JPH11121614A - Multilayer connecting method and semiconductor integrated circuit - Google Patents

Multilayer connecting method and semiconductor integrated circuit

Info

Publication number
JPH11121614A
JPH11121614A JP28476497A JP28476497A JPH11121614A JP H11121614 A JPH11121614 A JP H11121614A JP 28476497 A JP28476497 A JP 28476497A JP 28476497 A JP28476497 A JP 28476497A JP H11121614 A JPH11121614 A JP H11121614A
Authority
JP
Japan
Prior art keywords
wiring
wiring layer
input
pad
output cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28476497A
Other languages
Japanese (ja)
Inventor
Noriaki Hiraga
則秋 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP28476497A priority Critical patent/JPH11121614A/en
Publication of JPH11121614A publication Critical patent/JPH11121614A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce variations of resistance values and realize connection in low resistance, by a method wherein a via hole is formed by providing a specified restriction to a wiring and a vertical directions. SOLUTION: A multilayer connection is made between an input and output cell 1 and a pad 2 by using two wiring layers S1, S2, and in a portion where the input and output cell 1 is overlaid on the pad 2, a via hole V is formed in an insulation film Z separating the wiring layer S1 from the wiring layer S2 and the wiring layer S1 is coupled to the wiring layer S2, and also each of wiring layers S1, S2 is brought into contact with the input and output cell 1 and the pad 2. The via hole V is formed on a straight line so as to be in parallel to a wiring direction and have an interval of 3 μm or more with respect to each other between the input and output cell 1 and the pad 2, so that the wiring layer S1 is coupled to the wiring layer S2. Accordingly, according to a multilayer connecting method, a connection between arbitrary two points by using a plurality of wiring layers can be made with variations of resistance values being reduced and low resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、半導体集
積回路において入出力セルとパッドとを接続する場合な
どに採用される、複数の配線層を用いて2点間を接続す
る多層接続方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layer connection method for connecting two points using a plurality of wiring layers, which is employed, for example, when connecting an input / output cell and a pad in a semiconductor integrated circuit. Things.

【0002】[0002]

【従来の技術】従前から、半導体集積回路において入出
力セルとパッドとを接続する場合など、スペース的な問
題から配線幅を十分に大きくとることができない場合
は、電流容量を確保するために、積層された複数の配線
層を用いて2点間を接続する手法が採用されている。
2. Description of the Related Art Conventionally, when a wiring width cannot be made sufficiently large due to a space problem such as a case where an input / output cell is connected to a pad in a semiconductor integrated circuit, in order to secure a current capacity, A method of connecting two points by using a plurality of stacked wiring layers is adopted.

【0003】2本の配線層で接続する場合を例にとっ
て、従来の多層接続方法を説明する。従来の多層接続に
おいては、図3の(イ)に上部から見た平面図を、図3
の(ロ)に図3の(イ)におけるB−B’での断面図
を、それぞれ示すように、入出力セル1とパッド2とに
重なる部分にのみ、配線層S1と配線層S2との間の絶
縁膜ZにビアホールVを形成することによって、配線層
S1、S2のそれぞれを入出力セル1及びパッド2にコ
ンタクトさせるとともに、配線層S1と配線層S2とを
結合させていた。
[0003] A conventional multi-layer connection method will be described by taking as an example the case of connection using two wiring layers. In a conventional multi-layer connection, a plan view seen from above in FIG.
3 (b) shows a cross-sectional view taken along the line BB 'in FIG. 3 (a). As shown in FIG. 3 (b), only the portion overlapping the input / output cell 1 and the pad 2 has the wiring layer S1 and the wiring layer S2. By forming via holes V in the insulating film Z between the wiring layers, the wiring layers S1 and S2 are respectively brought into contact with the input / output cells 1 and the pads 2, and the wiring layers S1 and S2 are coupled.

【0004】その他には、図4の(イ)に上部から見た
平面図を、図4の(ロ)に図4の(イ)におけるC−
C’での断面図を、それぞれ示すように、入出力セル1
とパッド2とに重なる部分だけでなく、入出力セル1と
パッド2との間にも絶縁膜Zにできるだけ多くのビアホ
ールVを無制限に形成し、配線層S1と配線層S2とを
密接に結合させていた。
[0004] In addition, FIG. 4A shows a plan view as viewed from above, and FIG. 4B shows a C-line in FIG.
As shown in the sectional views at C ′, the input / output cell 1
As many via holes V as possible are formed in the insulating film Z between the input / output cell 1 and the pad 2 as much as possible without limitation, in addition to the portion overlapping with the pad 2 and the pad 2, and the wiring layer S1 and the wiring layer S2 are tightly coupled. I was letting it.

【0005】[0005]

【発明が解決しようとする課題】ここで、ビアホールV
を介して配線層S1と配線層S2とは互いに結合される
わけであるが、図5はその結合状態の一例を模式的に示
している。この例では、ビアホールVには上層の配線層
S2を形成する伝導物質M2(通常、この伝導物質M2
は下層の配線層S1を形成する伝導物質M1と異なるも
のである)が充填されるが、その充填状態、特に、下層
の配線層S1を形成する伝導物質M1との接続部分の厚
みT1は製造プロセス上から見て必ずしもコントロール
することはできず、ビアホールVにおける抵抗値がばら
つく。また、上記の厚みT1は配線層S2のビアホール
V以外の平坦部分における厚みT2よりも薄くなるの
で、配線層S2はビアホールVにおいて配線の厚みが薄
くなる。すなわち、配線層S1と配線層S2とはビアホ
ールVを介して結合されるとはいっても、両配線層がシ
ョートしたかのように効果的には結合されてはおらず、
弱い結合でしかない(比較的抵抗値の大きな抵抗を介し
て結合されている)のである。
Here, the via hole V
The wiring layer S1 and the wiring layer S2 are connected to each other via a line. FIG. 5 schematically shows an example of the connection state. In this example, a conductive material M2 (usually, this conductive material M2) forming the upper wiring layer S2 is formed in the via hole V.
Is different from the conductive material M1 forming the lower wiring layer S1), and the filling state, particularly, the thickness T1 of the connection portion with the conductive material M1 forming the lower wiring layer S1 is manufactured. It is not always possible to control this from the viewpoint of the process, and the resistance value in the via hole V varies. Further, since the thickness T1 is smaller than the thickness T2 of the wiring layer S2 in a flat portion other than the via hole V, the wiring thickness of the wiring layer S2 in the via hole V is reduced. That is, although the wiring layer S1 and the wiring layer S2 are connected via the via hole V, they are not effectively connected as if both wiring layers were short-circuited.
It is only a weak connection (coupled through a resistor having a relatively large resistance value).

【0006】以上の内容から、図3、4に示した従来の
多層接続方法では、以下に述べるような問題があった。
まず、図3に示した多層接続方法では、入出力セル1と
パッド2とに重なる部分にのみビアホールVを形成して
いるため、配線層S1と配線層S2とは2箇所でしか結
合されておらず、配線層S1と配線層S2との間の抵抗
値が高い。その結果、入出力セル1とパッド2とを接続
する配線間の抵抗値が高くなるとともに、ビアホールV
における抵抗値に左右されてばらつきが大きくなる。
From the above, the conventional multilayer connection method shown in FIGS. 3 and 4 has the following problems.
First, in the multilayer connection method shown in FIG. 3, since the via hole V is formed only in the portion overlapping the input / output cell 1 and the pad 2, the wiring layer S1 and the wiring layer S2 are connected only at two places. However, the resistance between the wiring layer S1 and the wiring layer S2 is high. As a result, the resistance value between the wiring connecting the input / output cell 1 and the pad 2 increases, and the via hole V
The variation becomes large depending on the resistance value in the above.

【0007】一方、図4に示した多層接続方法では、配
線層S1と配線層S2とを密接に結合しているため、配
線層S1と配線層S2との間の抵抗値が低くなり、その
結果、ビアホールVにおける抵抗値の影響を受けにくく
なり、入出力セル1とパッド2とを接続する配線間の抵
抗値のばらつきを抑えることができる。しかしながら、
配線層S1と配線層S2との密接な結合を、できるだけ
多くのビアホールVを無制限に形成することによって実
現しているため、配線層S2において配線の厚みが薄く
なる部分が非常に多くなり(配線層S2が全域に渡って
厚みが薄くなった状態)、配線層S2の抵抗値が高くな
るので、入出力セル1とパッド2とを接続する配線間の
抵抗値が高いという問題は解決されない。
On the other hand, in the multilayer connection method shown in FIG. 4, since the wiring layer S1 and the wiring layer S2 are closely coupled, the resistance value between the wiring layer S1 and the wiring layer S2 becomes low. As a result, the resistance of the via hole V is less affected by the resistance value, and the variation in the resistance value between the wiring connecting the input / output cell 1 and the pad 2 can be suppressed. However,
Since the close coupling between the wiring layer S1 and the wiring layer S2 is realized by forming as many via holes V as possible without limitation, the portion of the wiring layer S2 where the thickness of the wiring becomes thin becomes extremely large (wiring Since the resistance of the wiring layer S2 is high, the problem that the resistance between the wiring connecting the input / output cell 1 and the pad 2 is high cannot be solved.

【0008】まとめると、従来の多層接続方法では、低
抵抗な配線層を形成し得る複数のプレーンを用意したに
もかかわらず(ビアホールを形成しなければ、配線層自
体は低抵抗で良好な伝導体である)、抵抗値のばらつき
が小さく、かつ、低抵抗な接続を実現するには至ってい
なかった。
In summary, in the conventional multi-layer connection method, even though a plurality of planes capable of forming a low-resistance wiring layer are prepared (if the via hole is not formed, the wiring layer itself has low resistance and good conductivity). However, it has not been possible to realize a connection with a small resistance value and a low resistance.

【0009】そこで、本発明は、抵抗値のばらつきが小
さく、かつ、低抵抗な接続を実現する多層接続方法を提
供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-layer connection method which realizes a low-resistance connection with a small variation in resistance value.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の多層接続方法では、各配線層間に形成され
たビアホールを介して互いに結合される複数の配線層を
用いて2点間を電気的に接続する多層接続方法におい
て、前記ビアホールを、配線方向と垂直な方向には、所
定の制限を設けて形成する。
In order to achieve the above object, a multi-layer connection method according to the present invention employs a plurality of wiring layers connected to each other via via holes formed between wiring layers. In the multilayer connection method for electrically connecting the via holes, the via holes are formed with a predetermined restriction in a direction perpendicular to the wiring direction.

【0011】以上の多層接続方法において、例えば、ビ
アホールを、配線方向に平行であって、互いに3μm以
上の間隔を有する直線上に形成すれば、複数の配線層が
互いに密接に結合されている状態を保ちつつ、各配線層
においてビアホールが存在しない3μm以上の幅を有す
る領域を2点間に連続して確保することができる。そし
て、これにより、配線層間の抵抗値を低く維持しつつ、
ビアホールに起因した配線層の抵抗値の上昇が抑制され
ることがわかっている。
In the above multi-layer connection method, for example, if the via holes are formed on a straight line parallel to the wiring direction and spaced from each other by 3 μm or more, a state in which a plurality of wiring layers are closely coupled to each other is obtained. In each wiring layer, a region having a width of 3 μm or more where no via hole exists can be continuously secured between two points while maintaining the above condition. And by this, while keeping the resistance value between the wiring layers low,
It is known that the increase in the resistance value of the wiring layer due to the via hole is suppressed.

【0012】[0012]

【発明の実施の形態】以下に、本発明の多層接続方法を
採用した半導体集積回路について説明する。図1は半導
体集積回路を上部から見た平面図であり、10は論理回
路などが形成されているコア部、20はI/O部であ
る。I/O部20には複数の入出力セル1が形成されて
おり、破線で示すように、各入出力セル1はチップの外
周部30に配置された互いに異なるパッド2と接続され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor integrated circuit adopting the multilayer connection method of the present invention will be described below. FIG. 1 is a plan view of a semiconductor integrated circuit as viewed from above, where 10 is a core portion on which a logic circuit or the like is formed, and 20 is an I / O portion. A plurality of input / output cells 1 are formed in the I / O section 20, and each input / output cell 1 is connected to a different pad 2 arranged on the outer peripheral portion 30 of the chip as shown by a broken line.

【0013】図2の(イ)は1つの入出力セル1とパッ
ド2とが接続されている様子を上部から見た拡大平面
図、図2の(ロ)は図2(イ)中のA−A’での断面図
である。本実施形態では、入出力セル1とパッド2とが
2本の配線層S1、S2を用いて多層接続されており、
入出力セル1と重なる部分及びパッド2と重なる部分に
は、従来と同じく、配線層S1と配線層S2とを分離す
る絶縁膜ZにビアホールVを形成して、配線層S1と配
線層S2とを結合させるとともに、配線層S1、S2の
それぞれを入出力セル1及びパッド2にコンタクトさせ
ている。さらに、入出力セル1とパッド2との間には、
ビアホールVを、配線方向と垂直な方向には、所定の制
限を設けて形成して、具体的には、配線方向と平行であ
って、互いに3μm以上の間隔を有する直線上にビアホ
ールVを形成して、配線層S1と配線層S2とを結合さ
せている。
FIG. 2A is an enlarged plan view of a state where one input / output cell 1 and a pad 2 are connected as viewed from above, and FIG. 2B is a plan view of A in FIG. It is sectional drawing in -A '. In the present embodiment, the input / output cell 1 and the pad 2 are connected in multiple layers using two wiring layers S1 and S2.
A via hole V is formed in an insulating film Z separating the wiring layer S1 and the wiring layer S2 in a portion overlapping the input / output cell 1 and a portion overlapping the pad 2, as in the related art. And each of the wiring layers S1 and S2 is brought into contact with the input / output cell 1 and the pad 2. Further, between the input / output cell 1 and the pad 2,
The via hole V is formed with a predetermined restriction in the direction perpendicular to the wiring direction. Specifically, the via hole V is formed on a straight line that is parallel to the wiring direction and has an interval of 3 μm or more from each other. Thus, the wiring layer S1 and the wiring layer S2 are connected.

【0014】以上のように入出力セル1とパッド2とを
接続することによって、配線層S1、S2のそれぞれに
おいてビアホールVが存在しない3μm以上の幅を有す
る領域が入出力セル1とパッド2との間に連続して確保
される。
By connecting the input / output cell 1 and the pad 2 as described above, a region having a width of 3 μm or more where no via hole V exists in each of the wiring layers S1 and S2 is formed between the input / output cell 1 and the pad 2. Is secured continuously.

【0015】尚、従来は、入出力セル1とパッド2との
間にビアホールVを形成する場合は、できるだけ多くの
ビアホールVを無制限に形成していたため、入出力セル
1とパッド2との間に連続してビアが存在しない領域が
実質的に確保されていなかった(少なくとも3μm以上
の幅を有する領域が確保されていることはなかった)。
Conventionally, when a via hole V is formed between the input / output cell 1 and the pad 2, as many via holes V as possible are formed without limitation. The area in which no via was continuously formed was not substantially secured (the area having a width of at least 3 μm or more was never secured).

【0016】ここで、シミュレーションの結果、入出力
セル1とパッド2との間に連続して確保される、ビアホ
ールVが存在しない領域の幅を3μm以上とすることに
よって、ビアホールVに起因した、すなわち、ビアホー
ルVにおいて配線幅が狭くなることによる、配線層の抵
抗値の上昇が抑制されることがわかっている。
Here, as a result of the simulation, the width of the region where the via hole V does not exist, which is continuously secured between the input / output cell 1 and the pad 2, is set to 3 μm or more. That is, it is known that an increase in the resistance value of the wiring layer due to a reduction in the wiring width in the via hole V is suppressed.

【0017】そして、入出力セル1とパッド2との間に
ビアホールVが存在しない領域を連続して確保するため
に、配線方向と垂直な方向に対してはビアホールVの形
成に制限を与えているが、配線方向と平行な方向にはで
きるだけ多くのビアホールVを形成することによって、
配線層S1と配線層S2とは密接に結合されており、配
線層S1と配線層S2との間の抵抗値は低く維持されて
いる。
In order to continuously secure a region where no via hole V exists between the input / output cell 1 and the pad 2, the formation of the via hole V is restricted in a direction perpendicular to the wiring direction. However, by forming as many via holes V in the direction parallel to the wiring direction as possible,
The wiring layers S1 and S2 are tightly coupled, and the resistance between the wiring layers S1 and S2 is kept low.

【0018】したがって、本実施形態の半導体集積回路
では、配線層S1、S2の2倍の配線幅を有する1つの
配線層で接続したかのように、入出力セル1とパッド2
との間は抵抗値のばらつきが少なく、かつ、低抵抗な接
続となっている。
Therefore, in the semiconductor integrated circuit of this embodiment, the input / output cell 1 and the pad 2 are connected as if they were connected by one wiring layer having a wiring width twice as large as the wiring layers S1 and S2.
Are connected with little variation in resistance value and low resistance.

【0019】尚、2本の配線層を用いて2点間を接続す
る場合を例に挙げたが、本発明はこれに限定されるもの
ではなく、3本以上の配線層を用いて行う場合にも有効
であることは勿論である。また、本発明は、入出力セル
とパッドとの接続に限らず、例えば、電源ラインやグラ
ンドラインなど、その他の様々な接続に適用され得る。
The case where two points are connected by using two wiring layers has been described as an example. However, the present invention is not limited to this case, and the case where three or more wiring layers are used. Of course, it is also effective. Further, the present invention is not limited to the connection between the input / output cells and the pads, and can be applied to various other connections such as a power supply line and a ground line.

【0020】[0020]

【発明の効果】以上説明したように、本発明の多層接続
方法によれば、複数の配線層を用いた任意の2点間の接
続を、抵抗値のばらつきが少なく、かつ、低抵抗なもの
とすることができる。すなわち、n本の配線層で接続す
る場合、本発明の多層接続方法を採用すれば、n倍の配
線幅を有する1つの配線層で接続した場合と同等の効果
を得ることができる。したがって、本発明の多層接続方
法によって、配線幅のより一層の微細化が可能となり、
例えば、半導体集積回路などにおいては、配線幅による
制約が小さくなり、入出力セル及びパッドをより多く配
置することができるようになる。
As described above, according to the multi-layer connection method of the present invention, a connection between any two points using a plurality of wiring layers can be formed with a low resistance value and a low resistance. It can be. That is, when the connection is made with n wiring layers, the same effect as when the connection is made with one wiring layer having n times the wiring width can be obtained by employing the multilayer connection method of the present invention. Therefore, according to the multilayer connection method of the present invention, it is possible to further reduce the wiring width,
For example, in a semiconductor integrated circuit or the like, the restriction due to the wiring width is reduced, and more input / output cells and pads can be arranged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の多層接続方法を入出力セルとパッド
との接続に採用した半導体集積回路の上部から見た平面
図である。
FIG. 1 is a plan view seen from above a semiconductor integrated circuit in which a multi-layer connection method of the present invention is used for connection between input / output cells and pads.

【図2】(イ)図1において1つの入出力セル1とパッ
ド2とが接続されている様子を上部から見た拡大平面図
である。(ロ)図2の(イ)におけるA−A’での断面
図である。
FIG. 2A is an enlarged plan view showing a state where one input / output cell 1 and a pad 2 are connected in FIG. 1 as viewed from above. FIG. 3B is a cross-sectional view taken along line AA ′ of FIG.

【図3】 従来の多層接続方法を示す図である。FIG. 3 is a diagram showing a conventional multilayer connection method.

【図4】 図3に示すものとは異なる、従来の多層接続
方法を示す図である。
FIG. 4 is a diagram showing a conventional multi-layer connection method different from that shown in FIG.

【図5】 ビアホールVを介して配線層S1と配線層S
2とが結合される状態を模式的に示した図である。
FIG. 5 shows a wiring layer S1 and a wiring layer S via a via hole V;
FIG. 2 is a diagram schematically showing a state in which No. 2 is combined.

【符号の説明】[Explanation of symbols]

1 入出力セル 2 パッド 10 コア部 20 I/O部 30 チップの外周部 S1、S2 配線層 Z 絶縁膜 V ビアホール DESCRIPTION OF SYMBOLS 1 I / O cell 2 Pad 10 Core part 20 I / O part 30 Peripheral part of chip S1, S2 Wiring layer Z Insulating film V Via hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 各配線層間に形成されたビアホールを介
して互いに結合される複数の配線層を用いて2点間を電
気的に接続する多層接続方法において、 前記ビアホールを、配線方向と垂直な方向には、所定の
制限を設けて形成することを特徴とする多層接続方法。
1. A multi-layer connection method for electrically connecting two points using a plurality of wiring layers connected to each other via via holes formed between respective wiring layers, wherein the via holes are perpendicular to a wiring direction. A multi-layer connection method, wherein a predetermined restriction is provided in a direction.
【請求項2】 前記ビアホールを、配線方向に平行であ
って、互いに3μm以上の間隔を有する直線上に形成す
ることを特徴とする請求項1に記載の多層接続方法。
2. The multi-layer connection method according to claim 1, wherein the via holes are formed on straight lines that are parallel to a wiring direction and have an interval of 3 μm or more.
【請求項3】 請求項1または2に記載の多層接続方法
により入出力セルとパッドとが接続されていることを特
徴とする半導体集積回路。
3. A semiconductor integrated circuit, wherein an input / output cell and a pad are connected by the multilayer connection method according to claim 1.
JP28476497A 1997-10-17 1997-10-17 Multilayer connecting method and semiconductor integrated circuit Pending JPH11121614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28476497A JPH11121614A (en) 1997-10-17 1997-10-17 Multilayer connecting method and semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28476497A JPH11121614A (en) 1997-10-17 1997-10-17 Multilayer connecting method and semiconductor integrated circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005029407A Division JP2005129969A (en) 2005-02-04 2005-02-04 Multilayer connecting method and semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH11121614A true JPH11121614A (en) 1999-04-30

Family

ID=17682715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28476497A Pending JPH11121614A (en) 1997-10-17 1997-10-17 Multilayer connecting method and semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH11121614A (en)

Similar Documents

Publication Publication Date Title
US5986294A (en) Semiconductor integrated circuit
JP2001044362A (en) Mounting structure and mounting method for semiconductor device
JPH06163794A (en) Multilayer lead frame of metal core type
JPH01225137A (en) Semiconductor integrated circuit device
JP2664485B2 (en) Ceramic multilayer wiring board
JPH11121614A (en) Multilayer connecting method and semiconductor integrated circuit
JPH05243482A (en) Semiconductor integrated circuit
JP2005129969A (en) Multilayer connecting method and semiconductor integrated circuit
JPS60145641A (en) Semiconductor integrated circuit device
JPH0590427A (en) Semiconductor ic device
US6730946B2 (en) Semiconductor device
JPS6127691A (en) Internal wiring structure of magnetoresistance element
JPS59165436A (en) Semiconductor integrated circuit device
JPH10125775A (en) Interlayer connection device of multilayer interconnection semiconductor integrated circuit
JP3353410B2 (en) Gate array multilayer wiring structure
JP2000138251A (en) Semiconductor device and wiring board
JPH06268370A (en) Thin-film multi-layer wiring board
JPH06125012A (en) Wiring structure of semiconductor device
JPS63312661A (en) Package for semiconductor device
JPH0745928A (en) Composite electronic part
JPH04249325A (en) Semiconductor integrated circuit
JPS6037747A (en) Multilayer interconnection
JPH1027951A (en) Wiring structure
JPH02288355A (en) Semiconductor logic integrated circuit device
JPS61174746A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A02 Decision of refusal

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050408

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20050603

Free format text: JAPANESE INTERMEDIATE CODE: A912