JPH11123408A - Anvil for pressing width of stainless steel slab - Google Patents
Anvil for pressing width of stainless steel slabInfo
- Publication number
- JPH11123408A JPH11123408A JP23376798A JP23376798A JPH11123408A JP H11123408 A JPH11123408 A JP H11123408A JP 23376798 A JP23376798 A JP 23376798A JP 23376798 A JP23376798 A JP 23376798A JP H11123408 A JPH11123408 A JP H11123408A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- width
- anvil
- rolling
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Rolling (AREA)
- Forging (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、スラブを熱間圧
延する過程で、被圧延材の幅方向エッジ部近くに発生す
る圧延方向に長い欠陥(エッジシーム疵と呼ぶ)を低減
できるステンレス鋼スラブの幅プレス用金敷に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel slab which can reduce defects (called edge seam flaws) long in the rolling direction near the widthwise edge of the material to be rolled in the process of hot rolling the slab. It relates to an anvil for width press.
【0002】[0002]
【従来の技術】熱間スラブの幅を広範囲にわたって減幅
調整する手段の一つとして、水平対抗プレスによる幅圧
下技術が開発されている。この方法は幅圧下時の接触長
さが大きいために圧下効率がよく、またスラブ先後端に
おける成形条件をクロップが最小になるように設定でき
るために国内外の熱延工場で広く採用されている。2. Description of the Related Art As one of means for adjusting the width of a hot slab in a wide range, a width reduction technique using a horizontal counter press has been developed. This method is widely used in hot-rolling mills in Japan and overseas because the contact length at the time of width reduction is large and the rolling efficiency is good, and the molding conditions at the front and rear ends of the slab can be set to minimize the crop. .
【0003】この水平対抗プレスに用いられる金敷を利
用し、例えば板のエッジ部(幅端部)に発生する表面欠
陥のひとつであるエッジシーム疵の防止を目的として、
スラブ加熱温度を1000〜1300℃とし、中央部(金敷にお
けるプレス加工面上の厚み方向中央部を意味する。以下
同じ)に凸部を形成した金敷(凸金敷)で幅圧下する技
術が特開平5−123713号公報に開示されており、さらに
はスラブの座屈防止およびエッジシーム疵を軽減させる
方法が特開平5−277510号公報に記載されている。[0003] Utilizing anvils used in this horizontal counter press, for the purpose of preventing edge seam flaws, which are one of the surface defects occurring at the edge (width end) of the plate, for example.
Japanese Patent Application Laid-Open No. HEI 9-214572 discloses a technology in which a slab heating temperature is set to 1000 to 1300 ° C., and a width is reduced by an anvil (convex anvil) in which a convex portion is formed at a central portion (a central portion in a thickness direction on a pressed surface of the anvil). A method for preventing slab buckling and reducing edge seam flaws is disclosed in JP-A-5-277510.
【0004】これらの技術は、凸金敷を用いた幅プレス
によってスラブ側面を凹状として、幅プレス後の水平粗
圧延段階でスラブ幅端部に発生するバルジングを補償す
ることによりエッジシーム疵の回り込みを低減するもの
である。他方、幅プレスに限らない表面欠陥軽減技術と
して、例えば特開平3−124304号公報には、スラブ加熱
温度とエッジシーム疵とを関係づける具体的な開示はな
いものの、マルテンサイト系のステンレス鋼のスラブ加
熱温度を1200℃以上、加熱時間を4時間以下とすること
が提案されている。[0004] These techniques reduce the wraparound of edge seam flaws by compensating for bulging generated at the end of the slab width in the horizontal rough rolling stage after the width pressing, by making the slab side surface concave by width pressing using a convex anvil. Is what you do. On the other hand, as a technique for reducing surface defects not limited to width pressing, for example, Japanese Patent Application Laid-Open No. 3-124304 has no specific disclosure relating the slab heating temperature to the edge seam flaw, but a slab of martensitic stainless steel. It has been proposed that the heating temperature be 1200 ° C. or more and the heating time be 4 hours or less.
【0005】[0005]
【発明が解決しようとする課題】ところで、熱間仕上げ
圧延後の幅方向エッジ部に発生するエッジシーム疵の防
止を目的とする従来技術においては以下の問題点があっ
た。特開平5−123713号公報に開示されている技術で
は、幅圧下量が小さい場合にも、凸部の頂辺長さが短い
ために金敷に付与した凸形状がスラブ側面へ大きく転写
される。このため凹部の深さが深くなり、仕上げ圧延後
において板表面のエッジシーム疵は低減できても、凹部
が板内部の欠陥として残ることがあった。さらに幅縮小
量が大きい場合には、ますますスラブ側面の凹み量が大
きくなり、仕上げ圧延後の内部欠陥が大きくなる。By the way, the following problems have been encountered in the prior art for the purpose of preventing edge seam flaws occurring at the widthwise edge portions after hot finish rolling. In the technique disclosed in Japanese Patent Application Laid-Open No. 5-123713, even when the width reduction is small, the convex shape imparted to the anvil is largely transferred to the side surface of the slab because the length of the top of the convex portion is short. For this reason, the depth of the concave portion is increased, and the edge seam flaw on the plate surface can be reduced after the finish rolling, but the concave portion sometimes remains as a defect inside the plate. Further, when the width reduction amount is large, the dent amount on the side surface of the slab is further increased, and the internal defects after finish rolling are increased.
【0006】また、幅圧下量が大きい場合にはスラブ表
層においても幅方向の圧縮ひずみが大きくなるために、
この圧縮変形によりスラブ表面の結晶粒が凹凸状にな
り、凸部の結晶粒が倒れ込んでエッジシーム疵になって
いた。なお、特開平5−123713号公報には加熱温度を10
00〜1300℃とすることが記載されているが、加熱時間に
関する記載はない。また、この温度範囲の加熱温度とエ
ッジシーム疵との関連性についての説明もない。[0006] When the width reduction amount is large, the compressive strain in the width direction also increases in the slab surface layer.
Due to this compressive deformation, the crystal grains on the slab surface became uneven, and the crystal grains on the projections fell down to form edge seam flaws. Note that Japanese Patent Application Laid-Open No. 5-123713 discloses a heating temperature of 10
Although it is described that the temperature is set to 00 to 1300 ° C., there is no description about the heating time. Further, there is no description about the relationship between the heating temperature in this temperature range and the edge seam flaw.
【0007】一方、特開平5−277510号公報では、W字
溝の中央に凸部を設けた金敷を用いた幅プレスにより大
きな減幅量を得ようとするものである。しかし、大きな
減幅量は得られても、W字溝によるスラブの幅方向圧縮
変形により表層の結晶粒が凹凸になり、この結晶粒の凹
凸が倒れ込み、仕上げ圧延後まで板表面に残留しエッジ
シーム疵となっていた。このようにエッジシーム疵が大
きいと冷間圧延後まで板上下面に残ることから、耳切り
代(トリム量)を低減することが困難になり、歩留りが
低下していた。On the other hand, in Japanese Patent Application Laid-Open No. 5-277510, a large width reduction is intended to be achieved by a width press using an anvil provided with a projection at the center of a W-shaped groove. However, even if a large amount of width reduction is obtained, the crystal grains of the surface layer become uneven due to the compression deformation in the width direction of the slab due to the W-shaped groove, and the unevenness of the crystal grains falls down, and remains on the sheet surface until after finish rolling, and the edge seam It was flawed. If the edge seam flaws are large as described above, they remain on the upper and lower surfaces of the sheet until after cold rolling, so that it is difficult to reduce the margin for trimming (trim amount), and the yield has been reduced.
【0008】また、特開平3−124304号公報に提案され
ているように加熱温度を1200℃以上として、4時間以内
の加熱にすれば、肌荒れ防止はできても、スラブ表層の
脱炭層の結晶粒の凹凸に起因するエッジシーム疵の発生
により冷間圧延後でもエッジシーム疵の回り込み量が大
きく、耳切り代の低下を余儀なくされていた。本発明の
目的は、これら従来技術の問題点を一挙に解決し、幅プ
レスおよび竪ロールによる幅圧下を含む一連の熱間圧延
を経て製造されるステンレス鋼板のエッジシーム疵およ
び肌荒れの発生を効果的に低減できるステンレス鋼スラ
ブの幅プレス用金敷を提供することにある。Further, if the heating temperature is set to 1200 ° C. or higher and heating is performed for 4 hours or less as proposed in Japanese Patent Application Laid-Open No. 3-124304, the surface of the decarburized layer on the slab surface can be prevented from being crystallized. Due to the occurrence of edge seam flaws due to grain irregularities, even after cold rolling, the amount of edge seam flaws wrapped around was large, so that the margin for trimming had to be reduced. An object of the present invention is to solve these problems of the prior art at once, and to effectively reduce the occurrence of edge seam flaws and surface roughness of a stainless steel sheet manufactured through a series of hot rolling including width reduction by a width press and a vertical roll. An object of the present invention is to provide an anvil for pressing a stainless steel slab which can be reduced in width.
【0009】[0009]
【課題を解決するための手段】本発明は、中央部に台形
状の凸部を有する凸金敷であって、該凸金敷の断面に係
る凸部高さをスラブ厚の1/15〜1/4、凸部頂辺長さ
をスラブ厚の1/3〜3/4、凸部底辺長さをスラブ厚
+(10〜30)mmとすることを特徴とするステンレス鋼ス
ラブの幅プレス用金敷である。SUMMARY OF THE INVENTION The present invention relates to a convex anvil having a trapezoidal convex portion in the center, wherein the height of the convex portion relating to the cross section of the convex anvil is 1/15 to 1/1 / th of the slab thickness. 4. An anvil for pressing width of stainless steel slab, characterized in that the length of the top of the projection is 1/3 to 3/4 of the slab thickness and the length of the bottom of the projection is the slab thickness + (10 to 30) mm. It is.
【0010】[0010]
【発明の実施の形態】図2は本発明の実施に適した熱間
圧延設備列の配置図であり、10は加熱炉、11は幅プレス
装置、12は粗圧延機列、13はエッジヒータ、14は仕上げ
圧延機列、15は仕上げ圧延機列14で圧延された鋼板を巻
き取るコイラであり、16は各粗圧延機入側および仕上げ
圧延機列14入側に設置される竪ロール圧延機(別名エッ
ジャー)である。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a layout diagram of a row of hot rolling equipment suitable for carrying out the present invention, wherein 10 is a heating furnace, 11 is a width pressing apparatus, 12 is a row rolling mill, and 13 is an edge heater. , 14 is a finishing rolling mill row, 15 is a coiler for winding the steel sheet rolled by the finishing rolling mill row 14, and 16 is a vertical roll rolling installed on each coarse rolling mill entry side and the finishing rolling mill row 14 entering side. Machine (aka edger).
【0011】本発明者らの検討結果によれば、エッジシ
ーム疵の発生原因は以下のとおりである。被圧延材の幅
制御を行うために、通常の圧延機列には水平圧延機の入
側のみ、あるいは入側と出側両方にエッジャー16が配置
され、粗圧延機列12および仕上げ圧延機列14の水平ロー
ルとエッジャー16の竪ロールとのロール軸心位置を圧延
方向に数mずらした構造になっている。According to the results of the study by the present inventors, the causes of the occurrence of edge seam flaws are as follows. In order to control the width of the material to be rolled, an edger 16 is arranged only on the entrance side of the horizontal rolling mill, or on both the entrance side and the exit side, in the ordinary rolling mill row, and the rough rolling mill row 12 and the finishing rolling mill row are arranged. The structure is such that the roll axis positions of the 14 horizontal rolls and the vertical roll of the edger 16 are shifted by several meters in the rolling direction.
【0012】そのため、水平ロール圧延されている断面
の幅端部には竪ロールによる拘束が働かないので、幅端
部の自由表面がバルジ変形し、このときその領域におい
て皺が発生する。この皺は下流側のエッジャー16による
複数回のパスによって次第に大きくなり、遂には被圧延
材の表面に回り込んでエッジシーム疵になる。この皺の
主因は表面の粗大結晶粒の変形・倒れ込みによるもので
ある。すなわち、連続鋳造されたステンレス鋼のスラブ
は、加熱炉で加熱されるときに表面層が脱炭され、スラ
ブ表層の結晶粒が粗大化し、幅圧下時の幅方向の圧縮変
形により結晶粒が凸状になり(結晶粒が表層から突
起)、この突起した結晶粒が粗圧延、仕上げ圧延で倒れ
込み、エッジシーム疵となる。[0012] Therefore, since the vertical roll does not act on the width end of the cross-section where the horizontal roll rolling is performed, the free surface of the width end is bulge-deformed, and at this time, wrinkles are generated in the region. The wrinkles are gradually increased by a plurality of passes by the downstream edger 16, and eventually reach the surface of the material to be rolled to form edge seam flaws. The main cause of the wrinkles is due to deformation and fall of coarse crystal grains on the surface. That is, the surface layer of the continuously cast stainless steel slab is decarburized when heated in a heating furnace, the crystal grains of the surface layer of the slab are coarsened, and the crystal grains are convex due to the compressive deformation in the width direction when the width is reduced. (The crystal grains protrude from the surface layer), and the protruding crystal grains fall down in the rough rolling and the finish rolling to form edge seam flaws.
【0013】特に結晶構造がフェライトであるフェライ
ト系ステンレス鋼では他のステンレス鋼よりも脱炭量が
大きく、その脱炭層は厚さ1mmから数ミリ程度に及び、
また幅プレスで凸凹化する範囲も広いことからエッジシ
ーム疵の回り込み量が大きくなる。エッジシーム疵を抑
制するのに有効な温度規制は、スラブの加熱温度を下げ
かつ加熱時間を規制すること、さらに仕上げ圧延前のシ
ートバーの幅端部温度を規制することである。前者によ
り、スラブ表層の脱炭による結晶粒粗大化を防止し、後
者により肌荒れを防止するものである。[0013] In particular, the amount of decarburization of ferritic stainless steel having a crystal structure of ferrite is larger than that of other stainless steels, and the decarburized layer has a thickness of about 1 mm to several millimeters.
In addition, since the range of unevenness in the width press is wide, the amount of wrap around edge seam flaws is large. The temperature regulation effective for suppressing the edge seam flaws is to reduce the heating temperature of the slab and regulate the heating time, and further regulate the temperature at the width end of the sheet bar before the finish rolling. The former prevents crystal grain coarsening due to decarburization of the slab surface layer, and the latter prevents roughening of the skin.
【0014】加熱温度を下げることにより、脱炭層の厚
さが薄くなり、幅圧下時の幅方向圧縮変形における結晶
粒の凹凸が小さくなり、その深さが倒れ込みを生じない
程度に浅くなって冷間圧延後にエッジシーム疵が消滅す
る。この理由は、加熱温度をあるレベルまで下げると、
スラブ表層に、後々エッジシーム疵に発展しがちな1mm
以上の粗大な結晶粒がなくなるためである。By lowering the heating temperature, the thickness of the decarburized layer becomes thinner, the irregularities of the crystal grains in the compression deformation in the width direction at the time of reducing the width become smaller, and the depth becomes shallow so as not to fall down, and the temperature becomes lower. Edge seam flaws disappear after cold rolling. The reason is that when the heating temperature is lowered to a certain level,
1mm on the slab surface, which tends to develop edge seam flaws later
This is because such coarse crystal grains disappear.
【0015】スラブ表面には結晶粒が一層に並んでお
り、加熱時にこの結晶粒が最も強く脱炭される。この脱
炭層の厚さを1mm以下に薄くするための有効な手段を見
出すために、 200mm厚のスラブを加熱し、加熱温度、加
熱時間、酸素分圧を種々変化させ、加熱炉10出側でスラ
ブ表層の脱炭層の厚さを調査した。図3は、その結果得
られたスラブ表層の脱炭層厚さと加熱温度、加熱時間、
酸素分圧との関係を例示するグラフである。Crystal grains are lined up in layers on the slab surface, and these grains are most strongly decarburized during heating. In order to find an effective means to reduce the thickness of this decarburized layer to 1 mm or less, a 200 mm thick slab is heated, and the heating temperature, heating time, and oxygen partial pressure are variously changed. The thickness of the decarburized layer on the surface of the slab was investigated. Figure 3 shows the resulting decarburized layer thickness of the slab surface and the heating temperature, heating time,
4 is a graph illustrating a relationship with an oxygen partial pressure.
【0016】図3(a)に例示するように脱炭層厚さ
は、加熱温度と大きな相関があり、加熱温度とともに厚
くなり、1100℃までは 0.3mm程度と薄いが1200℃超では
急激に厚さを増し、1300℃で4mm超に達する。脱炭層厚
さは図3(b)に例示するように酸素分圧によっても厚
くなるがその増加率は小さい。圧延しやすさからいえば
加熱温度は高くし酸素分圧を下げることで脱炭層厚さを
抑制したいところだが、実操業ではスラブの挿入および
抽出時のシールに限界があって酸素分圧を1%以下に下
げることは困難であるため、脱炭層厚さを薄くするに
は、圧延に支障を来さない程度に加熱温度を低くするこ
とが工業的に有効な手段である。As shown in FIG. 3 (a), the thickness of the decarburized layer has a large correlation with the heating temperature, and increases with the heating temperature. It reaches more than 4 mm at 1300 ° C. Although the thickness of the decarburized layer is increased by the oxygen partial pressure as illustrated in FIG. 3B, the rate of increase is small. Speaking of ease of rolling, it is desirable to suppress the thickness of the decarburized layer by raising the heating temperature and lowering the oxygen partial pressure, but in actual operation, there is a limit to the sealing during slab insertion and extraction, and the oxygen partial pressure is reduced to 1 %, It is difficult to reduce the decarburized layer thickness, so that the heating temperature should be lowered to such an extent as not to hinder the rolling in order to reduce the thickness of the decarburized layer.
【0017】かかる調査結果を基礎に実操業におけるば
らつきを考慮して、安定的にスラブ脱炭層厚さ1mm以下
とするには、加熱温度を1100℃以下とするのが好ましい
ことを知見した。しかし、900 ℃を下回る加熱では圧延
が困難になるので加熱温度は900 ℃以上とする必要があ
る。加熱時間については例えば図3(c)に示すよう
に、加熱時間が長いほど脱炭層厚さは厚くなる傾向があ
るがその増加率はさほど大きくない。とはいえ、加熱温
度が前記好適範囲の上限(1100℃)のとき、加熱時間が
6時間を超えると脱炭層厚さが1mm以上になってしまう
ので、加熱時間は6時間以下とするのが望ましい。Based on the results of the investigation, it has been found that the heating temperature is preferably set to 1100 ° C. or less in order to stably reduce the slab decarburized layer thickness to 1 mm or less in consideration of variations in actual operation. However, if the heating temperature is lower than 900 ° C., the rolling becomes difficult. Therefore, the heating temperature must be 900 ° C. or higher. As for the heating time, for example, as shown in FIG. 3C, the longer the heating time, the thicker the decarburized layer tends to be, but the increase rate is not so large. However, when the heating temperature is at the upper limit of the preferred range (1100 ° C.), if the heating time exceeds 6 hours, the thickness of the decarburized layer becomes 1 mm or more, so the heating time should be 6 hours or less. desirable.
【0018】なお、スラブの中心までの均一加熱を考慮
すれば、例えば加熱温度の好適範囲下限の 900℃の場
合、3時間以上保持することが好ましい。他方、上記の
ように加熱温度を 900〜1100℃、加熱時間を6時間以下
に規制すると、仕上げ圧延において被圧延材の幅端部の
温度が800 ℃未満に低下しやすい。そうなると圧延荷重
が高くなり、ロール表層の黒皮が剥離しロールにかなり
の凹凸が生じて板の肌荒れを招くため、仕上げ圧延機列
14入側で例えばエッジヒータ13等により幅端部温度を80
0 ℃以上に維持する必要がある。Considering uniform heating up to the center of the slab, for example, when the heating temperature is at the lower limit of 900.degree. On the other hand, if the heating temperature is regulated to 900 to 1100 ° C. and the heating time is restricted to 6 hours or less as described above, the temperature at the width end of the material to be rolled in finish rolling tends to decrease to less than 800 ° C. In this case, the rolling load increases, the black scale on the surface of the roll peels off, causing considerable unevenness on the roll and causing roughening of the plate.
14 On the inlet side, set the width end temperature to 80
It must be kept above 0 ° C.
【0019】なお、温度が 900℃以上になると、ロール
表層の黒皮の生成・成長が剥離を上回りロール表層が黒
皮で均一に覆われるので、肌荒れ防止の観点からは幅端
部温度は900 ℃以上に維持することがより一層好まし
い。なお、以上説明した温度規制は、脱炭量が比較的大
きく表層の結晶粒が粗大化しやすいフェライト系ステン
レス鋼板に適用した場合に、特にその効果が顕著に発揮
されるが、オーステナイト系ステンレス鋼板に適用して
も有効である。When the temperature exceeds 900 ° C., the generation and growth of the black scale on the roll surface layer exceeds the peeling, and the roll surface layer is uniformly covered with the black scale. It is even more preferred to maintain the temperature at or above ° C. In addition, the temperature regulation described above is particularly effective when applied to a ferritic stainless steel sheet in which the decarburization amount is relatively large and the crystal grains of the surface layer tend to be coarse, but the effect is remarkably exhibited. It is effective even if applied.
【0020】次に本発明について説明する。図1は、本
発明に係る凸金敷の形状および配置に関し、(a)は外
観斜視図、(b)は凸部の断面図、(c)は平面配置図
を夫々示しており、1は凸金敷、2は熱間スラブを導入
する入側傾斜面、3はこの入側傾斜面2につながり熱間
スラブの搬送ラインと平行な中間平行面、4は中間平行
面3につながりスラブの後端部成形に役立つ出側傾斜面
であって、これら入側傾斜面2、中間平行面3および出
側傾斜面4の組み合わせにてプレス加工面が形成され
る。5は凸部の頂部、6は凸部の傾斜部、7は凸部の底
部を示し、KH,KA,KBは夫々凸金敷1の断面に係
る凸部高さ、凸部頂辺長さ、凸部底辺長さを表し、Mは
スラブ(熱間スラブ)である。Next, the present invention will be described. 1A and 1B are a perspective view, an external perspective view, a cross-sectional view of a convex part, and a plan layout view, respectively, of a convex anvil according to the present invention. Anvil 2, an entrance side inclined surface for introducing a hot slab, 3 is an intermediate parallel surface connected to the entrance side inclined surface 2 and parallel to the hot slab conveyance line, and 4 is connected to an intermediate parallel surface 3 and a rear end of the slab. A press-formed surface is formed by a combination of the entrance-side inclined surface 2, the intermediate parallel surface 3, and the exit-side inclined surface 4, which is an exit-side inclined surface useful for part forming. Reference numeral 5 denotes a top of the convex portion, 6 denotes an inclined portion of the convex portion, 7 denotes a bottom portion of the convex portion, and KH, KA, and KB denote a convex portion height, a convex portion top side length, and a cross section of the convex anvil 1, respectively. M represents a slab (hot slab).
【0021】凸金敷1は図1(c)に示すように対をな
し、左矢印の向きに搬送される熱間スラブMを両側から
挟むように配置され、上下の矢印で示すように、その相
互の往復運動を繰り返す(駆動手段は図示省略)ことに
よって搬送移動中の該スラブMをその全長にわたって幅
圧下する。冒頭に述べたようにかかる形態の幅圧下を
「水平対抗プレス」と称する。As shown in FIG. 1 (c), the convex anvils 1 form a pair, and are arranged so as to sandwich the hot slab M conveyed in the direction of the left arrow from both sides. By repeating the reciprocating movement of each other (the driving means is not shown), the slab M being conveyed is reduced in width over its entire length. As described at the beginning, the width reduction in such a form is referred to as “horizontal counter press”.
【0022】なお、スラブ側面に食い込みやすくするた
めに凸金敷1の凸部は「台形状」すなわち、略対称に向
かい合う傾斜部6の間隔が頂部5に向かうほど狭まる形
状としている。本発明は、前記の温度規制下で、ステン
レス鋼スラブの幅圧下を水平対抗プレス金敷を用いた幅
プレスによって行う場合のエッジシーム疵の発生を抑制
するためのものであり、特定断面寸法の凸金敷を採用し
てスラブ側面を適切な凹状に成形加工することにより、
水平圧延時のスラブ側面のバルジングを補償して、スラ
ブ側面に発生する皺の表裏面への回り込みを防止すると
ともに、表層にかかる圧縮力を緩和して、表面に発生す
る結晶粒の凹凸を小さくし、結晶粒の倒れ込みを防止し
て、エッジシーム疵の発生を幅の極エッジ部のみに限定
することができる。In order to make it easy to bite into the side surface of the slab, the convex portion of the metal anvil 1 has a “trapezoidal shape”, that is, a shape in which the interval between the substantially symmetrically facing inclined portions 6 becomes narrower toward the top portion 5. The present invention is to suppress the occurrence of edge seam flaws when the width reduction of a stainless steel slab is performed by a width press using a horizontal opposing press anvil under the above temperature regulation, and a convex anvil having a specific cross-sectional dimension is used. By forming the slab side into an appropriate concave shape by adopting
By compensating for bulging of the slab side surface during horizontal rolling, preventing wrinkles generated on the slab side surface from wrapping around the front and back, and reducing the compressive force applied to the surface layer, reducing the irregularities of crystal grains generated on the surface However, the fall of the crystal grains can be prevented, and the occurrence of the edge seam flaw can be limited to only the extreme edge portion of the width.
【0023】ここに本発明者らは、実験により、粗圧延
の最初の3パスで50%以上減厚する場合、3パス目の粗
圧延終了後の被圧延材の幅端部断面形状が矩形に近いほ
ど、下流の粗圧延、仕上げ圧延における側面の回り込み
量が小さくなる傾向があることを見出し、かかる知見に
基づいて、スラブ側面に凸金敷による幅プレスで刻んだ
凹部が初期3パスの粗水平圧延によるバルジングで補償
されて矩形に近い幅端部断面が得られるように、凸金敷
の断面寸法の好適範囲を定めた。Here, the present inventors have shown in experiments that when the thickness is reduced by 50% or more in the first three passes of the rough rolling, the cross-sectional shape at the width end of the material to be rolled after the completion of the third pass of the rough rolling is rectangular. It is found that there is a tendency that the wraparound amount of the side surface in the downstream rough rolling and finish rolling tends to be smaller as the distance is closer to the slab. The preferred range of the cross-sectional dimension of the convex anvil was determined so that a cross-section at a width end near a rectangle could be obtained by compensation by bulging by horizontal rolling.
【0024】そのため、本発明の幅プレス用金敷で幅プ
レス後、粗圧延の1〜3パスの途上に竪ロールによる幅
圧下が介入すると、4パス目の入側の被圧延材幅端部が
矩形状にならず、下流の粗圧延、仕上げ圧延での側面回
り込み量が大きくなってしまう。よって、幅プレス後の
粗圧延の最初の3パスで竪ロールによる幅圧延を行わな
ず50%以上に減厚することに限定した。For this reason, after the width pressing with the anvil for width pressing of the present invention, when the width reduction by the vertical roll intervenes in the course of the first to third passes of the rough rolling, the width end of the material to be rolled on the entry side in the fourth pass is reduced. Instead of a rectangular shape, the amount of side wrap around in downstream rough rolling and finish rolling becomes large. Therefore, the width was reduced to 50% or more without performing width rolling with vertical rolls in the first three passes of rough rolling after width pressing.
【0025】凸金敷の断面寸法に係る限定理由を以下に
述べる。 〔凸部高さ(KH)〕スラブ厚 200〜260mm のフェライ
ト系ステンレス鋼スラブを1000℃に加熱し、プレス加工
面が平坦な平金敷を用いて幅プレス量を種々変えて幅プ
レスを行い、続いて竪ロールによる幅圧下なしの粗水平
圧延を3パス行ってトータルの圧下率を50%とする幅プ
レス実験を行い、粗圧延後のバルジング量を調べた。The reasons for limiting the cross-sectional dimensions of the anvil will be described below. [Protrusion height (KH)] A ferrite stainless steel slab with a slab thickness of 200 to 260 mm is heated to 1000 ° C, and a width press is performed by using a flat anvil with a flat pressed surface while changing the width press amount variously. Subsequently, a width press experiment was performed in which the rough rolling was performed three times without vertical rolling using a vertical roll to reduce the total rolling reduction to 50%, and the bulging amount after the rough rolling was examined.
【0026】ここに、本発明において「幅プレス量」と
は、幅プレス前後のスラブ幅の差を意味し、「バルジン
グ量」とは、幅プレス前のスラブ側端コーナ部が粗水平
圧延3パス後に板表面に移動した位置から、幅プレス後
のスラブ幅端部までの距離を意味する。なお、バルジン
グ量の説明図を図4に示す。図4はスラブの幅プレス後
の幅端部断面を示しており、PSCは幅プレス前のスラブ
側端コーナ部、Vはバルジング量である。Here, in the present invention, the "width press amount" means a difference in slab width before and after the width press, and the "bulging amount" means a slab side end corner portion before the width press is subjected to rough horizontal rolling. It means the distance from the position moved to the plate surface after the pass to the end of the slab width after the width press. FIG. 4 is an explanatory diagram of the bulging amount. FIG. 4 shows a cross section of the width end portion of the slab after the width pressing. P SC is a slab side end corner portion before the width pressing, and V is a bulging amount.
【0027】図5は、上記幅プレス−粗圧延実験結果を
整理して得たもので、平金敷による幅プレス量とバルジ
ング量の対スラブ厚比(V/H)との関係を示すグラフ
である。図5に示すように、V/Hは幅プレス量の50mm
程度から200 mm程度までの増加に伴い1/15から1/4
まで増加する。したがって予めスラブ側面にこれに見合
う深さの凹みを付与しておくことにより、粗水平圧延3
パス後のバルジング量が補償され被圧延材断面幅端部が
矩形に近くなる。よって、かかる凹みを付与するための
凸金敷の凸部高さKHはスラブ厚の1/15〜1/4とする
のが好ましい。 〔凸部頂辺長さ(KA)〕上記の幅プレス実験におい
て、平金敷に代えて凸部高さKHを上記好適範囲とし凸
部頂辺長さKA,凸部底辺長さKBを種々変えた凸金敷
とし、粗水平圧延(竪ロールによる幅圧下なし)3パス
後のバルジング量を調べた。FIG. 5 is a graph showing the relationship between the width press amount and the bulging amount to the slab thickness ratio (V / H) obtained by arranging the width press-rough rolling experiment results. is there. As shown in FIG. 5, V / H is the width pressing amount of 50 mm.
1/15 to 1/4 with the increase from about 200 mm to about 200 mm
To increase. Therefore, by providing a dent of a depth corresponding to the slab side surface in advance, rough horizontal rolling 3
The bulging amount after the pass is compensated, and the end of the cross-sectional width of the material to be rolled becomes almost rectangular. Therefore, it is preferable that the height KH of the convex anvil for providing such a depression is 1/15 to 1/4 of the slab thickness. [Convex Top Length (KA)] In the above-described width press experiment, the convex height KH was set to the above-mentioned preferred range in place of the flat anvil, and the convex top length KA and the convex bottom length KB were variously changed. The bulging amount after three passes of rough horizontal rolling (no width reduction by vertical rolls) was examined.
【0028】図6は、その結果得られた凸部頂辺長さの
対スラブ厚比(KA/H)と被圧延材断面形状およびバ
ルジング量(V)との関係を示すグラフである。図6に
示されるように、KA/Hが1/3未満では断面形状が
ダブルバルジングとなり、VはKA/Hの減少につれて
増加する。また、KA/Hが3/4超えでは断面形状が
シングルバルジングとなり、VはKA/Hの増加につれ
て増加する。KA/Hが1/3〜3/4の範囲は断面が
ダブルバルジングとシングルバルジングとの中間の矩形
に近い形状でありこの範囲でVが最低値となる。FIG. 6 is a graph showing the relationship between the resulting slab thickness ratio (KA / H) and the cross-sectional shape of the material to be rolled and the bulging amount (V). As shown in FIG. 6, when KA / H is less than 1/3, the cross-sectional shape becomes double bulging, and V increases as KA / H decreases. If KA / H exceeds 3/4, the cross-sectional shape becomes single bulging, and V increases as KA / H increases. When KA / H is in the range of 1/3 to 3/4, the cross section has a shape close to a rectangle intermediate between double bulging and single bulging, and V is the lowest value in this range.
【0029】なお、図6には、スラブ厚200 mm、凸金敷
の凸部高さKH18mm、凸部底辺長さKB220 mm、幅プレ
ス量100 mmの場合を例示したが、図6に示される傾向
は、本発明に係るKH,KBの好適範囲ならびに図5に
示したスラブ厚および幅プレス量の範囲にわたり同様に
認められる。よって、凸部頂辺長さKAはスラブ厚の1
/3〜3/4とするのが好ましい。 〔凸部底辺長さ(KB)〕図7は、上記の幅プレス実験
において、幅プレス後粗圧延前のスラブについて調べた
転写率と凸部底辺長さのスラブ厚に対する超過分(KB
−H)との関係を示すグラフである。ここに、「転写
率」とは、凸部高さKHに対するスラブ側面の最大凹み
深さの百分率(%)であり、凸部高さKHが完全にスラ
ブ側面に転写された状態が100 %である。FIG. 6 illustrates a case in which the slab thickness is 200 mm, the height of the convex portion of the convex anvil KH is 18 mm, the length of the convex portion base is KB 220 mm, and the width of the pressed portion is 100 mm. Is similarly observed over the preferred range of KH and KB according to the present invention and the range of the slab thickness and width press amount shown in FIG. Therefore, the length KA of the top of the convex portion is 1 of the slab thickness.
/ 3 to 3/4 is preferred. [Protrusion Bottom Length (KB)] FIG. 7 shows the transfer rate and the excess (KB) of the protrusion bottom length to the slab thickness in the above-described width pressing experiment, which were examined for the slab after the width pressing and before the rough rolling.
-H) is a graph showing the relationship. Here, the “transfer rate” is a percentage (%) of the maximum dent depth of the slab side surface with respect to the convex portion height KH, and 100% is a state where the convex portion height KH is completely transferred to the slab side surface. is there.
【0030】図7に示されるように、KB−Hが10mm未
満で転写率が90%を超えるが、そこでは幅プレス時にス
ラブ側端コーナ部が、金敷の凸部の傾斜部ではなく底辺
の平坦部によって押される状況になるため、幅方向の圧
縮変形が大きくなり、それによるスラブ表層の結晶粒の
凹凸も大きくなってエッジシーム疵として残りやすくな
る。また、KB−Hが30mmを超えると転写率が80%を下
回り、スラブ側面の凹み深さが不足して粗圧延3パス後
の被圧延材断面を矩形に近づけることができなくなる。As shown in FIG. 7, when the KB-H is less than 10 mm and the transfer rate exceeds 90%, the slab side corners are not formed at the bottom of the anvil, but at the bottom at the time of width pressing. Since it is pressed by the flat portion, the compressive deformation in the width direction increases, and the unevenness of the crystal grains on the surface layer of the slab also increases, which tends to remain as edge seam flaws. On the other hand, if KB-H exceeds 30 mm, the transfer rate is less than 80%, and the dent depth of the side surface of the slab is insufficient, so that the cross section of the material to be rolled after three passes of rough rolling cannot be made close to a rectangle.
【0031】なお、図7は、KHがH/10、幅プレス量
が 200〜220mm 、KA/Hが1/3および3/4の場合
についての例を示すが、図7に示される傾向は、本発明
に係るKHの好適範囲および図5に示したスラブ厚およ
び幅プレス量の範囲にわたり同様に認められた。よっ
て、凸部底辺長さKBをスラブ厚H+(10〜30)mmとす
るのが好ましい。FIG. 7 shows an example in which KH is H / 10, the width pressing amount is 200 to 220 mm, and KA / H is 1/3 and 3/4. The tendency shown in FIG. The same was observed over the preferred range of KH according to the present invention and the range of the slab thickness and width pressing amount shown in FIG. Therefore, it is preferable that the length KB of the bottom of the convex portion is set to the slab thickness H + (10 to 30) mm.
【0032】[0032]
【実施例】スラブは、C:0.05wt%、Si: 0.3wt%、M
n: 0.1wt%、Cr:17wt%を含有する連鋳製の厚さ 200m
m、幅1300mm、長さ6mのフェライト系ステンレス鋼ス
ラブであり、図2に示した熱間圧延設備列を用いて熱間
圧延を行った。なお、粗圧延機のワークロール径は1300
mm、バレル長は2200mm、仕上げ圧延機のワークロール径
は 700mm、バレル長は2000mm、仕上げ圧延機列14の出側
速度は 1000m/minである。[Example] Slab: C: 0.05wt%, Si: 0.3wt%, M
n: Continuous cast thickness 200m containing 0.1wt%, Cr: 17wt%
This is a ferrite stainless steel slab having a length of 1300 mm, a width of 1300 mm, and a length of 6 m, and was subjected to hot rolling using the row of hot rolling equipment shown in FIG. The work roll diameter of the rough rolling mill is 1300
mm, the barrel length is 2200 mm, the work roll diameter of the finishing mill is 700 mm, the barrel length is 2000 mm, and the exit speed of the finishing mill row 14 is 1000 m / min.
【0033】発明例B1〜B6として、前記スラブを加熱炉
にて1000℃×4hrの条件で加熱後、本発明の断面寸法規
定範囲内の3種類の凸金敷を用いて、幅プレス量50mmお
よび200 mmの幅プレスを行い、次いで4スタンドの粗圧
延機列により、最初の3パスは竪ロールによる幅圧下を
行わず板厚100 mmまで減厚(減厚率50%)し、以後3パ
スを加えて計6パスの粗圧延を行って粗圧延機列出側で
板厚25mm、幅1300mmのシートバーとし、さらに、該シー
トバーを、仕上げ圧延機列入側のエッジヒータで幅端部
温度を800 ℃以上に維持しながら7スタンドの仕上げ圧
延機列により板厚4mmに仕上げ圧延し巻き取った。ま
た、これら熱延コイルを酸洗後4スタンドの冷間圧延機
により圧下率70%で冷間圧延した。As Invention Examples B1 to B6, after the slab was heated in a heating furnace under the conditions of 1000 ° C. × 4 hours, a width press amount of 50 mm was obtained using three types of convex anvils within the range of the sectional dimensions of the present invention. A 200 mm width press was performed, and then the first three passes were reduced to a thickness of 100 mm (thickness reduction rate: 50%) by a row of four-stand rough rolling mills without reducing the width by vertical rolls. And a total of 6 passes of rough rolling are performed to form a sheet bar having a thickness of 25 mm and a width of 1300 mm on the exit side of the row of coarse rolling mills. While maintaining the temperature at 800 ° C. or higher, the rolls were finished and rolled to a thickness of 4 mm by a row of finishing stands of seven stands. Further, these hot-rolled coils were cold-rolled at a rolling reduction of 70% by a four-stand cold rolling mill after pickling.
【0034】一方、比較例B7〜B10 として、前記スラブ
を加熱炉にて1200℃×4hrの条件で加熱後、特開平5-12
3713号公報に記載の寸法を有する凸金敷および特開平5-
277510号公報に記載のW字溝の中央に凸部を有する金敷
各1種類を用いて、幅プレス量50mmおよび200 mmの幅プ
レスを行い、以後、スラブ加熱温度が高いため仕上げ圧
延機入側でのエッジヒータによる加熱は行わなかったこ
と以外は発明例と同じ工程で板厚4mmに仕上げ圧延し巻
き取った。また、冷間圧延も発明例と同じにして行っ
た。On the other hand, as Comparative Examples B7 to B10, the slab was heated in a heating furnace at 1200 ° C. for 4 hours.
No. 3713, a convex anvil having the dimensions described in
Using one type of anvil having a convex portion at the center of the W-shaped groove described in Japanese Patent No. 277510, width pressing was performed with a width press amount of 50 mm and 200 mm. In the same process as in the invention, except that the heating by the edge heater was not performed, the sample was finished rolled to a thickness of 4 mm and wound up. In addition, cold rolling was performed in the same manner as in the invention.
【0035】発明例の凸金敷ならびに比較例の凸金敷お
よびW字溝金敷の凸部断面寸法(凸部高さKH,凸部頂
辺長さKA,凸部底辺長さKB)は表1に示す通りであ
り、またW字溝金敷の溝深さは300 mmとした。なお、表
1の比較例B9,B10がW字溝の金敷を用いたものである。
かくして得られた熱延コイルの長手方向ミドル部につい
て熱延後シーム量を表1に示す。ここに、シーム量と
は、本発明で採用するエッジシーム疵の評価値であり、
幅端部から最も幅中央寄りの疵(エッジシーム疵および
肌荒れの両方を含む)までの距離を意味し、概ねトリム
量に対応する。なお、シーム量は幅方向OP(オペレー
タ)側、DR(ドライブ)側および上下面(表では「OP
下」、「DR下」等と表示)について調査した。Table 1 shows the cross-sectional dimensions (convex height KH, convex top length KA, convex bottom length KB) of the convex anvil of the invention example and the convex anvil and the W-groove anvil of the comparative example. As shown, the depth of the W-shaped anvil was 300 mm. In addition, Comparative Examples B9 and B10 in Table 1 use anvils with W-shaped grooves.
Table 1 shows the seam amount after hot rolling for the middle portion in the longitudinal direction of the hot rolled coil thus obtained. Here, the seam amount is an evaluation value of an edge seam flaw employed in the present invention,
It means the distance from the width end to the flaw closest to the center of the width (including both edge seam flaws and rough skin), and generally corresponds to the trim amount. In addition, the seam amount is determined in the width direction OP (operator) side, DR (drive) side, and upper and lower surfaces ("OP" in the table).
Under, DR under, etc.).
【0036】発明例B1〜B6の熱延後シーム量は、比較例
に比して良好な結果が得られている。比較例B7,B8 では
スラブ幅側端コーナ部が金敷凸部の底部に直に当たり、
スラブ表層が幅方向に強く圧縮されることから、表層結
晶粒が凸凹になり、熱延シーム量が大きくなった。また
幅プレス量が大きいほどシーム量も大きい。比較例B9,B
10ではW字溝による拘束力が作用してスラブ表層が幅方
向にさらに強く圧縮され、それにより表層結晶粒も凹凸
度合いを増した結果、特に幅プレス量200 mmで実施例B
中最大の熱延シーム量となった。The seams after hot rolling of Invention Examples B1 to B6 show better results than those of Comparative Examples. In Comparative Examples B7 and B8, the slab width side edge directly hit the bottom of the anvil protrusion,
Since the slab surface layer was strongly compressed in the width direction, the surface layer crystal grains became uneven, and the amount of hot-rolled seam increased. Also, the larger the width press amount, the larger the seam amount. Comparative Examples B9 and B
In Example 10, the restraining force by the W-shaped groove acted, and the slab surface layer was further strongly compressed in the width direction, thereby increasing the degree of unevenness of the surface layer crystal grains.
It became the largest hot rolled seam.
【0037】冷延したコイルの長手方向ミドル部上下面
で冷延後のシーム量を前記と同様に調査したところ、冷
延後シーム量は、熱延後シーム量とほぼ同じ値であっ
た。When the seam amount after cold rolling was examined on the upper and lower surfaces of the middle portion in the longitudinal direction of the cold-rolled coil in the same manner as described above, the seam amount after cold rolling was almost the same value as the seam amount after hot rolling.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【発明の効果】本発明によれば、幅プレスおよび竪ロー
ルによる幅圧下を含む一連の熱間圧延で製造されるステ
ンレス鋼板のエッジシーム疵を従来よりも一段と低減で
き、かつ肌荒れも抑制できるので、従来30mm/片側であ
ったステンレス鋼板のトリム量を、10mmm /片側以下に
低減できるという格段の効果を奏する。According to the present invention, the edge seam flaws of a stainless steel plate produced by a series of hot rolling including width reduction by a width press and a vertical roll can be further reduced than before and the surface roughness can be suppressed. This has a remarkable effect that the trim amount of the stainless steel plate, which was conventionally 30 mm / one side, can be reduced to 10 mmm / one side or less.
【図1】本発明に係る凸金敷の形状および配置に関し、
(a)は外観斜視図、(b)は凸部の断面図、(c)は
平面配置図を夫々示す。FIG. 1 relates to the shape and arrangement of anvils according to the present invention;
(A) is an external perspective view, (b) is a sectional view of a convex portion, and (c) is a plan layout view.
【図2】本発明の実施に適した熱間圧延設備列の配置図
である。FIG. 2 is a layout diagram of a row of hot rolling equipment suitable for carrying out the present invention.
【図3】スラブ表層の脱炭層厚さと加熱温度、加熱時
間、酸素分圧との関係を例示するグラフである。FIG. 3 is a graph illustrating the relationship among the decarburized layer thickness of the slab surface layer, the heating temperature, the heating time, and the oxygen partial pressure.
【図4】バルジング量の説明図である。FIG. 4 is an explanatory diagram of a bulging amount.
【図5】平金敷による幅プレス量とバルジング量の対ス
ラブ厚比(V/H)との関係を示すグラフである。FIG. 5 is a graph showing a relationship between a width press amount by a flat anvil and a slab thickness ratio (V / H) of a bulging amount.
【図6】凸部頂辺長さの対スラブ厚比(KA/H)と被
圧延材断面形状およびバルジング量(V)との関係を示
すグラフである。FIG. 6 is a graph showing a relationship between a ratio of a top side length of a convex portion to a slab thickness (KA / H), a cross-sectional shape of a material to be rolled, and a bulging amount (V).
【図7】転写率と凸部底辺長さのスラブ厚に対する超過
分(KB−H)との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the transfer rate and the excess (KB-H) of the length of the base of the convex portion to the slab thickness.
【符号の説明】 1 凸金敷 2 入側傾斜面 3 中間平行面 4 出側傾斜面 5 凸部の頂部 6 凸部の傾斜部 7 凸部の底部 10 加熱炉 11 幅プレス装置 12 粗圧延機列 13 エッジヒータ 14 仕上げ圧延機列 15 コイラ 16 竪ロール圧延機(エッジャー) H スラブ厚 KH 凸部高さ KA 凸部頂辺長さ KB 凸部底辺長さ M スラブ(熱間スラブ) PSC 幅プレス前のスラブ側端コーナ部 V バルジング量[Description of Signs] 1 convex anvil 2 entrance side inclined surface 3 intermediate parallel surface 4 exit side inclined surface 5 top of convex portion 6 inclined portion of convex portion 7 bottom of convex portion 10 heating furnace 11 width pressing device 12 coarse rolling mill train 13 edge heater 14 finish rolling mill train 15 coiler 16 vertical rolling mill (edger) H slab thickness KH convex height KA protrusion top side length KB protrusion base length M slab (hot slab) P SC width press Front slab side end corner V Bulging amount
───────────────────────────────────────────────────── フロントページの続き (72)発明者 磯辺 邦夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 鑓田 征雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kunio Isobe 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Corporation (72) Inventor Masao Yarida 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Research Institute
Claims (1)
あって、該凸金敷の断面に係る凸部高さをスラブ厚の1
/15〜1/4、凸部頂辺長さをスラブ厚の1/3〜3/
4、凸部底辺長さをスラブ厚+(10〜30)mmとすること
を特徴とするステンレス鋼スラブの幅プレス用金敷。1. A convex anvil having a trapezoidal convex portion at a central portion, wherein a height of the convex portion relating to a cross section of the convex anvil is set to 1 of a slab thickness.
/ 15 to 1/4, the length of the convex top is 1/3 to 3 / of the slab thickness
4. An anvil for width pressing of stainless steel slabs, characterized in that the base length of the projections is slab thickness + (10 to 30) mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10233767A JP3056466B2 (en) | 1998-08-20 | 1998-08-20 | Anvil for stainless steel slab width press |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10233767A JP3056466B2 (en) | 1998-08-20 | 1998-08-20 | Anvil for stainless steel slab width press |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06824896A Division JP3504425B2 (en) | 1996-03-25 | 1996-03-25 | Method for producing stainless steel sheet capable of reducing edge seam flaws |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11123408A true JPH11123408A (en) | 1999-05-11 |
JP3056466B2 JP3056466B2 (en) | 2000-06-26 |
Family
ID=16960262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10233767A Expired - Fee Related JP3056466B2 (en) | 1998-08-20 | 1998-08-20 | Anvil for stainless steel slab width press |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3056466B2 (en) |
-
1998
- 1998-08-20 JP JP10233767A patent/JP3056466B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3056466B2 (en) | 2000-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000271603A (en) | Hot-rolling method of extra-thin strip and rolling apparatus | |
JP6922873B2 (en) | Temperable rolling method, temper rolling equipment and steel sheet manufacturing method | |
JP2845087B2 (en) | Continuous casting hot rolling equipment | |
JP3056466B2 (en) | Anvil for stainless steel slab width press | |
JP2002224702A (en) | Method of manufacturing stainless steel plate | |
JP3504425B2 (en) | Method for producing stainless steel sheet capable of reducing edge seam flaws | |
JP3221561B2 (en) | Manufacturing method of stainless steel sheet | |
CN212311405U (en) | Smooth pickling production line for controlling transverse fold defects | |
JP2786557B2 (en) | Anvil for width pressing of hot slab | |
JP3175920B2 (en) | Method for producing stainless steel strip with less seam flaws | |
JP3806173B2 (en) | Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process | |
CN111590335A (en) | Smooth pickling production line for controlling transverse fold defects | |
JPH1112686A (en) | Steel sheet for can having excellent homogeneity and its manufacture | |
JP4055218B2 (en) | Stainless steel sheet manufacturing method | |
JPH09206871A (en) | Anvil for width press of hot slab | |
JP3182820B2 (en) | Hot rolling equipment | |
JPH05138207A (en) | Hot rolling method for reducing edge crack in grain oriented electric steel sheet | |
JP4608762B2 (en) | Mold for width press and hot rolling method using the same | |
JPH0716683B2 (en) | Continuous warm rolling equipment for stainless steel strip | |
JP2004025255A (en) | Method for manufacturing hot rolled stainless steel sheet | |
RU2491140C2 (en) | Method of strip hot rolling and combination mill to this end | |
JP2000282152A (en) | Production of ferritic stainless steel sheet excellent in workability | |
JP2008137025A (en) | Method for width pressing stainless steel in hot rolling and method for manufacturing hot-rolled stainless steel sheet using the same | |
JP2005034887A (en) | Projecting die for width press and method for manufacturing hot-rolled steel sheet using the same | |
JPH0714526B2 (en) | Setup method for edge drop control of strip rolling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080414 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |