accordingly, the unmanned airship 1 can generate a lift necessary for flight by securing a predetermined airspeed in a no wind or a light wind, and includes a virtual circle V centered on the ground fixed point P. It is possible to carry out a turning flight in a virtual cylindrical finite airspace (see FIG. 3).

また、以上説明した実施の形態に係る無人飛行船1においては、風向風速推定部51によって推定された風速が所定の閾値を超えた場合(強風時)に、誘導制御装置50の強風時誘導部54が、推定された風向Wに平行でかつ対地定点Pを通る第1仮想直線L1と、この第1仮想直線L1に直交しかつ対地定点Pを通る第2仮想直線L2と、第2仮想直線L2上に対地定点Pを挟んで略対称の位置に配置される2つの仮想目標点A1、A2と、を設定する。そして、第1仮想直線L1を隔てて船体10と反対側に位置する仮想目標点A1又はA2に向けて船体10を移動させるような誘導指令を生成する。 In addition, in the unmanned airship 1 according to the embodiment described above, when the wind speed estimated by the wind direction wind speed estimation unit 51 exceeds a predetermined threshold (during strong wind), the strong wind guidance unit 54 of the guidance control device 50 is used. but the first virtual straight line L 1 passing through the parallel and ground fixed point P on the estimated wind direction W, and the second virtual straight line L 2 passing through the orthogonal and ground fixed point P to the first virtual straight line L 1, a second Two virtual target points A 1 and A 2 are set on the virtual straight line L 2 so as to be located substantially symmetrically with respect to the ground fixed point P. Then, a guidance command for moving the hull 10 toward the virtual target point A 1 or A 2 located on the opposite side of the hull 10 across the first virtual straight line L 1 is generated.

従って、無人飛行船1は、強風時において、風向Wに略平行で対地定点Pを通る第1仮想直線L1を挟んで左右に配置された仮想目標点A1又はA2に向けて飛行するように誘導されることとなる。この結果、無人飛行船1は、強風時において風向変動があった場合においても、対地定点Pを中心とした仮想円Vを含む仮想円柱形有限空域内で、対地的に8の字を描くような滞空飛行を行うことができる(図4参照)。 Therefore, the unmanned airship 1 flies toward the virtual target point A 1 or A 2 arranged on the left and right sides of the first virtual straight line L 1 that is substantially parallel to the wind direction W and passes through the ground fixed point P in a strong wind. It will be guided to. As a result, the unmanned airship 1 draws a figure of 8 in a grounded manner within a virtual cylindrical finite airspace including a virtual circle V centered on the ground fixed point P even when the wind direction fluctuates during strong winds. It is possible to fly in the air (see FIG. 4).

なお、以上の実施の形態においては、誘導指令を切り替える風速の閾値を「7(m/s)」に設定した例を示したが、この閾値は、船体10の大きさ・重量、制御性能、推進装置の推進力、等に応じて適宜変更することができる。   In the above embodiment, the example in which the wind speed threshold value for switching the guidance command is set to “7 (m / s)” is shown. However, this threshold value indicates the size / weight of the hull 10, the control performance, It can be appropriately changed according to the propulsive force of the propulsion device and the like.

また、以上の実施の形態においては、対地定点P(目標水平面位置)に係る情報を飛行前に地上で予め入力することとしたが、無人飛行船1に無線通信手段を搭載し、対地定点Pの位置情報に係る無線信号を地上から送信することにより、飛行中に誘導制御装置50に対地定点Pの位置情報を入力することもできる。   Further, in the above embodiment, the information related to the ground fixed point P (target horizontal plane position) is input in advance on the ground before the flight. However, the unmanned airship 1 is equipped with wireless communication means, and the ground fixed point P By transmitting a radio signal related to the position information from the ground, the position information of the ground fixed point P can be input to the guidance control device 50 during the flight.

また、以上の実施の形態においては、前記した「旋回誘導工程」、「目標設定工程」及び「目標誘導工程」からなる本発明に係る誘導方法を、無人飛行船1の誘導に適用した例を示したが、他の自律移動体の誘導に適用することもできる。例えば、空中を移動する他の無人航行体の誘導や水中を移動する無人潜水艦の誘導に本発明に係る誘導方法を適用することができる。   Moreover, in the above embodiment, the example which applied the guidance method which concerns on this invention which consists of above-described "turning guidance process", "target setting process", and "target guidance process" to the guidance of the unmanned airship 1 is shown. However, it can also be applied to the guidance of other autonomous mobile objects. For example, the guidance method according to the present invention can be applied to guidance of other unmanned navigation vehicles that move in the air and guidance of unmanned submarines that move in the water.

本発明の実施の形態に係る無人飛行船の側面図である。1 is a side view of an unmanned airship according to an embodiment of the present invention. 図1に示した無人飛行船の機能的構成を説明するためのブロック図である。It is a block diagram for demonstrating the functional structure of the unmanned airship shown in FIG. 本発明の実施の形態に係る無人飛行船の無風時(弱風時)における誘導制御結果を示す概念図である。It is a conceptual diagram which shows the guidance control result in the time of no wind (at the time of a weak wind) of the unmanned airship which concerns on embodiment of this invention. 本発明の実施の形態に係る無人飛行船の強風時における誘導制御結果を示す概念図である。It is a conceptual diagram which shows the guidance control result at the time of the strong wind of the unmanned airship which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 無人飛行船(自律移動体)
12 方向舵(操縦装置)
51 風速風向推定部
52 誘導部
53 弱風時誘導部(旋回誘導手段)
54 強風時誘導部(目標設定手段、目標誘導手段)
P 対地定点
1 第1仮想直線
2 第2仮想直線
1、A2 仮想目標点
1 Unmanned airship (autonomous moving body)
12 rudder (control device)
51 Wind speed / wind direction estimation unit 52 Guidance unit 53 Guidance unit during weak wind (turning guidance means)
54 Strong wind guidance unit (target setting means, target guidance means)
P Ground fixed point L 1 1st virtual straight line L 2 2nd virtual straight line A 1 , A 2 virtual target point

Claims (4)

所定の操縦装置を備える自律移動体であって、
前記自律移動体の周囲の風速及び風向を推定する風速風向推定部と、
前記風速風向推定部で推定された風速に応じて前記操縦装置を制御するための誘導指令を生成する誘導部と、を備え、
前記誘導部は、
前記風速風向推定部で推定された風速が所定の閾値以下の場合に、所定の対地定点を中心として前記自律移動体を旋回飛行させるような誘導指令を生成する旋回誘導手段と、
前記風速風向推定部で推定された風速が所定の閾値を超えた場合に、前記風速風向推定部で推定された風向に平行でかつ前記対地定点を通る第1仮想直線と、この第1仮想直線に直交しかつ前記対地定点を通る第2仮想直線と、前記第2仮想直線上に前記対地定点を挟んで略対称の位置に配置される2つの仮想目標点と、を設定する目標設定手段と、
前記第1仮想直線を隔てて前記自律移動体と反対側に位置する前記仮想目標点に向けて前記自律移動体を移動させるための誘導指令を生成する目標誘導手段と、
を有することを特徴とする自律移動体。
An autonomous mobile body provided with a predetermined control device,
A wind speed and wind direction estimating unit for estimating a wind speed and a wind direction around the autonomous mobile body;
A guidance unit that generates a guidance command for controlling the control device according to the wind speed estimated by the wind speed and wind direction estimation unit, and
The guiding portion is
When the wind speed estimated by the wind speed and wind direction estimation unit is a predetermined threshold value or less, a turning guidance unit that generates a guidance command to turn the autonomous mobile body around a predetermined ground fixed point; and
When the wind speed estimated by the wind speed / wind direction estimation unit exceeds a predetermined threshold, the first virtual line parallel to the wind direction estimated by the wind speed / wind direction estimation unit and passing through the ground fixed point, and the first virtual line A second virtual straight line that is orthogonal to the ground fixed point and two virtual target points that are arranged on the second virtual straight line at substantially symmetrical positions across the ground fixed point; ,
Target guidance means for generating a guidance command for moving the autonomous mobile body toward the virtual target point located on the opposite side of the autonomous mobile body across the first virtual straight line;
An autonomous mobile body characterized by comprising:
前記自律移動体は、
無人飛行船であることを特徴とする請求項1に記載の自律移動体。
The autonomous mobile body is
The autonomous mobile body according to claim 1, wherein the autonomous mobile body is an unmanned airship.
所定の有限空域内で風上に向かって上下左右に移動しながら飛行することを特徴とする無人飛行船。   An unmanned airship that flies while moving up, down, left and right toward the windward in a predetermined finite airspace. 所定の流体内を移動する自律移動体の移動領域を所定の対地定点を中心とした有限領域内に制限するように前記自律移動体を誘導する自律移動体の誘導方法であって、
前記自律移動体の周囲における前記流体の速度が所定の閾値以下の場合に、前記対地定点を中心として前記自律移動体を旋回させる旋回誘導工程と、
前記自律移動体の周囲における前記流体の速度が所定の閾値を超えた場合に、前記流体の流れの方向に平行でかつ前記対地定点を通る第1仮想直線と、前記第1仮想直線に直交しかつ前記対地定点を通る第2仮想直線と、前記第2仮想直線上に前記対地定点を挟んで略対称の位置に配置される2つの仮想目標点と、を設定する目標設定工程と、
前記第1仮想直線を隔てて前記自律移動体と反対側に位置する前記仮想目標点に向けて前記自律移動体を移動させる目標誘導工程と、
を備えることを特徴とする自律移動体の誘導方法。
An autonomous mobile body guidance method for guiding the autonomous mobile body so as to limit a movement area of the autonomous mobile body moving in a predetermined fluid to a finite area centered on a predetermined ground fixed point,
When the speed of the fluid around the autonomous mobile body is a predetermined threshold value or less, a turning guidance step of turning the autonomous mobile body around the ground fixed point;
When the velocity of the fluid around the autonomous mobile body exceeds a predetermined threshold, the first imaginary straight line that is parallel to the fluid flow direction and passes through the ground fixed point is orthogonal to the first imaginary straight line. And a second virtual straight line that passes through the ground fixed point, and two virtual target points that are arranged on the second virtual straight line at substantially symmetrical positions across the ground fixed point; and
A target guidance step of moving the autonomous mobile body toward the virtual target point located on the opposite side of the autonomous mobile body across the first virtual straight line;
A method for guiding an autonomous mobile body, comprising:
JP2003380955A 2003-11-11 2003-11-11 Autonomous mobile body, unmanned airship, and autonomous mobile body guidance method Expired - Fee Related JP4351897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380955A JP4351897B2 (en) 2003-11-11 2003-11-11 Autonomous mobile body, unmanned airship, and autonomous mobile body guidance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380955A JP4351897B2 (en) 2003-11-11 2003-11-11 Autonomous mobile body, unmanned airship, and autonomous mobile body guidance method

Publications (2)

Publication Number Publication Date
JP2005145090A true JP2005145090A (en) 2005-06-09
JP4351897B2 JP4351897B2 (en) 2009-10-28

Family

ID=34690482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380955A Expired - Fee Related JP4351897B2 (en) 2003-11-11 2003-11-11 Autonomous mobile body, unmanned airship, and autonomous mobile body guidance method

Country Status (1)

Country Link
JP (1) JP4351897B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207705A (en) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp Computer, unmanned aircraft, and automatic landing method
JP2010215023A (en) * 2009-03-13 2010-09-30 Zero:Kk Balloon for aerial photographing
JP2012041004A (en) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Operation planning method of autonomous mobile robot, control method of autonomous mobile robot using operation planning method of autonomous mobile robot, operation planning device of autonomous mobile robot, operation control device of autonomous mobile robot, operation planning program of autonomous mobile robot and control program of autonomous mobile robot
JP2016068764A (en) * 2014-09-30 2016-05-09 富士重工業株式会社 Method of controlling flight of aircraft and flight control system of the aircraft

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183659B1 (en) * 2009-12-01 2012-09-17 건국대학교 산학협력단 Method for setting flight path and flying object

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124095A (en) * 1997-10-22 1999-05-11 Keigoro Shigiyama Moored gliding object utilizing westerly winds at high altitude
JP2000159192A (en) * 1998-11-24 2000-06-13 Fuji Heavy Ind Ltd Automatic guide system of flight vehicle with parafoil and its navigation guide device
JP2000203491A (en) * 1999-01-14 2000-07-25 Mitsubishi Electric Corp Radio relay station system
JP2000280989A (en) * 1999-03-29 2000-10-10 Agency Of Ind Science & Technol Super-pressure type high altitude airship

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124095A (en) * 1997-10-22 1999-05-11 Keigoro Shigiyama Moored gliding object utilizing westerly winds at high altitude
JP2000159192A (en) * 1998-11-24 2000-06-13 Fuji Heavy Ind Ltd Automatic guide system of flight vehicle with parafoil and its navigation guide device
JP2000203491A (en) * 1999-01-14 2000-07-25 Mitsubishi Electric Corp Radio relay station system
JP2000280989A (en) * 1999-03-29 2000-10-10 Agency Of Ind Science & Technol Super-pressure type high altitude airship

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207705A (en) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp Computer, unmanned aircraft, and automatic landing method
JP2010215023A (en) * 2009-03-13 2010-09-30 Zero:Kk Balloon for aerial photographing
JP2012041004A (en) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Operation planning method of autonomous mobile robot, control method of autonomous mobile robot using operation planning method of autonomous mobile robot, operation planning device of autonomous mobile robot, operation control device of autonomous mobile robot, operation planning program of autonomous mobile robot and control program of autonomous mobile robot
JP2016068764A (en) * 2014-09-30 2016-05-09 富士重工業株式会社 Method of controlling flight of aircraft and flight control system of the aircraft

Also Published As

Publication number Publication date
JP4351897B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
US11639216B2 (en) Propulsion system for a buoyant aerial vehicle
Lu et al. Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle
EP2403757B1 (en) Unmanned air vehicle (uav), control system and method
WO2016037444A1 (en) Autonomous control method and device of sailboat and sailboat
JP6689804B2 (en) Communication relay device, system and management device
US11685500B2 (en) Unmanned airships, aerostats, and hybrid airship-aerostat systems and methods thereof
JP2007276609A (en) Underwater glider
JP7202389B2 (en) Ships and propulsion systems
JP2005082018A (en) Aircraft staying in high altitude for long time, its flight control system as well as its communication and observation system
CN107284631A (en) The submersible with vertical thrust device based on fluid lift force
JP2007245797A (en) Flight control device and flight vehicle furnished with flight control device
CN101628620A (en) Underwater airplane
CN110696966A (en) Energy-saving self-guard sonar positioning buoy and control method
JP4351897B2 (en) Autonomous mobile body, unmanned airship, and autonomous mobile body guidance method
CN212243801U (en) Electric water-air dual-purpose multi-rotor unmanned aerial vehicle
US11009879B2 (en) Systems and methods for controlling an aerial vehicle using lateral propulsion and vertical movement
CN114644112B (en) Water-air dual-purpose unmanned aerial vehicle
US11079773B2 (en) Lighter-than-air vehicle with relative drift navigation
JP4399287B2 (en) Aircraft and aircraft wind direction estimation method
JP3999976B2 (en) Maneuvering method and apparatus
Wright SeaDrone a low cost dual drone/ROV technology that can cross the sea boundary
JP6550895B2 (en) Diving machine
RU215859U1 (en) UNMANNED COLEOPTER
Saiki et al. Control for Suppressing Roll Motion of Outdoor Blimp Robots for Disaster Surveillance
JP7339482B2 (en) Control device, control system, flying object, control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4351897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees