JP3504425B2 - Method for producing stainless steel sheet capable of reducing edge seam flaws - Google Patents

Method for producing stainless steel sheet capable of reducing edge seam flaws

Info

Publication number
JP3504425B2
JP3504425B2 JP06824896A JP6824896A JP3504425B2 JP 3504425 B2 JP3504425 B2 JP 3504425B2 JP 06824896 A JP06824896 A JP 06824896A JP 6824896 A JP6824896 A JP 6824896A JP 3504425 B2 JP3504425 B2 JP 3504425B2
Authority
JP
Japan
Prior art keywords
width
slab
rolling
stainless steel
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06824896A
Other languages
Japanese (ja)
Other versions
JPH09256050A (en
Inventor
敏樹 蛭田
敏夫 今江
邦夫 磯辺
征雄 鑓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP06824896A priority Critical patent/JP3504425B2/en
Publication of JPH09256050A publication Critical patent/JPH09256050A/en
Application granted granted Critical
Publication of JP3504425B2 publication Critical patent/JP3504425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ステンレス鋼板
の製造方法に関し、特に、スラブを熱間圧延する過程
で、被圧延材の幅方向エッジ部近くに発生する圧延方向
に長い欠陥(エッジシーム疵と呼ぶ)を低減できるステ
ンレス鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a stainless steel sheet, and more particularly to a long defect (edge seam flaw) in the rolling direction which occurs near the edge portion in the width direction of a material to be rolled during hot rolling of a slab. The present invention relates to a method for manufacturing a stainless steel plate that can reduce

【0002】[0002]

【従来の技術】熱間スラブの幅を広範囲にわたって減幅
調整する手段の一つとして、水平対抗プレスによる幅圧
下技術が開発されている。この方法は幅圧下時の接触長
さが大きいために圧下効率がよく、またスラブ先後端に
おける成形条件をクロップが最小になるように設定でき
るために国内外の熱延工場で広く採用されている。
2. Description of the Related Art As one of means for adjusting the width of a hot slab over a wide range, a width reduction technique by a horizontal counter- press has been developed. This method has good rolling efficiency due to the large contact length during width reduction, and is widely adopted at domestic and overseas hot rolling plants because it can set the molding conditions at the slab front and rear ends to minimize cropping. .

【0003】この水平対抗プレスに用いられる金敷を利
用し、例えば板のエッジ部(幅端部)に発生する表面欠
陥のひとつであるエッジシーム疵の防止を目的として、
スラブ加熱温度を1000〜1300℃とし、中央部(金敷にお
けるプレス加工面上の厚み方向中央部を意味する。以下
同じ)に凸部を形成した金敷(凸金敷)で幅圧下する技
術が特開平5−123713号公報に開示されており、さらに
はスラブの座屈防止およびエッジシーム疵を軽減させる
方法が特開平5−277510号公報に記載されている。
Using an anvil used in this horizontal counter- press, for the purpose of preventing edge seam flaws, which is one of the surface defects occurring at the edge portion (width end portion) of the plate,
Japanese Patent Laid-Open Publication No. Hei 9 (1999) -31980 discloses a technique in which a slab heating temperature is set to 1000 to 1300 ° C., and an anvil (convex anvil) in which a convex portion is formed in a central portion (meaning a central portion in a thickness direction on a press working surface of an anvil. The same applies hereinafter) Japanese Patent Laid-Open No. 5-277510 discloses a method for preventing buckling of a slab and reducing edge seam flaws.

【0004】これらの技術は、凸金敷を用いた幅プレス
によってスラブ側面を凹状として、幅プレス後の水平粗
圧延段階でスラブ幅端部に発生するバルジングを補償す
ることによりエッジシーム疵の回り込みを低減するもの
である。他方、幅プレスに限らない表面欠陥軽減技術と
して、例えば特開平3−124304号公報には、スラブ加熱
温度とエッジシーム疵とを関係づける具体的な開示はな
いものの、マルテンサイト系のステンレス鋼のスラブ加
熱温度を1200℃以上、加熱時間を4時間以下とすること
が提案されている。
These techniques reduce the wraparound of edge seam flaws by making the side face of the slab concave by a width press using a convex anvil and compensating for the bulging that occurs at the end of the slab width in the horizontal rough rolling stage after the width press. To do. On the other hand, as a surface defect mitigation technique not limited to the width press, for example, Japanese Patent Laid-Open No. 3-124304 discloses no specific disclosure relating the slab heating temperature and the edge seam flaw, but a martensitic stainless steel slab. It has been proposed that the heating temperature is 1200 ° C. or higher and the heating time is 4 hours or less.

【0005】[0005]

【発明が解決しようとする課題】ところで、熱間仕上げ
圧延後の幅方向エッジ部に発生するエッジシーム疵の防
止を目的とする従来技術においては以下の問題点があっ
た。特開平5−123713号公報に開示されている技術で
は、幅圧下量が小さい場合にも、凸部の頂辺長さが短い
ために金敷に付与した凸形状がスラブ側面へ大きく転写
される。このため凹部の深さが深くなり、仕上げ圧延後
において板表面のエッジシーム疵は低減できても、凹部
が板内部の欠陥として残ることがあった。さらに幅縮小
量が大きい場合には、ますますスラブ側面の凹み量が大
きくなり、仕上げ圧延後の内部欠陥が大きくなる。
However, the prior art for the purpose of preventing edge seam flaws occurring in the widthwise edge portion after hot finish rolling has the following problems. In the technique disclosed in JP-A-5-123713, even when the width reduction amount is small, the convex shape imparted to the anvil is largely transferred to the slab side surface because the top length of the convex portion is short. For this reason, the depth of the recesses becomes deep, and even after the edge rolling, the edge seam flaws on the plate surface can be reduced, but the recesses sometimes remain as defects inside the plate. Further, when the width reduction amount is large, the dent amount on the side surface of the slab becomes larger and the internal defects after finish rolling become larger.

【0006】また、幅圧下量が大きい場合にはスラブ表
層においても幅方向の圧縮ひずみが大きくなるために、
この圧縮変形によりスラブ表面の結晶粒が凹凸状にな
り、凸部の結晶粒が倒れ込んでエッジシーム疵になって
いた。なお、特開平5−123713号公報には加熱温度を10
00〜1300℃とすることが記載されているが、加熱時間に
関する記載はない。また、この温度範囲の加熱温度とエ
ッジシーム疵との関連性についての説明もない。
Further, when the width reduction amount is large, the compressive strain in the width direction becomes large even in the surface layer of the slab.
Due to this compressive deformation, the crystal grains on the surface of the slab became uneven, and the crystal grains on the convex portion collapsed to form an edge seam flaw. In Japanese Patent Laid-Open No. 5-123713, the heating temperature is 10
It is described that the temperature is 00 to 1300 ° C, but there is no description regarding the heating time. Further, there is no description about the relationship between the heating temperature in this temperature range and the edge seam flaw.

【0007】一方、特開平5−277510号公報では、W字
溝の中央に凸部を設けた金敷を用いた幅プレスにより大
きな減幅量を得ようとするものである。しかし、大きな
減幅量は得られても、W字溝によるスラブの幅方向圧縮
変形により表層の結晶粒が凹凸になり、この結晶粒の凹
凸が倒れ込み、仕上げ圧延後まで板表面に残留しエッジ
シーム疵となっていた。このようにエッジシーム疵が大
きいと冷間圧延後まで板上下面に残ることから、耳切り
代(トリム量)を低減することが困難になり、歩留りが
低下していた。
On the other hand, in Japanese Patent Laid-Open No. 5-277510, a large width reduction amount is obtained by a width press using an anvil having a convex portion at the center of the W-shaped groove. However, even if a large amount of width reduction is obtained, the crystal grains in the surface layer become uneven due to the compressive deformation of the slab in the width direction due to the W-shaped groove, and the unevenness of the crystal grains collapses and remains on the plate surface until after finish rolling, resulting in an edge seam. It was a flaw. When the edge seam flaw is large as described above, it remains on the upper and lower surfaces of the plate until after the cold rolling, which makes it difficult to reduce the edge cutting margin (trim amount), and the yield is reduced.

【0008】また、特開平3−124304号公報に提案され
ているように加熱温度を1200℃以上として、4時間以内
の加熱にすれば、肌荒れ防止はできても、スラブ表層の
脱炭層の結晶粒の凹凸に起因するエッジシーム疵の発生
により冷間圧延後でもエッジシーム疵の回り込み量が大
きく、耳切り代の低下を余儀なくされていた。本発明の
目的は、これら従来技術の問題点を一挙に解決し、幅プ
レスおよび/または竪ロールによる幅圧下を含む一連の
熱間圧延を経て製造されるステンレス鋼板のエッジシー
ム疵および肌荒れの発生を効果的に低減できるステンレ
ス鋼板の製造方法を提供することにある。
Further, as proposed in Japanese Patent Laid-Open No. 3-124304, if the heating temperature is set to 1200 ° C. or higher and heating is performed for 4 hours or less, rough skin can be prevented, but crystals of the decarburized layer of the slab surface layer can be prevented. Due to the occurrence of edge seam flaws due to the unevenness of the grains, the amount of edge seam flaws wrapping around even after cold rolling was large, and the edge cutting margin had to be reduced. An object of the present invention is to solve these problems of the prior art all at once, and to prevent the occurrence of edge seam flaws and rough skin of a stainless steel sheet manufactured through a series of hot rolling including width reduction by a width press and / or a vertical roll. An object of the present invention is to provide a method for manufacturing a stainless steel plate that can be effectively reduced.

【0009】[0009]

【課題を解決するための手段】第1の本発明は、連続鋳
造されたステンレス鋼のスラブを加熱炉で加熱し、幅圧
下を含む粗圧延後仕上げ圧延する一連の熱間圧延を含む
ステンレス鋼板の製造方法において、スラブの加熱温度
を 900〜1100℃、加熱時間を6時間以下とし、さらに粗
圧延後仕上げ圧延前の被圧延材の幅端部温度を800 ℃以
上とすることを特徴とするエッジシーム疵を低減できる
ステンレス鋼板の製造方法である。
A first aspect of the present invention is a stainless steel sheet including a series of hot rolling processes in which a continuously cast slab of stainless steel is heated in a heating furnace and rough rolling is performed after width reduction and finish rolling is performed. In the manufacturing method, the heating temperature of the slab is 900 to 1100 ° C., the heating time is 6 hours or less, and the width end temperature of the rolled material after rough rolling and before finish rolling is 800 ° C. or more. A method for manufacturing a stainless steel plate capable of reducing edge seam flaws .

【0010】 第2の本発明は、連続鋳造されたステン
レス鋼のスラブを加熱炉で加熱し、水平対抗プレス金敷
で幅プレスし、次いで竪ロールによる幅圧下を含む粗圧
延後仕上げ圧延する一連の熱間圧延を含むステンレス鋼
板の製造方法において、スラブの加熱温度を900〜1100
℃、加熱時間を6時間以下とし、水平対抗プレス金敷を
中央部に台形状の凸部を有する凸金敷とし、該凸金敷の
断面に係る凸部高さをスラブ厚の1/15〜1/4、凸部
頂辺長さをスラブ厚の1/3〜3/4、凸部底辺長さを
スラブ厚+(10〜30)mmとし、幅プレス後の粗圧延の最
初の3パスで竪ロールによる幅圧下を行わず50%以上減
厚し、さらに粗圧延後仕上げ圧延前の被圧延材の幅端部
温度を800 ℃以上とすることを特徴とするエッジシーム
疵を低減できるステンレス鋼板の製造方法である。
A second aspect of the present invention is a series of continuous casting, in which a continuously cast stainless steel slab is heated in a heating furnace, width-pressed by a horizontal counter-press anvil, and then rough-rolled including width reduction by a vertical roll. In the method of manufacturing a stainless steel sheet including hot rolling, the heating temperature of the slab is set to 900 to 1100.
C., the heating time is 6 hours or less, the horizontal counterpress anvil is a convex anvil having a trapezoidal convex portion in the center, and the height of the convex portion related to the cross section of the convex anvil is 1/15 to 1 / the slab thickness. 4. Set the convex top length to 1/3 to 3/4 of the slab thickness, and the convex bottom length to the slab thickness + (10 to 30) mm, and make it vertical in the first 3 passes of the rough rolling after the width press. An edge seam characterized by reducing the width by 50% or more without width reduction by rolls, and by further increasing the width edge temperature of the rolled material after rough rolling to finish rolling to 800 ° C or higher.
This is a method for manufacturing a stainless steel plate capable of reducing flaws .

【0011】[0011]

【発明の実施の形態】図2は本発明の実施に適した熱間
圧延設備列の配置図であり、10は加熱炉、11は幅プレス
装置、12は粗圧延機列、13はエッジヒータ、14は仕上げ
圧延機列、15は仕上げ圧延機列14で圧延された鋼板を巻
き取るコイラであり、16は各粗圧延機入側および仕上げ
圧延機列14入側に設置される竪ロール圧延機(別名エッ
ジャー)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a layout of hot rolling equipment rows suitable for carrying out the present invention. 10 is a heating furnace, 11 is a width press machine, 12 is a rough rolling machine row, and 13 is an edge heater. , 14 is a finish rolling mill row, 15 is a coiler for winding the steel plate rolled by the finishing rolling mill row 14, and 16 is a vertical roll rolling installed at each rough rolling mill entry side and the finishing rolling mill row 14 entry side. Machine (also known as edger).

【0012】本発明者らの検討結果によれば、エッジシ
ーム疵の発生原因は以下のとおりである。被圧延材の幅
制御を行うために、通常の圧延機列には水平圧延機の入
側のみ、あるいは入側と出側両方にエッジャー16が配置
され、粗圧延機列12および仕上げ圧延機列14の水平ロー
ルとエッジャー16の竪ロールとのロール軸心位置を圧延
方向に数mずらした構造になっている。
According to the examination results of the present inventors, the causes of the occurrence of edge seam flaws are as follows. In order to control the width of the material to be rolled, in the normal rolling mill row, the edger 16 is arranged only on the inlet side of the horizontal rolling mill, or on both the inlet side and the outlet side, the rough rolling mill row 12 and the finishing rolling mill row. It has a structure in which the roll axis positions of the 14 horizontal rolls and the edger 16 vertical roll are shifted by several meters in the rolling direction.

【0013】そのため、水平ロール圧延されている断面
の幅端部には竪ロールによる拘束が働かないので、幅端
部の自由表面がバルジ変形し、このときその領域におい
て皺が発生する。この皺は下流側のエッジャー16による
複数回のパスによって次第に大きくなり、遂には被圧延
材の表面に回り込んでエッジシーム疵になる。この皺の
主因は表面の粗大結晶粒の変形・倒れ込みによるもので
ある。すなわち、連続鋳造されたステンレス鋼のスラブ
は、加熱炉で加熱されるときに表面層が脱炭され、スラ
ブ表層の結晶粒が粗大化し、幅圧下時の幅方向の圧縮変
形により結晶粒が凸状になり(結晶粒が表層から突
起)、この突起した結晶粒が粗圧延、仕上げ圧延で倒れ
込み、エッジシーム疵となる。
Therefore, since the vertical rolls do not act on the width ends of the horizontally rolled cross section, the free surface of the width ends undergoes bulge deformation, and wrinkles occur in that region. The wrinkles gradually become larger by a plurality of passes made by the edger 16 on the downstream side, and finally reach the surface of the material to be rolled and become an edge seam flaw. The main cause of this wrinkle is the deformation and collapse of the coarse crystal grains on the surface. That is, in the continuously cast stainless steel slab, the surface layer is decarburized when heated in a heating furnace, the crystal grains of the surface layer of the slab become coarse, and the crystal grains become convex due to the compression deformation in the width direction during the width reduction. (The crystal grains project from the surface layer), and the projecting crystal grains fall down during rough rolling and finish rolling, resulting in edge seam flaws.

【0014】特に結晶構造がフェライトであるフェライ
ト系ステンレス鋼では他のステンレス鋼よりも脱炭量が
大きく、その脱炭層は厚さ1mmから数ミリ程度に及び、
また幅プレスで凸凹化する範囲も広いことからエッジシ
ーム疵の回り込み量が大きくなる。第1の本発明は、ス
ラブの加熱温度を下げかつ加熱時間を規制することによ
り、スラブ表層の脱炭による結晶粒粗大化を防止し、さ
らに仕上げ圧延前のシートバーの幅端部温度を規制する
ことにより肌荒れを防止するものである。
Particularly, ferritic stainless steel having a ferrite crystal structure has a larger decarburization amount than other stainless steels, and the decarburized layer has a thickness of 1 mm to several millimeters.
In addition, since the range of unevenness in the width press is wide, the amount of wraparound of edge seam defects is large. The first aspect of the present invention prevents grain coarsening due to decarburization of the surface layer of the slab by lowering the heating temperature of the slab and regulating the heating time, and further regulates the width end temperature of the sheet bar before finish rolling. By doing so, rough skin is prevented.

【0015】加熱温度を下げることにより、脱炭層の厚
さが薄くなり、幅圧下時の幅方向圧縮変形における結晶
粒の凹凸が小さくなり、その深さが倒れ込みを生じない
程度に浅くなって冷間圧延後にエッジシーム疵が消滅す
る。この理由は、加熱温度をあるレベルまで下げると、
スラブ表層に、後々エッジシーム疵に発展しがちな1mm
以上の粗大な結晶粒がなくなるためである。
By lowering the heating temperature, the thickness of the decarburized layer becomes thin, the unevenness of the crystal grains in the compressive deformation in the width direction at the time of width reduction becomes small, and the depth becomes shallow enough not to collapse and cool. Edge seam defects disappear after hot rolling. The reason for this is that if you lower the heating temperature to a certain level,
1mm that tends to develop into edge seam flaws on the surface of the slab.
This is because the above-mentioned coarse crystal grains disappear.

【0016】スラブ表面には結晶粒が一層に並んでお
り、加熱時にこの結晶粒が最も強く脱炭される。この脱
炭層の厚さを1mm以下に薄くするための有効な手段を見
出すために、 200mm厚のスラブを加熱し、加熱温度、加
熱時間、酸素分圧を種々変化させ、加熱炉10出側でスラ
ブ表層の脱炭層の厚さを調査した。図3は、その結果得
られたスラブ表層の脱炭層厚さと加熱温度、加熱時間、
酸素分圧との関係を例示するグラフである。
Crystal grains are arranged in a single layer on the surface of the slab, and the crystal grains are most strongly decarburized during heating. In order to find an effective means for reducing the thickness of this decarburized layer to 1 mm or less, a 200 mm thick slab is heated, the heating temperature, heating time and oxygen partial pressure are variously changed, The thickness of the decarburized layer on the slab surface was investigated. Fig. 3 shows the resulting decarburized layer thickness of the slab surface layer, heating temperature, heating time,
It is a graph which illustrates the relationship with oxygen partial pressure.

【0017】図3(a)に例示するように脱炭層厚さ
は、加熱温度と大きな相関があり、加熱温度とともに厚
くなり、1100℃までは 0.3mm程度と薄いが1200℃超では
急激に厚さを増し、1300℃で4mm超に達する。脱炭層厚
さは図3(b)に例示するように酸素分圧によっても厚
くなるがその増加率は小さい。圧延しやすさからいえば
加熱温度は高くし酸素分圧を下げることで脱炭層厚さを
抑制したいところだが、実操業ではスラブの挿入および
抽出時のシールに限界があって酸素分圧を1%以下に下
げることは困難であるため、脱炭層厚さを薄くするに
は、圧延に支障を来さない程度に加熱温度を低くするこ
とが工業的に有効な手段である。
As illustrated in FIG. 3 (a), the decarburized layer thickness has a large correlation with the heating temperature, and becomes thicker with the heating temperature, and is thin at about 0.3 mm up to 1100 ° C, but rapidly increases above 1200 ° C. It reaches more than 4mm at 1300 ℃. The thickness of the decarburized layer increases with the partial pressure of oxygen as illustrated in FIG. 3B, but the rate of increase is small. In terms of easiness of rolling, we would like to suppress the thickness of the decarburized layer by raising the heating temperature and lowering the oxygen partial pressure, but in actual operation there is a limit to the sealing during slab insertion and extraction, and the oxygen partial pressure is 1 %, It is difficult to reduce the thickness to below 0%, and in order to reduce the thickness of the decarburized layer, it is industrially effective means to lower the heating temperature to the extent that rolling is not hindered.

【0018】かかる調査結果を基礎に実操業におけるば
らつきを考慮して、安定的にスラブ脱炭層厚さ1mm以下
とするには、加熱温度を1100℃以下とするのが好ましい
ことを知見した。しかし、900 ℃を下回る加熱では圧延
が困難になるので加熱温度は900 ℃以上とする必要があ
る。加熱時間については例えば図3(c)に示すよう
に、加熱時間が長いほど脱炭層厚さは厚くなる傾向があ
るがその増加率はさほど大きくない。とはいえ、加熱温
度が前記好適範囲の上限(1100℃)のとき、加熱時間が
6時間を超えると脱炭層厚さが1mm以上になってしまう
ので、加熱時間は6時間以下とするのが望ましい。
Based on the results of the investigation, it was found that it is preferable to set the heating temperature to 1100 ° C. or lower in order to stably obtain the slab decarburized layer thickness of 1 mm or less in consideration of the variation in the actual operation. However, if the heating temperature is lower than 900 ° C, rolling becomes difficult, so the heating temperature must be 900 ° C or higher. Regarding the heating time, as shown in FIG. 3C, for example, the longer the heating time, the thicker the decarburized layer tends to be, but the increase rate is not so large. However, when the heating temperature is the upper limit (1100 ° C.) of the above-mentioned suitable range, the decarburized layer thickness becomes 1 mm or more when the heating time exceeds 6 hours, so the heating time should be 6 hours or less. desirable.

【0019】なお、スラブの中心までの均一加熱を考慮
すれば、例えば加熱温度の好適範囲下限の 900℃の場
合、3時間以上保持することが好ましい。他方、上記の
ように加熱温度を 900〜1100℃、加熱時間を6時間以下
に規制すると、仕上げ圧延において被圧延材の幅端部の
温度が800 ℃未満に低下しやすい。そうなると圧延荷重
が高くなり、ロール表層の黒皮が剥離しロールにかなり
の凹凸が生じて板の肌荒れを招くため、仕上げ圧延機列
14入側で例えばエッジヒータ13等により幅端部温度を80
0 ℃以上に維持する必要がある。
In consideration of uniform heating up to the center of the slab, for example, when the heating temperature is 900 ° C. which is the lower limit of the preferable range, it is preferable to hold the heating temperature for 3 hours or more. On the other hand, if the heating temperature is regulated to 900 to 1100 ° C and the heating time is regulated to 6 hours or less as described above, the temperature of the width end portion of the rolled material is likely to drop to less than 800 ° C in finish rolling. If this happens, the rolling load will increase and the black skin on the surface of the roll will peel off, causing considerable irregularities on the roll and causing roughening of the plate.
14 At the inlet side, for example, the edge heater 13 etc.
It is necessary to maintain the temperature above 0 ° C.

【0020】なお、温度が 900℃以上になると、ロール
表層の黒皮の生成・成長が剥離を上回りロール表層が黒
皮で均一に覆われるので、肌荒れ防止の観点からは幅端
部温度は900 ℃以上に維持することがより一層好まし
い。なお、第1の本発明は、脱炭量が比較的大きく表層
の結晶粒が粗大化しやすいフェライト系ステンレス鋼板
に適用した場合に、特にその効果が顕著に発揮される
が、オーステナイト系ステンレス鋼板に適用しても有効
である。
When the temperature is 900 ° C. or higher, the generation and growth of the black skin on the roll surface exceeds the peeling and the roll surface is uniformly covered with the black skin, so that the width end temperature is 900 from the viewpoint of preventing rough skin. It is even more preferable to maintain the temperature above ℃. The first aspect of the present invention is particularly effective when applied to a ferritic stainless steel sheet having a relatively large amount of decarburization and the crystal grains of the surface layer of which are likely to coarsen. It is effective even if applied.

【0021】次に第2の本発明について説明する。図1
は、本発明に係る凸金敷の形状および配置に関し、
(a)は外観斜視図、(b)は凸部の断面図、(c)は
平面配置図を夫々示しており、1は凸金敷、2は熱間ス
ラブを導入する入側傾斜面、3はこの入側傾斜面2につ
ながり熱間スラブの搬送ラインと平行な中間平行面、4
は中間平行面3につながりスラブの後端部成形に役立つ
出側傾斜面であって、これら入側傾斜面2、中間平行面
3および出側傾斜面4の組み合わせにてプレス加工面が
形成される。5は凸部の頂部、6は凸部の傾斜部、7は
凸部の底部を示し、KH,KA,KBは夫々凸金敷1の
断面に係る凸部高さ、凸部頂辺長さ、凸部底辺長さを表
し、Mはスラブ(熱間スラブ)である。
Next, the second invention will be described. Figure 1
Relates to the shape and arrangement of the convex anvil according to the present invention,
(A) is an external perspective view, (b) is a sectional view of a convex portion, (c) is a plan layout view, respectively, 1 is a convex metal floor, 2 is an inlet side inclined surface for introducing a hot slab, 3 Is an intermediate parallel surface that is connected to this inlet side inclined surface 2 and is parallel to the hot slab transfer line, 4
Is an outlet side inclined surface connected to the intermediate parallel surface 3 and useful for forming the rear end portion of the slab, and a press work surface is formed by a combination of the inlet side inclined surface 2, the intermediate parallel surface 3 and the outlet side inclined surface 4. It Reference numeral 5 indicates the top of the convex portion, 6 indicates the inclined portion of the convex portion, 7 indicates the bottom portion of the convex portion, and KH, KA, and KB are the convex portion height and the convex portion top side length in the cross section of the convex anvil 1, respectively. It represents the length of the bottom of the convex portion, and M is a slab (hot slab).

【0022】凸金敷1は図1(c)に示すように対をな
し、左矢印の向きに搬送される熱間スラブMを両側から
挟むように配置され、上下の矢印で示すように、その相
互の往復運動を繰り返す(駆動手段は図示省略)ことに
よって搬送移動中の該スラブMをその全長にわたって幅
圧下する。冒頭に述べたようにかかる形態の幅圧下を
水平対抗プレス」と称する。
As shown in FIG. 1 (c), the convex anvil 1 is arranged so as to sandwich the hot slab M conveyed in the direction of the left arrow from both sides. By repeating the reciprocating motion of each other (the driving means is not shown), the slab M which is being conveyed is width-reduced over its entire length. As described at the beginning, such a width reduction is referred to as " horizontal counter- press".

【0023】なお、スラブ側面に食い込みやすくするた
めに凸金敷1の凸部は「台形状」すなわち、略対称に向
かい合う傾斜部6の間隔が頂部5に向かうほど狭まる形
状としている。第2の本発明は、第1の本発明の規制下
で、ステンレス鋼スラブの幅圧下を水平対抗プレス金敷
を用いた幅プレスによって行う場合のエッジシーム疵の
発生を抑制するためのものであり、特定断面寸法の凸金
敷を採用してスラブ側面を適切な凹状に成形加工するこ
とにより、水平圧延時のスラブ側面のバルジングを補償
して、スラブ側面に発生する皺の表裏面への回り込みを
防止するとともに、表層にかかる圧縮力を緩和して、表
面に発生する結晶粒の凹凸を小さくし、結晶粒の倒れ込
みを防止して、エッジシーム疵の発生を幅の極エッジ部
のみに限定することができる。
In order to make it easier to bite into the side surface of the slab, the convex portions of the convex anvil 1 are "trapezoidal", that is, the intervals between the inclined portions 6 facing each other substantially symmetrically become narrower toward the top portion 5. A second aspect of the present invention is intended to suppress the occurrence of edge seam flaws when the width reduction of the stainless steel slab is performed by a width press using a horizontal opposing press anvil under the regulation of the first aspect of the present invention, By adopting a convex anvil with a specific cross-sectional dimension and forming the slab side into an appropriate concave shape, it compensates for the bulging of the slab side during horizontal rolling and prevents the wrinkles generated on the slab side from wrapping around the front and back surfaces. In addition, the compression force applied to the surface layer is relaxed, the unevenness of the crystal grains generated on the surface is reduced, the collapse of the crystal grains is prevented, and the occurrence of edge seam flaws can be limited to only the extreme edge portion of the width. it can.

【0024】ここに本発明者らは、実験により、粗圧延
の最初の3パスで50%以上減厚する場合、3パス目の粗
圧延終了後の被圧延材の幅端部断面形状が矩形に近いほ
ど、下流の粗圧延、仕上げ圧延における側面の回り込み
量が小さくなる傾向があることを見出し、かかる知見に
基づいて、スラブ側面に凸金敷による幅プレスで刻んだ
凹部が初期3パスの粗水平圧延によるバルジングで補償
されて矩形に近い幅端部断面が得られるように、凸金敷
の断面寸法の好適範囲を定めた。
The present inventors herein, through experimentation, to decrease over 50% more than the thickness in the first three passes of rough rolling, the width end portion cross-sectional shape of the third pass of the rough rolling after the end of the material to be rolled It was found that the closer to a rectangle, the smaller the amount of wraparound on the side surface in the downstream rough rolling and finish rolling, and based on this finding, the recesses carved on the side surface of the slab by the width press with the convex anvil have three initial passes. The preferable range of the cross-sectional dimension of the convex anvil was determined so that the width end cross section close to the rectangle can be obtained by being compensated by the bulging by the rough horizontal rolling.

【0025】そのため、第2の本発明においては、粗圧
延の1〜3パスの途上に竪ロールによる幅圧下が介入す
ると、4パス目の入側の被圧延材幅端部が矩形状になら
ず、下流の粗圧延、仕上げ圧延での側面回り込み量が大
きくなってしまう。よって、幅プレス後の粗圧延の最初
の3パスで竪ロールによる幅圧延を行わなず50%以上に
減厚することに限定した。
Therefore, in the second aspect of the present invention, when the width reduction by the vertical roll intervenes during the first to third passes of the rough rolling, the width end of the rolled material on the entry side of the fourth pass becomes rectangular. In addition, the amount of side wraparound in the downstream rough rolling and finish rolling becomes large. Therefore, the width was limited to 50% or more without performing the width rolling with the vertical rolls in the first three passes of the rough rolling after the width pressing.

【0026】凸金敷の断面寸法に係る限定理由を以下に
述べる。 〔凸部高さ(KH)〕スラブ厚 200〜260mm のフェライ
ト系ステンレス鋼スラブを1000℃に加熱し、プレス加工
面が平坦な平金敷を用いて幅プレス量を種々変えて幅プ
レスを行い、続いて竪ロールによる幅圧下なしの粗水平
圧延を3パス行ってトータルの圧下率を50%とする幅プ
レス実験を行い、粗圧延後のバルジング量を調べた。
The reasons for limiting the cross-sectional dimensions of the relief anvil will be described below. [Height of convex part (KH)] A slab of ferritic stainless steel with a slab thickness of 200 to 260 mm is heated to 1000 ° C., and flat press with a flat press surface is used to perform width pressing with various width pressing amounts. Subsequently, a rough horizontal rolling without width reduction by vertical rolls was performed for 3 passes to perform a width press experiment with a total reduction ratio of 50%, and the amount of bulging after rough rolling was investigated.

【0027】ここに、本発明において「幅プレス量」と
は、幅プレス前後のスラブ厚の差を意味し、「バルジン
グ量」とは、幅プレス前のスラブ側端コーナ部が粗水平
圧延3パス後に板表面に移動した位置から、幅プレス後
のスラブ幅端部までの距離を意味する。なお、バルジン
グ量の説明図を図4に示す。図4はスラブの幅プレス後
の幅端部断面を示しており、PSCは幅プレス前のスラブ
側端コーナ部、Vはバルジング量である。
In the present invention, the "width press amount" means a difference in slab thickness before and after the width press, and the "bulging amount" means that the slab side end corner portion before the width press is subjected to the rough horizontal rolling. It means the distance from the position moved to the plate surface after passing to the edge of the slab width after width pressing. An explanatory diagram of the bulging amount is shown in FIG. FIG. 4 shows a cross section of the width end portion of the slab after the width press, where P SC is the slab side end corner portion before the width press and V is the bulging amount.

【0028】図5は、上記幅プレス−粗圧延実験結果を
整理して得たもので、平金敷による幅プレス量とバルジ
ング量の対スラブ厚比(V/H)との関係を示すグラフ
である。図5に示すように、V/Hは幅プレス量の50mm
程度から200 mm程度までの増加に伴い1/15から1/4
まで増加する。したがって予めスラブ側面にこれに見合
う深さの凹みを付与しておくことにより、粗水平圧延3
パス後のバルジング量が補償され被圧延材断面幅端部が
矩形に近くなる。よって、かかる凹みを付与するための
凸金敷の凸部高さKHはスラブ厚の1/15〜1/4とする
のが好ましい。 〔凸部頂辺長さ(KA)〕上記の幅プレス実験におい
て、平金敷に代えて凸部高さKHを上記好適範囲とし凸
部頂辺長さKA,凸部底辺長さKBを種々変えた凸金敷
とし、粗水平圧延(竪ロールによる幅圧下なし)3パス
後のバルジング量を調べた。
FIG. 5 is a graph obtained by arranging the results of the width press-rough rolling experiment, and is a graph showing the relationship between the width press amount by flat anvil and the bulging amount to the slab thickness ratio (V / H). is there. As shown in Fig. 5, V / H is the width press amount of 50 mm
From 1 to 15 to 1/4 with the increase from around to 200 mm
To increase. Therefore, by preliminarily providing a dent on the side surface of the slab with a depth suitable for this, the rough horizontal rolling 3
The bulging amount after the pass is compensated and the width end of the cross section of the rolled material becomes close to a rectangle. Therefore, it is preferable that the height KH of the convex portion of the convex anvil for providing such a depression is 1/15 to 1/4 of the slab thickness. [Convex portion top edge length (KA)] In the above width press experiment, the convex portion height KH is set to the above preferred range in place of the flatbed and the convex portion top side length KA and the convex portion bottom side length KB are variously changed. The amount of bulging after 3 passes of rough horizontal rolling (without width reduction by vertical rolls) was examined.

【0029】図6は、その結果得られた凸部頂辺長さの
対スラブ厚比(KA/H)と被圧延材断面形状およびバ
ルジング量(V)との関係を示すグラフである。図6に
示されるように、KA/Hが1/3未満では断面形状が
ダブルバルジングとなり、VはKA/Hの減少につれて
増加する。また、KA/Hが3/4超えでは断面形状が
シングルバルジングとなり、VはKA/Hの増加につれ
て増加する。KA/Hが1/3〜3/4の範囲は断面が
ダブルバルジングとシングルバルジングとの中間の矩形
に近い形状でありこの範囲でVが最低値となる。
FIG. 6 is a graph showing the relationship between the resulting ridge slab length-to-slab thickness ratio (KA / H), the cross-sectional shape of the material to be rolled and the bulging amount (V). As shown in FIG. 6, when KA / H is less than 1/3, the cross-sectional shape becomes double bulging, and V increases as KA / H decreases. Further, when KA / H exceeds 3/4, the sectional shape becomes single bulging, and V increases as KA / H increases. In the range where KA / H is 1/3 to 3/4, the cross section has a shape close to a rectangle between the double bulging and the single bulging, and V has the lowest value in this range.

【0030】なお、図6には、スラブ厚200 mm、凸金敷
の凸部高さKH18mm、凸部底辺長さKB220 mm、幅プレ
ス量100 mmの場合を例示したが、図6に示される傾向
は、第2の本発明に係るKH,KBの好適範囲ならびに
図5に示したスラブ厚および幅プレス量の範囲にわたり
同様に認められる。よって、凸部頂辺長さKAはスラブ
厚の1/3〜3/4とするのが好ましい。 〔凸部底辺長さ(KB)〕図7は、上記の幅プレス実験
において、幅プレス後粗圧延前のスラブについて調べた
転写率と凸部底辺長さのスラブ厚に対する超過分(KB
−H)との関係を示すグラフである。ここに、「転写
率」とは、凸部高さKHに対するスラブ側面の最大凹み
深さの百分率(%)であり、凸部高さKHが完全にスラ
ブ側面に転写された状態が100 %である。
FIG. 6 illustrates the case where the slab thickness is 200 mm, the height of the convex portion of the convex anvil is KH18 mm, the length of the bottom of the convex portion is KB220 mm, and the width pressing amount is 100 mm. The tendency shown in FIG. Is similarly recognized over the preferable range of KH and KB according to the second aspect of the present invention and the range of the slab thickness and width pressing amount shown in FIG. Therefore, it is preferable that the apex length KA of the convex portion is 1/3 to 3/4 of the slab thickness. [Convex Base Length (KB)] FIG. 7 shows the transfer rate and the excess (KB) of the transfer ratio and the convex bottom length investigated for the slab after the width press and before the rough rolling in the above width press experiment.
It is a graph which shows the relationship with -H). Here, the "transfer rate" is the percentage (%) of the maximum dent depth of the slab side surface with respect to the convex portion height KH, and the state in which the convex portion height KH is completely transferred to the slab side surface is 100%. is there.

【0031】図7に示されるように、KB−Hが10mm未
満で転写率が90%を超えるが、そこでは幅プレス時にス
ラブ側端コーナ部が、金敷の凸部の傾斜部ではなく底辺
の平坦部によって押される状況になるため、幅方向の圧
縮変形が大きくなり、それによるスラブ表層の結晶粒の
凹凸も大きくなってエッジシーム疵として残りやすくな
る。また、KB−Hが30mmを超えると転写率が80%を下
回り、スラブ側面の凹み深さが不足して粗圧延3パス後
の被圧延材断面を矩形に近づけることができなくなる。
As shown in FIG. 7, when KB-H is less than 10 mm and the transfer rate is more than 90%, the slab side end corner portion is not the sloped portion of the convex portion of the anvil but the bottom side during width pressing. Since it is pushed by the flat portion, the compressive deformation in the width direction becomes large, and the unevenness of the crystal grains in the surface layer of the slab also becomes large due to it, and it tends to remain as an edge seam flaw. Further, if KB-H exceeds 30 mm, the transfer rate will be less than 80%, and the dent depth of the side surface of the slab will be insufficient, so that the cross section of the material to be rolled after 3 passes of rough rolling cannot be made close to a rectangle.

【0032】なお、図7は、KHがH/10、幅プレス量
が 200〜220mm 、KA/Hが1/3および3/4の場合
についての例を示すが、図7に示される傾向は、第2の
本発明に係るKHの好適範囲および図5に示したスラブ
厚および幅プレス量の範囲にわたり同様に認められた。
よって、凸部底辺長さKBをスラブ厚H+(10〜30)mm
とするのが好ましい。
FIG. 7 shows an example in which KH is H / 10, width press amount is 200 to 220 mm, and KA / H is 1/3 and 3/4, but the tendency shown in FIG. The same was found over the preferable range of the KH according to the second present invention and the range of the slab thickness and the width pressing amount shown in FIG.
Therefore, the length KB of the bottom of the protrusion is the slab thickness H + (10 to 30) mm.
Is preferred.

【0033】[0033]

【実施例】以下に開示する実施例Aおよび実施例Bにお
いて、スラブは、C:0.05wt%、Si: 0.3wt%、Mn:
0.1wt%、Cr:17wt%を含有する連鋳製の厚さ 200mm、
幅1300mm、長さ6mのフェライト系ステンレス鋼スラブ
であり、図3に示した熱間圧延設備列を用いて熱間圧延
を行った。なお、粗圧延機のワークロール径は1300mm、
バレル長は2200mm、仕上げ圧延機のワークロール径は 7
00mm、バレル長は2000mm、仕上げ圧延機列14の出側速度
は 1000m/minである。 <実施例A:幅プレスなしの場合>前記のスラブを、表
1に示す加熱温度×時間の条件で加熱後、幅プレスは行
わず4スタンドの粗圧延機列入側の竪ロールのみを用い
て幅圧下しながら粗水平圧延し、出側で板厚25mm、幅13
00mmのシートバーとし、さらに該シートバーを7スタン
ドの仕上げ圧延機列により板厚4mmに仕上げ圧延し巻き
取った。このとき、A1〜A3については仕上げ圧延機列入
側のエッジヒータでシートバー幅端部を加熱して800 ℃
以上に維持した。
EXAMPLES In Examples A and B disclosed below, the slab is C: 0.05 wt%, Si: 0.3 wt%, Mn:
Continuous casting thickness of 200mm, containing 0.1wt%, Cr: 17wt%,
A ferritic stainless steel slab with a width of 1300 mm and a length of 6 m was hot-rolled using the hot-rolling equipment row shown in FIG. The work roll diameter of the rough rolling machine is 1300 mm,
The barrel length is 2200 mm, and the work roll diameter of the finishing mill is 7
00mm, the barrel length is 2000mm, the exit speed of the finishing rolling mill train 14 is 1000m / min. <Example A: In the case of no width press> After heating the above slab under the conditions of heating temperature and time shown in Table 1, width press was not performed and only vertical rolls on the side of the row of four rows of rough rolling mills were used. Rolling down the plate horizontally while rolling down the width, plate thickness 25 mm, width 13 at the exit side.
A 00 mm sheet bar was used, and the sheet bar was finish-rolled to a plate thickness of 4 mm by a 7-stand finishing rolling machine train and wound. At this time, for A1 to A3, heat the edge of the seat bar width with the edge heater on the line side of the finishing rolling mill, and
Maintained above.

【0034】スラブ加熱条件(温度℃×時間hr)および
シートバー幅端部温度が共に本発明の規定を満たすA1,A
2,A3を発明例とし、スラブ加熱温度、スラブ加熱時間、
シートバー幅端部温度が夫々本発明の規定を外れるA4,A
5,A6を比較例とした。かくして得られた熱延コイルの長
手方向ミドル部についてエッジシーム疵の回り込み量を
調査した結果を表1の「シーム量」欄に示す。ここに、
「シーム量」とは、本発明で採用するエッジシーム疵の
評価値であり、幅端部から最も幅中央寄りの疵(エッジ
シーム疵および肌荒れの両方を含む)までの距離を意味
し、概ねトリム量に対応する。なおシーム量は幅方向O
P(オペレータ)側、DR(ドライブ)側および上下面
(表では「OP上」,「DR下」等と表示)について調査し
た(以下同じ)。
Both the slab heating conditions (temperature ° C × time hr) and the sheet bar width end temperature satisfy the requirements of the present invention A1, A
2, A3 as an invention example, slab heating temperature, slab heating time,
The sheet bar width end temperature deviates from the regulations of the present invention, respectively A4, A
5, A6 was used as a comparative example. The "seam amount" column of Table 1 shows the results of investigation of the amount of edge seam flaws wrapping around the longitudinal middle portion of the hot rolled coil thus obtained. here,
The "seam amount" is an evaluation value of the edge seam flaw used in the present invention, and means the distance from the width end to the flaw closest to the center of the width (including both the edge seam flaw and the rough skin), and generally the trim amount. Corresponding to. The seam amount is O in the width direction.
The P (operator) side, the DR (drive) side, and the top and bottom surfaces (indicated as “OP top”, “DR bottom”, etc. in the table) were investigated (the same applies hereinafter).

【0035】表1に示すように、熱延後のシーム量は発
明例、比較例で目立った差がない。しかし、これらの熱
延コイルを酸洗後4スタンドの冷間圧延機により圧下率
70%で冷間圧延して得た冷延コイルの長手方向ミドル部
上下面で調査したシーム量は、発明例A1〜A3と比較例A
4,A5とで明瞭に差があり、発明例のほうが格段に良好
な結果が得られた。これは、発明例では、熱延段階のバ
ルジングによる皺の回り込み量は比較例と大差ないが、
その皺自体は冷延で平滑化される程度の凹みに抑えられ
ることの証左である。
As shown in Table 1, there is no noticeable difference in the seam amount after hot rolling between the invention example and the comparative example. However, after pickling these hot-rolled coils, they were rolled by a 4-stand cold rolling mill.
The amount of seams investigated on the upper and lower surfaces of the longitudinal middle portion of the cold rolled coil obtained by cold rolling at 70% is the same as that of Invention Examples A1 to A3 and Comparative Example A.
There was a clear difference between No. 4 and A5, and the invention example obtained significantly better results. This is because in the invention example, the wraparound amount due to bulging in the hot rolling stage is not much different from the comparative example,
It is a proof that the wrinkles themselves can be suppressed to a dent that is smoothed by cold rolling.

【0036】なお、比較例A6は、発明例A3と同じスラブ
加熱条件であるが、エッジヒータによる加熱を行わずシ
ートバー幅端部温度が800 ℃未満になったために肌荒れ
が発生し、シーム量が大きくなった。 <実施例B:幅プレスありの場合> 発明例B1〜B6として、前記スラブを加熱炉にて1000℃×
4hrの条件で加熱後、本発明の断面寸法規定範囲内の3
種類の凸金敷を用いて、幅プレス量50mmおよび200 mmの
水平対抗プレスを行い、次いで4スタンドの粗圧延機列
により、最初の3パスは竪ロールによる幅圧下を行わず
板厚100 mmまで減厚(減厚率50%)し、以後3パスを加
えて計6パスの粗圧延を行って粗圧延機列出側で板厚25
mm、幅1300mmのシートバーとし、さらに、該シートバー
を、仕上げ圧延機列入側のエッジヒータで幅端部温度を
800 ℃以上に維持しながら7スタンドの仕上げ圧延機列
により板厚4mmに仕上げ圧延し巻き取った。
Comparative Example A6 has the same slab heating conditions as those of Invention Example A3, but the edge bar temperature is less than 800 ° C. without heating by the edge heater, so that rough skin occurs and the seam amount is increased. Has grown. <Example B: With Width Press> As Invention Examples B1 to B6, the slab was heated to 1000 ° C. in a heating furnace.
After heating under the condition of 4 hours, 3 within the prescribed range of the cross-sectional dimension of the present invention
Width press amount of 50 mm and 200 mm
Horizontal counter- pressing was performed, and then, using a row of four-stand rough rolling mills, the first three passes were not reduced in width by vertical rolls and the thickness was reduced to 100 mm (thickness reduction rate 50%). Rough rolling is performed for a total of 6 passes, and the plate thickness is 25
mm, width 1300 mm sheet bar, and further, the width of the sheet bar is controlled by an edge heater on the entry side of the finishing rolling mill.
While maintaining the temperature at 800 ° C or higher, it was finish-rolled to a thickness of 4 mm by a 7-stand finishing rolling mill train and wound up.

【0037】また比較例B7〜B10 として、前記スラブを
加熱炉にて1200℃×4hrの条件で加熱後、特開平5-1237
13号公報に記載の寸法を有する凸金敷および特開平5-27
7510号公報に記載のW字溝の中央に凸部を有する金敷各
1種類を用いて、幅プレス量50mmおよび200 mmの幅プレ
スを行い、以後、スラブ加熱温度が高いため仕上げ圧延
機入側でのエッジヒータによる加熱は行わなかったこと
以外は発明例と同じ工程で板厚4mmに仕上げ圧延し巻き
取った。
Further, as Comparative Examples B7 to B10, after heating the slab in a heating furnace under the condition of 1200 ° C. × 4 hr, the method described in JP-A-5-1237 was used.
Japanese Patent Laid-Open No. 5-27
Using one type of anvil each having a convex portion at the center of the W-shaped groove described in Japanese Patent No. 7510, width pressing with a width pressing amount of 50 mm and 200 mm was performed, and thereafter, since the slab heating temperature was high, the finishing rolling mill entrance side In the same process as in the invention example except that the heating by the edge heater was not carried out, the product was finished rolled to a thickness of 4 mm and wound up.

【0038】発明例の凸金敷ならびに比較例の凸金敷お
よびW字溝金敷の凸部断面寸法(凸部高さKH,凸部頂
辺長さKA,凸部底辺長さKB)は表2に示す通りであ
り、またW字溝金敷の溝深さは300 mmとした。なお、表
2の比較例B9,B10がW字溝の金敷を用いたものである。
かくして得られた熱延コイルについて実施例Aと同じ要
領で熱延後シーム量を評価した結果を表2に示す。な
お、これら熱延コイルを実施例Aと同じ条件で冷延した
コイルについて同様に評価した冷延後シーム量は、熱延
後シーム量とほぼ同じ値であった。
Table 2 shows the cross-sectional dimensions (height KH of the convex portion, top length KA of the convex portion, bottom length KB of the convex portion) of the convex portions of the convex anvil of the invention example and the comparative example and the W-shaped groove anvil. As shown, the groove depth of the W-shaped grooved anvil was 300 mm. In addition, Comparative Examples B9 and B10 in Table 2 use W-shaped grooved anvils.
Table 2 shows the results of evaluation of the amount of seams after hot rolling of the thus obtained hot rolled coil in the same manner as in Example A. The amount of seams after cold rolling evaluated in the same manner for the coils obtained by cold-rolling these hot-rolled coils under the same conditions as in Example A was substantially the same as the amount of seams after hot-rolling.

【0039】発明例B1〜B6の熱延後シーム量は、幅プレ
ス量の大小によらず表1に示した実施例Aの発明例A1〜
A3のそれに比べてずっと小さくなっている。すなわち、
第1の本発明に係るスラブ低温加熱およびシートバー幅
端部温度下限管理に加え、幅圧下を第2の本発明に係る
凸金敷を用いた水平対抗プレスによって行い、かつ粗圧
延初期3パスで竪ロールによる幅圧下を行わず50%以上
に減厚することにより、表層結晶粒の粗大化抑制および
肌荒れ抑制効果にさらに、バルジングによる側面回り込
み抑制ならびに表層圧縮緩和(表層結晶粒の凹凸および
倒れ込み抑制)効果が重畳して発現し、このような良好
な結果がえられたといえる。
Inventive Examples A1 to B6 of Example A1 to A6 of Example A shown in Table 1 were used for the seam amount after hot rolling regardless of the width pressing amount.
It's much smaller than that of the A3. That is,
In addition to the slab low temperature heating and the sheet bar width end temperature lower limit control according to the first aspect of the present invention, width reduction is performed by horizontal counter-pressing using the convex anvil according to the second aspect of the present invention, and the rough rolling initial three passes. By reducing the width to 50% or more without performing width reduction with a vertical roll, in addition to the effect of suppressing coarsening of the surface layer crystal grains and roughening of the skin, side wraparound control and surface layer compression relaxation by bulging (suppression of surface layer crystal grain irregularities and collapse) It can be said that such a good result was obtained because the effects were superposed.

【0040】これに対し、比較例B7,B8 ではスラブ幅側
端コーナ部が金敷凸部の底部に直に当たり、スラブ表層
が幅方向に強く圧縮されることから、表層結晶粒が凸凹
になり、熱延シーム量が大きくなった。また幅プレス量
が大きいほどシーム量も大きい。比較例B9,B10ではW字
溝による拘束力が作用してスラブ表層が幅方向にさらに
強く圧縮され、それにより表層結晶粒も凹凸度合いを増
した結果、特に幅プレス量200 mmで実施例B中最大の熱
延シーム量となった。
On the other hand, in Comparative Examples B7 and B8, the slab width side corners directly contact the bottom of the convex portion of the anvil and the slab surface layer is strongly compressed in the width direction, so that the surface crystal grains become uneven, The amount of hot-rolled seams increased. The larger the width press amount, the larger the seam amount. In Comparative Examples B9 and B10, the slab surface layer was more strongly compressed in the width direction by the restraining force of the W-shaped groove, and as a result, the surface crystal grains were also increased in the degree of unevenness. It became the largest amount of hot rolled seams.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明によれば、幅プレスおよび/また
は竪ロールによる幅圧下を含む一連の熱間圧延で製造さ
れるステンレス鋼板のエッジシーム疵を従来よりも一段
と低減でき、かつ肌荒れも抑制できるので、従来30mm/
片側であったステンレス鋼板のトリム量を、10mmm /片
側以下に低減できるという格段の効果を奏する。
EFFECTS OF THE INVENTION According to the present invention, edge seam flaws of a stainless steel sheet manufactured by a series of hot rolling including width reduction by a width press and / or a vertical roll can be further reduced as compared with the prior art, and rough skin can be suppressed. So, the conventional 30mm /
The trim effect of the stainless steel plate on one side can be reduced to 10 mmm / side or less, which is a remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る凸金敷の形状および配置に関し、
(a)は外観斜視図、(b)は凸部の断面図、(c)は
平面配置図を夫々示す。
FIG. 1 relates to the shape and arrangement of a convex anvil according to the present invention,
(A) is an external perspective view, (b) is a sectional view of a convex portion, and (c) is a plan layout view, respectively.

【図2】本発明の実施に適した熱間圧延設備列の配置図
である。
FIG. 2 is a layout drawing of a row of hot rolling equipment suitable for implementing the present invention.

【図3】スラブ表層の脱炭層厚さと加熱温度、加熱時
間、酸素分圧との関係を例示するグラフである。
FIG. 3 is a graph illustrating a relationship between a decarburized layer thickness of a slab surface layer, a heating temperature, a heating time, and an oxygen partial pressure.

【図4】バルジング量の説明図である。FIG. 4 is an explanatory diagram of a bulging amount.

【図5】平金敷による幅プレス量とバルジング量の対ス
ラブ厚比(V/H)との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the width press amount and the bulging amount relative to the slab thickness ratio (V / H) by flat anvil.

【図6】凸部頂辺長さの対スラブ厚比(KA/H)と被
圧延材断面形状およびバルジング量(V)との関係を示
すグラフである。
FIG. 6 is a graph showing a relationship between a slab thickness ratio (KA / H) of a convex top length, a cross-sectional shape of a material to be rolled, and a bulging amount (V).

【図7】転写率と凸部底辺長さのスラブ厚に対する超過
分(KB−H)との関係を示すグラフである。
FIG. 7 is a graph showing a relationship between a transfer rate and an excess amount (KB-H) of a bottom length of a convex portion with respect to a slab thickness.

【符号の説明】[Explanation of symbols]

1 凸金敷 2 入側傾斜面 3 中間平行面 4 出側傾斜面 5 凸部の頂部 6 凸部の傾斜部 7 凸部の底部 10 加熱炉 11 幅プレス装置 12 粗圧延機列 13 エッジヒータ 14 仕上げ圧延機列 15 コイラ 16 竪ロール圧延機(エッジャー) H スラブ厚 KH 凸部高さ KA 凸部頂辺長さ KB 凸部底辺長さ M スラブ(熱間スラブ) PSC 幅プレス前のスラブ側端コーナ部 V バルジング量1 Convex anvil 2 Inlet side inclined surface 3 Intermediate parallel surface 4 Outlet side inclined surface 5 Top of convex portion 6 Inclined portion of convex portion 7 Bottom of convex portion 10 Heating furnace 11 Width press device 12 Rough rolling mill row 13 Edge heater 14 Finish Rolling mill row 15 Coila 16 Vertical roll rolling mill (edger) H Slab thickness KH Convex part height KA Convex part top side length KB Convex part bottom side length M Slab (hot slab) P SC width Slab side end before pressing Corner V Vulging amount

───────────────────────────────────────────────────── フロントページの続き (72)発明者 磯辺 邦夫 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (72)発明者 鑓田 征雄 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (56)参考文献 特開 昭61−111703(JP,A) 特開 平4−138803(JP,A) 特開 平8−73995(JP,A) 特開 平4−123802(JP,A) 特開 平5−123713(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kunio Isobe               1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki               Steel Engineering Co., Ltd. (72) Inventor Masao Akita               1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki               Steel Engineering Co., Ltd.                (56) References JP-A-61-111703 (JP, A)                 JP-A-4-138803 (JP, A)                 JP-A-8-73995 (JP, A)                 JP-A-4-123802 (JP, A)                 JP-A-5-123713 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続鋳造されたステンレス鋼のスラブを
加熱炉で加熱し、幅圧下を含む粗圧延後仕上げ圧延する
一連の熱間圧延を含むステンレス鋼板の製造方法におい
て、スラブの加熱温度を 900〜1100℃、加熱時間を6時
間以下とし、さらに粗圧延後仕上げ圧延前の被圧延材の
幅端部温度を800 ℃以上とすることを特徴とするエッジ
シーム疵を低減できるステンレス鋼板の製造方法。
1. A method for manufacturing a stainless steel sheet, which comprises a series of hot rolling processes in which a continuously cast stainless steel slab is heated in a heating furnace, and rough rolling is followed by finish rolling including width reduction. C. to 1100 ° C., the heating time is 6 hours or less, characterized by further width end temperature of the rough rolling after finish rolling prior to the material to be rolled and 800 ° C. or higher edge
A method for manufacturing a stainless steel sheet capable of reducing seam flaws .
【請求項2】 連続鋳造されたステンレス鋼のスラブを
加熱炉で加熱し、水平対抗プレス金敷で幅プレスし、次
いで竪ロールによる幅圧下を含む粗圧延後仕上げ圧延す
る一連の熱間圧延を含むステンレス鋼板の製造方法にお
いて、スラブの加熱温度を 900〜1100℃、加熱時間を6
時間以下とし、水平対抗プレス金敷を中央部に台形状の
凸部を有する凸金敷とし、該凸金敷の断面に係る凸部高
さをスラブ厚の1/15〜1/4、凸部頂辺長さをスラブ
厚の1/3〜3/4、凸部底辺長さをスラブ厚+(10〜
30)mmとし、幅プレス後の粗圧延の最初の3パスで竪ロ
ールによる幅圧下を行わず50%以上減厚し、さらに粗圧
延後仕上げ圧延前の被圧延材の幅端部温度を800 ℃以上
とすることを特徴とするエッジシーム疵を低減できる
テンレス鋼板の製造方法。
2. A series of hot rolling processes in which a continuously cast stainless steel slab is heated in a heating furnace, width-pressed in a horizontal counterpress anvil and then rough-rolled and finish-rolled including width reduction by a vertical roll. In the method of manufacturing a stainless steel plate, the heating temperature of the slab is 900 to 1100 ° C and the heating time is 6
The time is less than or equal to the time, and the horizontal counterpress anvil is a convex anvil having a trapezoidal convex portion in the central part, and the height of the convex portion related to the cross section of the convex anvil is 1/15 to 1/4 of the slab thickness, the convex top side The length is 1/3 to 3/4 of the slab thickness, and the length of the convex bottom is the slab thickness + (10 to
30mm, the width is reduced by 50% or more in the first three passes of rough rolling after width pressing without vertical reduction by vertical rolls, and the temperature at the width end of the rolled material after rough rolling and before finish rolling is 800 A method for producing a stainless steel sheet capable of reducing edge seam flaws, which is characterized in that the temperature is at least ℃.
JP06824896A 1996-03-25 1996-03-25 Method for producing stainless steel sheet capable of reducing edge seam flaws Expired - Fee Related JP3504425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06824896A JP3504425B2 (en) 1996-03-25 1996-03-25 Method for producing stainless steel sheet capable of reducing edge seam flaws

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06824896A JP3504425B2 (en) 1996-03-25 1996-03-25 Method for producing stainless steel sheet capable of reducing edge seam flaws

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10233767A Division JP3056466B2 (en) 1998-08-20 1998-08-20 Anvil for stainless steel slab width press

Publications (2)

Publication Number Publication Date
JPH09256050A JPH09256050A (en) 1997-09-30
JP3504425B2 true JP3504425B2 (en) 2004-03-08

Family

ID=13368282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06824896A Expired - Fee Related JP3504425B2 (en) 1996-03-25 1996-03-25 Method for producing stainless steel sheet capable of reducing edge seam flaws

Country Status (1)

Country Link
JP (1) JP3504425B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608762B2 (en) * 2000-10-27 2011-01-12 Jfeスチール株式会社 Mold for width press and hot rolling method using the same
WO2020196019A1 (en) * 2019-03-22 2020-10-01 日本製鉄株式会社 Seamless steel pipe suitable for use under sour environments

Also Published As

Publication number Publication date
JPH09256050A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US5219114A (en) Continuous hot strip rolling system and method thereof
JP3504425B2 (en) Method for producing stainless steel sheet capable of reducing edge seam flaws
JP2002224702A (en) Method of manufacturing stainless steel plate
JP3056466B2 (en) Anvil for stainless steel slab width press
JP2786557B2 (en) Anvil for width pressing of hot slab
JP3221561B2 (en) Manufacturing method of stainless steel sheet
JP3182820B2 (en) Hot rolling equipment
JP3175920B2 (en) Method for producing stainless steel strip with less seam flaws
JPH09206871A (en) Anvil for width press of hot slab
JPS6141643B2 (en)
JPH0156126B2 (en)
JPH07171602A (en) Manufacture of parallel flange channel steel constant in outside width
JPH0716683B2 (en) Continuous warm rolling equipment for stainless steel strip
JP2004025255A (en) Method for manufacturing hot rolled stainless steel sheet
JPH0714526B2 (en) Setup method for edge drop control of strip rolling
JP4608762B2 (en) Mold for width press and hot rolling method using the same
JPH06102202B2 (en) Rolling method for U-shaped steel sheet pile
JPH07164001A (en) Method and device for rolling steel sheet
JPH10265843A (en) Production of stainless steel sheet
JP2688390B2 (en) Hot rolling method
JPH0635001B2 (en) Hot finish rolling method for austenitic stainless steel
JP3307213B2 (en) Hot rolled steel strip manufacturing method
JPH10156401A (en) Method for hot-rolling dead soft steel
SU1251982A1 (en) Method of rolling strips
JP2008137025A (en) Method for width pressing stainless steel in hot rolling and method for manufacturing hot-rolled stainless steel sheet using the same

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031210

LAPS Cancellation because of no payment of annual fees