JPH11118263A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH11118263A
JPH11118263A JP9306413A JP30641397A JPH11118263A JP H11118263 A JPH11118263 A JP H11118263A JP 9306413 A JP9306413 A JP 9306413A JP 30641397 A JP30641397 A JP 30641397A JP H11118263 A JPH11118263 A JP H11118263A
Authority
JP
Japan
Prior art keywords
compressor
gas injection
gas
switching
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9306413A
Other languages
Japanese (ja)
Other versions
JP3780666B2 (en
Inventor
Toru Suzuki
徹 鈴木
Yukimasa Yano
幸正 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP30641397A priority Critical patent/JP3780666B2/en
Publication of JPH11118263A publication Critical patent/JPH11118263A/en
Application granted granted Critical
Publication of JP3780666B2 publication Critical patent/JP3780666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the reduction of air-conditioning comfort by suppressing the fluctuation of ability when turning on and off a gas injection in air- conditioner where bypass piping for returning a gas refrigerant to a compressor from a vapor-liquid separator provided at a liquid pipe between outdoor and indoor heat exchangers and performing gas injection. SOLUTION: When a switching valve 14 provided at bypass piping 13 for gas injection is switched, the compression capability of a compressor 1 is changed depending on the increase or decrease in freezing capability according to the presence and absence of the gas injection due to the switching, thus suppressing the change of the entire freezing capability also on switching, maintaining an operation state corresponding to the change in a load, preventing the capability from being excessive or insufficient, and hence suppressing the reduction in air-conditioning comfort.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、室外熱交換器と
室内熱交換器とを相互に接続する液管中に介装した気液
分離器からガス冷媒を圧縮機に返流させるためのガスイ
ンジェクション用のバイパス配管を備える空気調和機に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas for returning a gas refrigerant to a compressor from a gas-liquid separator interposed in a liquid pipe interconnecting an outdoor heat exchanger and an indoor heat exchanger. The present invention relates to an air conditioner provided with a bypass pipe for injection.

【0002】[0002]

【従来の技術】空気調和機における例えば暖房運転は、
圧縮機からの吐出ガス冷媒を室内熱交換器から室外熱交
換器へと循環させることによって行われる。このとき、
蒸発器として機能する室外熱交換器で外気からの吸熱が
行われ、凝縮器として機能する室内熱交換器での放熱で
室内暖房が行われる。
2. Description of the Related Art For example, a heating operation in an air conditioner is performed as follows.
This is performed by circulating the refrigerant gas discharged from the compressor from the indoor heat exchanger to the outdoor heat exchanger. At this time,
Heat is absorbed from outside air in the outdoor heat exchanger functioning as an evaporator, and indoor heating is performed by heat radiation in the indoor heat exchanger functioning as a condenser.

【0003】ところで、暖房運転時に外気温度が低いと
充分な暖房能力を得難くなる。この場合、室内熱交換器
で凝縮して室外熱交換器へと流れる液冷媒中へのガス冷
媒の混入割合が多くなる。このガス冷媒は、室外熱交換
器に供給されても外気からの吸熱作用には殆ど寄与しな
い。そこで、このガス冷媒を分離して圧縮機に返流させ
る操作、いわゆるガスインジェクションを行うことで、
このガス冷媒は圧縮機で二段圧縮されて再度室内熱交換
器に供給されることになり、これによって、室内熱交換
器での凝縮が生じ易くなって全体的な暖房能力が向上す
る。
[0003] When the outside air temperature is low during the heating operation, it is difficult to obtain a sufficient heating capacity. In this case, the mixing ratio of the gas refrigerant into the liquid refrigerant that is condensed in the indoor heat exchanger and flows to the outdoor heat exchanger increases. Even if this gas refrigerant is supplied to the outdoor heat exchanger, it hardly contributes to the heat absorbing action from the outside air. Therefore, by performing an operation of separating this gas refrigerant and returning it to the compressor, so-called gas injection,
This gas refrigerant is two-stage compressed by the compressor and supplied to the indoor heat exchanger again, whereby the condensation in the indoor heat exchanger is easily caused and the overall heating capacity is improved.

【0004】このようなガスインジェクションを行うた
めに、従来、圧縮能力が一定の圧縮機を設けた空気調和
機において、室内熱交換器と室外熱交換器との間の液管
中に気液分離器を介装し、この気液分離器と圧縮機の吸
込側との間に、開閉弁の介設されたバイパス配管を設け
たものが知られている。この場合、上記したように能力
が不足気味になり易い暖房運転時に、上記開閉弁を開弁
してガスインジェクションを併用した運転を行い、冷房
運転時には、上記開閉弁を閉弁状態で保持してガスイン
ジェクション無しで運転するような制御が行われてい
る。
In order to perform such gas injection, conventionally, in an air conditioner provided with a compressor having a constant compression capacity, gas-liquid separation is provided in a liquid pipe between an indoor heat exchanger and an outdoor heat exchanger. There is known a device in which a bypass pipe is provided between the gas-liquid separator and the suction side of the compressor, with an on-off valve provided between the gas-liquid separator and the suction side of the compressor. In this case, as described above, during the heating operation in which the capacity is likely to be insufficient, the operation using the gas injection is also performed by opening the on-off valve, and during the cooling operation, the on-off valve is held in the closed state. Control for operating without gas injection is performed.

【0005】なお、近年は、インバータ制御により圧縮
能力が可変な圧縮機を内装する空気調和機が主流になっ
てきており、このような空気調和機に、上記のようなガ
スインジェクション用のバイパス配管を設けて構成する
場合においては、例えば暖房運転時に一律にガスインジ
ェクションを行う構成とする必要はない。つまり、負荷
が小さい間は、圧縮能力可変範囲内でこの負荷に余裕を
持って対応でき、この場合には、ガスインジェクション
無しの運転の方がより高い効率での運転状態を維持する
ことができる。したがって、負荷の増加に対応して圧縮
機の運転周波数が所定の周波数に達したときに、バイパ
ス配管に介設されている開閉弁の開閉切換えを行い、こ
れによって、上記周波数を超える高周波数域で、ガスイ
ンジェクションを併用した運転となるように制御するこ
とが考えられる。
[0005] In recent years, air conditioners equipped with a compressor having a variable compression capacity by inverter control have become mainstream, and such an air conditioner is provided with a bypass pipe for gas injection as described above. In the case where the gas injection is provided, for example, it is not necessary to adopt a configuration in which the gas injection is uniformly performed during the heating operation. That is, while the load is small, the load can be accommodated with a margin within the variable compression capacity range, and in this case, the operation without gas injection can maintain the operation state with higher efficiency. . Therefore, when the operating frequency of the compressor reaches a predetermined frequency in response to the increase in the load, the on / off valve of the on-off valve provided in the bypass pipe is switched, whereby the high frequency range exceeding the above-mentioned frequency is performed. Thus, it is conceivable to control the operation so as to use gas injection together.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ように圧縮機の運転周波数が所定の周波数に達したとき
に、バイパス配管に介設されている開閉弁の開閉切換え
を単に行うだけの制御では、空調快適性が損なわれ易い
という問題が発生する。
However, as described above, when the operating frequency of the compressor reaches a predetermined frequency, the control that simply performs the open / close switching of the open / close valve provided in the bypass pipe is not performed. In addition, there is a problem that air conditioning comfort is easily impaired.

【0007】つまり、負荷の変化に応じて運転周波数を
変化させながら空調運転を行っているときにガスインジ
ェクションの切換えを行うと、これに伴って冷凍能力が
急変する。このため、例えばガスインジェクション無し
の運転から有りの運転への切換え時には能力過多になり
易く、逆にガスインジェクション有りの運転から無しの
運転に切換わった時には能力不足を生じ易い。この結
果、室内空調温度が設定温度を超えた後のサーモOFF
時間が長くなったり、また、能力不足により設定温度に
達するまでの時間が長くなるなど、空調制御性が低下
し、これによって快適性が損なわれてしまう。
That is, if the gas injection is switched during the air-conditioning operation while changing the operation frequency in accordance with the change in the load, the refrigeration capacity is suddenly changed accordingly. Therefore, for example, when the operation is switched from the operation without gas injection to the operation with gas injection, the capacity tends to be excessive, and conversely, when the operation is switched from the operation with gas injection to the operation without gas injection, the capacity tends to be insufficient. As a result, the thermo-OFF after the indoor air-conditioning temperature exceeds the set temperature
The air-conditioning controllability is reduced, for example, the time becomes longer, or the time required to reach the set temperature becomes longer due to insufficient capacity, and the comfort is impaired.

【0008】この発明は、上記した問題点に鑑みなされ
たもので、その目的は、ガスインジェクションの切換え
を行う際の空調快適性の低下を抑制し得ると共に、さら
に、より経済性を向上し得る空気調和機を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to suppress a decrease in air conditioning comfort when switching between gas injections, and to further improve economic efficiency. An object of the present invention is to provide an air conditioner.

【0009】[0009]

【課題を解決するための手段】そこで、請求項1の空気
調和機は、圧縮能力可変な圧縮機1に冷媒循環可能に接
続した室外熱交換器8と室内熱交換器との間の液管10
・12に気液分離器11を介装し、この気液分離器11
と圧縮機1の吸込側との間に、気液分離器11内のガス
冷媒を圧縮機1に返流させるガスインジェクション用の
バイパス配管13と、このバイパス配管13を通しての
流路を開閉する開閉弁14とを設けた空気調和機であっ
て、上記開閉弁14の開閉切換え時に、この切換え前後
の冷凍能力が互いにほぼ同等になるように、ガスインジ
ェクションの有無に伴う冷凍能力の変化に基づいて圧縮
機1の圧縮能力を補正する切換制御手段15を設けてい
ることを特徴としている。
Therefore, an air conditioner according to a first aspect of the present invention provides a liquid pipe between an outdoor heat exchanger 8 and an indoor heat exchanger which are connected to a compressor 1 having a variable compression capacity so that refrigerant can circulate. 10
12 is provided with a gas-liquid separator 11 and the gas-liquid separator 11
A gas injection bypass pipe 13 for returning the gas refrigerant in the gas-liquid separator 11 to the compressor 1 between the compressor and the suction side of the compressor 1, and an opening and closing switch for opening and closing a flow path through the bypass pipe 13 An air conditioner provided with a valve 14, based on a change in the refrigeration capacity with or without gas injection so that the refrigeration capacity before and after the switching is substantially equal to each other when the open / close valve 14 is switched. A switching control means 15 for correcting the compression capacity of the compressor 1 is provided.

【0010】上記構成の空気調和機においては、例え
ば、ガスインジェクション無しの運転から、開閉弁14
を開弁してガスインジェクション有りの運転に切換える
際には、この切り換えに伴って冷凍能力が増加する分、
圧縮機1の圧縮能力を低下させる制御が切換制御手段1
5によって行われる。また、ガスインジェクション有り
の運転から、開閉弁14を閉弁してガスインジェクショ
ン無しの運転に切換える際には、冷凍能力がこの切換え
によって低下する分、圧縮機1の圧縮能力を増加させる
制御が行われる。
In the air conditioner having the above-described structure, for example, the operation without the gas injection starts with the on-off valve 14.
When the operation is switched to the operation with gas injection by opening the valve, the refrigerating capacity is increased by the switching,
The control for reducing the compression capacity of the compressor 1 is a switching control means 1
5 is performed. When switching from the operation with gas injection to the operation without gas injection by closing the on-off valve 14, control is performed to increase the compression capacity of the compressor 1 by the amount by which the refrigeration capacity is reduced by this switching. Will be

【0011】これによって、ガスインジェクションの切
換え時にも、全体的な冷凍能力の変動は抑えられ、負荷
の変化に対応した運転状態が維持されて能力過多や能力
不足になることが防止されるので、空調快適性の低下が
抑制される。
As a result, even when the gas injection is switched, fluctuations in the overall refrigeration capacity are suppressed, and an operation state corresponding to a change in load is maintained, thereby preventing the capacity from becoming excessive or insufficient. A decrease in air conditioning comfort is suppressed.

【0012】請求項2の空気調和機は、負荷に応じて増
減させる圧縮機1の圧縮能力が、ガスインジェクション
有りのときの効率曲線と無しのときの効率曲線との交点
近傍に対応する圧縮能力に達した時に、上記開閉弁14
の開閉切換えと圧縮機1の圧縮能力の補正とを上記切換
制御手段15が行うことを特徴としている。
In the air conditioner of the second aspect, the compression capacity of the compressor 1 to be increased or decreased according to the load corresponds to the vicinity of the intersection of the efficiency curve with gas injection and the efficiency curve without gas injection. When the valve has reached
The switching control means 15 performs switching of the opening and closing of the compressor and correction of the compression capacity of the compressor 1.

【0013】このような構成によって、さらに経済性を
向上することができる。つまり、効率の観点では、圧縮
機1が圧縮能力の高い領域で運転されているときには、
ガスインジェクション有りの運転の方が無しの運転のと
きよりも効率は高く、逆に圧縮機1が圧縮能力の低い領
域で運転されているときには、ガスインジェクション無
しの運転の方が効率が高くなるのが一般的である。そこ
で、ガスインジェクション有りのときの効率曲線と無し
のときの効率曲線とが交差する点の近傍において、ガス
インジェクション無しの運転とガスインジェクション有
りの運転との切換えを行うことにより、圧縮機における
圧縮能力可変範囲の全体にわたって、より効率の高い運
転状態が維持され、経済性が向上する。
With such a configuration, the economic efficiency can be further improved. That is, from the viewpoint of efficiency, when the compressor 1 is operated in a region where the compression capacity is high,
Efficiency is higher in the operation with gas injection than in the operation without gas injection. Conversely, when the compressor 1 is operated in a region where the compression capacity is low, the operation without gas injection is more efficient. Is common. Therefore, by switching between the operation without gas injection and the operation with gas injection near the intersection of the efficiency curve with gas injection and the efficiency curve without gas injection, the compression capacity of the compressor is improved. A more efficient operating state is maintained throughout the variable range, and the economy is improved.

【0014】[0014]

【発明の実施の形態】次に、この発明の空気調和機の具
体的な実施形態について、図面を参照しつつ詳細に説明
する。
Next, a specific embodiment of the air conditioner of the present invention will be described in detail with reference to the drawings.

【0015】図1は、セパレート形空気調和機における
室外機内の構成を示す冷媒回路図である。図のように、
この室外機には圧縮機1が内装されており、この圧縮機
1の吐出配管2と、アキュムレータ3・3が介設された
吸込配管4とは、それぞれ四路切換弁5に接続されてい
る。上記圧縮機1は、その回転速度、つまり圧縮能力を
制御するためのインバータ1aを有するものである。
FIG. 1 is a refrigerant circuit diagram showing a configuration inside an outdoor unit in a separate type air conditioner. As shown
A compressor 1 is installed in the outdoor unit, and a discharge pipe 2 of the compressor 1 and a suction pipe 4 provided with accumulators 3, 3 are connected to a four-way switching valve 5, respectively. . The compressor 1 has an inverter 1a for controlling the rotation speed, that is, the compression capacity.

【0016】四路切換弁5には、その一方の切換ポート
に第1ガス管6が、また、他方の切換ポートに第2ガス
管7がそれぞれ接続されている。この第2ガス管7に、
室外熱交換器8が接続され、さらに、この室外熱交換器
8に、順次、減圧機構としての電動膨張弁9が介設され
た第1液管10と、気液分離器11と、減圧機構として
の電動膨張弁9’が介設された第2液管12とが接続さ
れている。
The four-way switching valve 5 is connected to a first gas pipe 6 at one switching port and a second gas pipe 7 to the other switching port. In this second gas pipe 7,
An outdoor heat exchanger 8 is connected, and a first liquid pipe 10 having a motor-operated expansion valve 9 as a pressure reducing mechanism, a gas-liquid separator 11, and a pressure reducing mechanism are sequentially connected to the outdoor heat exchanger 8. And a second liquid pipe 12 provided with an electric expansion valve 9 ′ as an intermediary.

【0017】この第2液管12の先端と、前記第1ガス
管6の先端との間に、図示してはいないが、室内熱交換
器が内装された室内機が連絡配管を介して接続され、こ
れによって、圧縮機1からの吐出冷媒が、室外熱交換器
8と室内熱交換器とを通過した後に圧縮機1に返流され
る冷媒循環回路が構成される。
Although not shown, an indoor unit in which an indoor heat exchanger is installed is connected between the end of the second liquid pipe 12 and the end of the first gas pipe 6 through a communication pipe. Thereby, a refrigerant circulation circuit is formed in which the refrigerant discharged from the compressor 1 is returned to the compressor 1 after passing through the outdoor heat exchanger 8 and the indoor heat exchanger.

【0018】すなわち、四路切換弁5を図中実線で示す
ような切換位置に位置させて圧縮機1を運転すると、圧
縮機1からの吐出冷媒が図中実線矢印に沿って循環し、
このとき、室外熱交換器8が蒸発器として機能して外部
より吸熱する一方、室内熱交換器が凝縮器として機能
し、その放熱によって室内暖房が行われる。
That is, when the compressor 1 is operated with the four-way switching valve 5 positioned at the switching position shown by the solid line in the figure, the refrigerant discharged from the compressor 1 circulates along the solid line arrow in the figure,
At this time, while the outdoor heat exchanger 8 functions as an evaporator and absorbs heat from the outside, the indoor heat exchanger functions as a condenser, and the heat is radiated to perform indoor heating.

【0019】一方、四路切換弁5を上記から切換えて、
圧縮機1からの吐出冷媒を図中破線矢印に沿って循環さ
せることにより、室外熱交換器8が凝縮器として機能す
ると共に、室内熱交換器が蒸発器として機能する冷房運
転が行われる。
On the other hand, by switching the four-way switching valve 5 from the above,
By circulating the refrigerant discharged from the compressor 1 along the dashed arrow in the drawing, a cooling operation is performed in which the outdoor heat exchanger 8 functions as a condenser and the indoor heat exchanger functions as an evaporator.

【0020】前記第1液管10と第2液管12とから成
る液管(冷暖いずれの場合にも高圧側となる位置)に介
装されている気液分離器11は、さらに、バイパス配管
13によって圧縮機1の中間ポートに接続され、このバ
イパス配管13には、電磁弁よりなる開閉弁14が介設
されている。
The gas-liquid separator 11 interposed in the liquid pipe comprising the first liquid pipe 10 and the second liquid pipe 12 (the position on the high pressure side in both cases of cooling and heating) further includes a bypass pipe 13 connects to an intermediate port of the compressor 1, and an on-off valve 14 composed of an electromagnetic valve is interposed in the bypass pipe 13.

【0021】密閉容器状の気液分離器11内において
は、第1液管10と第2液管12とがこの気液分離器1
1の底部に近接する位置に開口する一方、バイパス配管
13は気液分離器11の上壁近傍の位置に開口してい
る。これにより、例えば暖房運転時に第2液管12から
この気液分離器11内に流入した冷媒は、これにガス成
分が混入していれば、ガス相と液相とにこの気液分離器
11内で上下に分離し、分離した液冷媒が第1液管10
へと供給される。また、冷房運転時においても、上記同
様に、第1液管10からの冷媒は、気液分離器11内で
ガス相と液相とに上下に分離し、分離した液冷媒が第2
液管12へと供給される。
In the closed vessel-shaped gas-liquid separator 11, the first liquid pipe 10 and the second liquid pipe 12 are connected to the gas-liquid separator 1.
1, while the bypass pipe 13 opens at a position near the upper wall of the gas-liquid separator 11. Thus, for example, the refrigerant that has flowed into the gas-liquid separator 11 from the second liquid pipe 12 during the heating operation, if a gas component is mixed therein, is converted into a gas phase and a liquid phase. The liquid refrigerant separated up and down inside the first liquid pipe 10
Supplied to. Also, during the cooling operation, similarly, the refrigerant from the first liquid pipe 10 is vertically separated into a gas phase and a liquid phase in the gas-liquid separator 11, and the separated liquid refrigerant is in the second liquid pipe.
The liquid is supplied to the liquid pipe 12.

【0022】一方、気液分離器11内で上部側に分離し
たガス冷媒は、前記した開閉弁14が開弁されていれ
ば、バイパス配管13を通して圧縮機1に返流され、こ
のガス冷媒は、アキュムレータ3を通して返流されたガ
ス冷媒と共に、圧縮機1で圧縮され吐出されることにな
る(以下、このように開閉弁14を開弁し、バイパス配
管13を通して気液分離器11内のガス冷媒を圧縮機1
に返流させる運転を、ガスインジェクションという)。
On the other hand, the gas refrigerant separated upward in the gas-liquid separator 11 is returned to the compressor 1 through the bypass pipe 13 if the above-mentioned on-off valve 14 is opened, and this gas refrigerant is The gas refrigerant returned from the accumulator 3 is compressed and discharged by the compressor 1 (hereinafter, the on-off valve 14 is opened and the gas in the gas-liquid separator 11 is passed through the bypass pipe 13). Compressor 1
The operation of returning gas to gas is called gas injection.)

【0023】上記した開閉弁14の開閉制御は、この空
気調和機全体を監視し、圧縮機1の圧縮能力、すなわ
ち、その回転速度を負荷に応じて定める周波数制御を行
いながら、暖房運転もしくは冷房運転を制御する空調制
御装置(切換制御手段)15によって行われる。以下、
その制御内容について説明する。
The above-described opening / closing control of the on-off valve 14 monitors the entire air conditioner, and performs a heating operation or a cooling operation while performing frequency control for determining the compression capacity of the compressor 1, that is, the rotation speed according to the load. The operation is performed by an air conditioning control device (switching control means) 15 for controlling the operation. Less than,
The control contents will be described.

【0024】図2の(b)には、前記インバータ1aに
よる圧縮機1の運転周波数と、暖房能力或いは冷房能力
(以下、これらを総称して冷凍能力という)との関係
を、また、同図(a)には、運転周波数と成績係数(C
OP)との関係をそれぞれ示している。図中破線で示す
曲線は、開閉弁14をOFF、すなわち、前記ガスイン
ジェクションを行わずに運転したとき(以下、ガスイン
ジェクションOFFという)の能力曲線および成績係数
曲線(以下、効率曲線という)であり、図中実線で示す
曲線は、開閉弁14をON、すなわち、開閉弁14を開
弁してガスインジェクションを併用したとき(以下、ガ
スインジェクションONという)の能力曲線および効率
曲線である。
FIG. 2B shows the relationship between the operating frequency of the compressor 1 by the inverter 1a and the heating capacity or the cooling capacity (hereinafter, these are collectively referred to as refrigeration capacity). (A) shows the operating frequency and coefficient of performance (C
OP). The curves shown by broken lines in the figure are the performance curve and the coefficient of performance curve (hereinafter, referred to as the efficiency curve) when the on-off valve 14 is turned off, that is, when the valve is operated without performing the gas injection (hereinafter, referred to as gas injection OFF). The curves shown by solid lines in the figure are a performance curve and an efficiency curve when the on-off valve 14 is turned on, that is, when the on-off valve 14 is opened and gas injection is used together (hereinafter, referred to as gas injection ON).

【0025】冷凍能力は、運転周波数が大きくなるほど
増加し、かつ、ガスインジェクションON時には、OF
F時よりも大きな冷凍能力が得られる。
The refrigeration capacity increases as the operating frequency increases, and when the gas injection is ON, the refrigeration capacity increases.
A larger refrigeration capacity than at F is obtained.

【0026】一方、効率曲線は、特定の運転周波数で最
大値を有する上に凸の曲線となるのが一般的である。そ
して、ガスインジェクションONでは、効率が最大とな
るときの運転周波数がガスインジェクションOFFのと
きよりも高周波数側にずれ、したがって、ガスインジェ
クションON時とOFF時との効率曲線は互いに交差す
る。この交差点での運転周波数をFpとすると、このF
pよりも低い周波数では、ガスインジェクションOFF
での運転の方がON時よりも高い効率が得られ、一方、
Fpを超える周波数では、ガスインジェクションONで
の運転の方が、より高い効率が得られる。
On the other hand, the efficiency curve is generally an upwardly convex curve having a maximum value at a specific operation frequency. When the gas injection is ON, the operating frequency when the efficiency is maximized is shifted to a higher frequency side than when the gas injection is OFF, and therefore, the efficiency curves when the gas injection is ON and when the gas injection is OFF cross each other. If the operating frequency at this intersection is Fp, this F
Gas injection OFF at frequencies lower than p
The operation at is more efficient than at ON, while
At frequencies above Fp, higher efficiency is obtained with gas injection ON operation.

【0027】そこで、本実施形態では、前記空調制御装
置15により、上記した交差点に対応する運転周波数F
pを含む近傍領域を、ガスインジェクションON/OF
Fの切換領域として、開閉弁14の開閉制御が行われ
る。すなわち、同図(b)において、ガスインジェクシ
ョンONとOFFとでの各運転における冷凍能力が互い
に同等になる運転周波数の組み合わせのうち、上記した
交差点に対応する周波数Fpをほぼ中心とする周波数の
組み合わせF1 ・F2 を求め、これらが、空調制御装置
15に、切換時の下限周波数F1 ・上限周波数F2 とし
て予め記憶されている。なお、F1 〜F2 の周波数範囲
を切換範囲Scとすると、同図(a)に示されているよ
うに、この範囲ScでガスインジェクションON/OF
Fの切換えを行っても、効率には殆ど差を生じない。
Therefore, in this embodiment, the operating frequency F corresponding to the above-mentioned intersection is controlled by the air-conditioning controller 15.
gas injection ON / OF
As the switching area of F, the on / off control of the on-off valve 14 is performed. That is, in FIG. 6B, of the combinations of operating frequencies at which the refrigerating capacity in each operation of gas injection ON and OFF is equal to each other, a combination of frequencies substantially centered on the frequency Fp corresponding to the intersection described above. F 1 and F 2 are obtained, and these are stored in advance in the air-conditioning control device 15 as a lower limit frequency F 1 and an upper limit frequency F 2 at the time of switching. Assuming that the frequency range of F 1 to F 2 is a switching range Sc, the gas injection ON / OF is performed in this range Sc as shown in FIG.
Even if F is switched, there is almost no difference in efficiency.

【0028】上記した切換範囲Scの下限周波数F1
上限周波数F2 が記憶されている空調制御装置15は、
まず、下限周波数F1 未満では開閉弁14を閉弁状態に
保持してガスインジェクションOFFでの運転を行う一
方、上限周波数F2 を超える範囲では、開閉弁14を開
弁してガスインジェクションONでの運転を行う。
The lower limit frequency F 1 of the switching range Sc described above.
Air conditioning control apparatus 15 of the upper limit frequency F 2 is stored,
First, while performing the operation with gas injection OFF is less than the lower limit frequencies F 1 holds the on-off valve 14 in a closed state, in a range exceeding the upper limit frequency F 2 is a gas injection ON by opening the on-off valve 14 Drive.

【0029】そして、切換範囲Scにおいては、例え
ば、この切換範囲Scよりも低域側から、負荷に応じて
漸増させている運転周波数がF1 、Fpを順次超えてF
2 に達した時に、開閉弁14を開弁させ、ガスインジェ
クションOFFの運転からONの運転に切換える。そし
て同時に、運転周波数をF2 からF1 に一旦低下させる
制御を行う。その後、開閉弁14の開弁状態を保持し
て、周波数を負荷に応じて高域側へと漸増させる。
In the switching range Sc, for example, the operating frequency that is gradually increased in accordance with the load from the lower side of the switching range Sc sequentially exceeds F 1 and Fp and becomes higher than F 1 .
When the number reaches 2 , the on-off valve 14 is opened to switch the operation from the gas injection OFF to the ON operation. At the same time, performs control once reduced to F 1 the operating frequency from F 2. Thereafter, the open state of the on-off valve 14 is maintained, and the frequency is gradually increased to a higher frequency side according to the load.

【0030】このような制御により、ガスインジェクシ
ョンOFF→ONの切換えに伴う能力増加分は圧縮機1
の圧縮能力の低下によって補償され、全体的な冷凍能力
の変動は生じず、かつ、より高い効率での運転状態が維
持される。
With this control, the increase in capacity due to switching from gas injection OFF to ON is reduced by the compressor 1
, The overall refrigeration capacity does not fluctuate, and a more efficient operating condition is maintained.

【0031】一方、ガスインジェクションONの状態に
おいて、切換範囲Scよりも高域側から漸減させている
運転周波数が切換範囲Scに達したときには、この運転
周波数がさらにF2 、Fpを順次通過してF1 に達した
時に、開閉弁14を閉弁させる。同時に、運転周波数を
1 からF2 に一旦上昇させ、その後、開閉弁14の閉
弁状態を保持して、周波数を負荷に応じて低域側へと漸
減させる制御を行う。これにより、上記同様に、開閉弁
14の開閉切換に伴う能力変動が抑えられ、また、より
高い運転効率が維持される。
On the other hand, in the state where the gas injection is ON, when the operating frequency gradually decreased from the higher side than the switching range Sc reaches the switching range Sc, the operating frequency further passes through F 2 and Fp sequentially. when it reaches F 1, to close the on-off valve 14. At the same time, the operating frequency is once increased to F 2 from F 1, then hold the closed state of the opening and closing valve 14 performs control to gradually decrease to the low frequency side in accordance with the frequency to the load. As a result, similarly to the above, fluctuations in capacity due to switching of the on-off valve 14 are suppressed, and higher operating efficiency is maintained.

【0032】以上の説明のように、本実施形態において
は、ガスインジェクションON/OFFの切換えに当た
り、この切り換え前後における冷凍能力の変動が生じな
いように圧縮機1の圧縮能力を変更させる制御が同時に
行われる。これにより、良好な空調快適性を維持するこ
とができる。また、上記の切換えは、ガスインジェクシ
ョンON/OFFでの各効率曲線が交差する近傍領域で
行われ、この領域を挟んで低域側と高域側とで、それぞ
れ、より効率の高い運転状態が選択されるので、全体に
わたって消費電力が低減され、経済性が向上する。
As described above, in the present embodiment, when switching the gas injection ON / OFF, the control for changing the compression capacity of the compressor 1 at the same time so that the refrigerating capacity does not fluctuate before and after this switching is performed. Done. Thereby, good air conditioning comfort can be maintained. In addition, the above switching is performed in the vicinity area where the efficiency curves at the time of gas injection ON / OFF cross each other, and the operation state with higher efficiency is respectively set on the low band side and the high band side across this region. As a result, the power consumption is reduced overall and the economy is improved.

【0033】以上にこの発明の具体的な実施形態につい
て説明したが、この発明は上記形態に限定されるもので
はなく、この発明の範囲内で種々変更して実施すること
ができる。例えば、上記実施形態では、室外機に1台の
室内機を接続したセパレート形空気調和機を例に挙げた
が、室外機に複数の室内機を接続して構成されるマルチ
タイプの空気調和機にも本発明を適用することが可能で
ある。
Although the specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of the present invention. For example, in the above embodiment, a separate type air conditioner in which one indoor unit is connected to an outdoor unit has been described as an example, but a multi-type air conditioner configured by connecting a plurality of indoor units to an outdoor unit is described. It is possible to apply the present invention also to the present invention.

【0034】また、上記では、ガスインジェクションO
N/OFF時の各効率曲線の交点に対応する運転周波数
Fpに対し、これを中心とする切換範囲Scを定め、こ
の範囲Scの下限周波数F1 と上限周波数F2 とで、ガ
スインジェクションON/OFFの切換えをそれぞれ行
う構成としたが、例えば、運転周波数が増減する過程の
いずれにおいても、上記のFpに達した時点で切換える
ようにすること等も可能である。
In the above description, the gas injection O
To the operating frequency Fp corresponding to the intersection of the efficiency curve at N / OFF, determines the switching range Sc centering on this, the lower limit frequencies F 1 and an upper frequency limit F 2 of this range Sc, gas injection ON / Although the configuration is such that the switching of the OFF is performed, for example, in any of the processes of increasing and decreasing the operating frequency, the switching may be performed when the above-described Fp is reached.

【0035】もっともこの場合には、図2中二点鎖線で
示すように、運転周波数が増加する過程でFpに達した
ときには、運転周波数をFpからF1'まで低下させる必
要があり、また、運転周波数が減少する過程でFpに達
したときには、FpからF2'まで増加させる必要があ
る。この切換え範囲F1'〜F2'は、上記実施形態におけ
る切換範囲Scよりも広く、これによって、切換え直後
の効率がより低いものとなるので、上記実施形態のよう
に、Fpをほぼ中心としてその両側にそれぞれ設定した
下限周波数とF1 と上限周波数F2 とで、ガスインジェ
クションON/OFFの切換えを行うようにすることが
望ましい。
However, in this case, as shown by the two-dot chain line in FIG. 2, when the operating frequency reaches Fp in the process of increasing, it is necessary to reduce the operating frequency from Fp to F 1 ′. When the operating frequency reaches Fp in the process of decreasing, it is necessary to increase from Fp to F 2 ′. The switching range F 1 ′ to F 2 ′ is wider than the switching range Sc in the above-described embodiment, so that the efficiency immediately after switching is lower. Therefore, as in the above-described embodiment, the switching range is substantially centered on Fp. in a lower frequency limit which is set respectively on both sides F 1 and the upper limit frequency F 2, it is desirable to perform the switching of gas injection oN / OFF.

【0036】さらに、本発明の請求項1の範囲において
は、上記した効率曲線の交点に対応する周波数Fpの近
傍以外のその他の特定周波数領域で、開閉弁14の開閉
切換えを行うようにすることも可能である。
Further, in the scope of the first aspect of the present invention, the on / off switching of the on-off valve 14 is performed in another specific frequency region other than the vicinity of the frequency Fp corresponding to the intersection of the above-mentioned efficiency curves. Is also possible.

【0037】[0037]

【発明の効果】以上の説明のように、この発明の請求項
1の空気調和機においては、ガスインジェクションON
/OFFの切換えを行うに際し、これに伴う冷凍能力の
変化を補償するように圧縮機の圧縮能力が補正される。
これにより、全体的な冷凍能力の変動が抑えられ、負荷
の変化に対応した運転状態が維持されて能力過多や能力
不足になることが防止されるので、空調快適性が維持さ
れる。
As described above, in the air conditioner according to the first aspect of the present invention, the gas injection is turned on.
When switching between / OFF, the compression capacity of the compressor is corrected so as to compensate for the change in the refrigeration capacity accompanying the switching.
As a result, fluctuations in the overall refrigeration capacity are suppressed, and an operating state corresponding to a change in load is maintained, thereby preventing excessive capacity or insufficient capacity, thereby maintaining air conditioning comfort.

【0038】請求項2の空気調和機においては、負荷に
応じて増減させる圧縮機の圧縮能力が、ガスインジェク
ションON/OFF時の各効率曲線の交点近傍に対応す
る圧縮能力に達した時に、ガスインジェクションON/
OFFの切換えが行われるので、圧縮機の圧縮能力可変
範囲の全体にわたって、より効率の高い運転状態が維持
され、経済性が向上する。
In the air conditioner of the second aspect, when the compression capacity of the compressor, which is increased or decreased in accordance with the load, reaches the compression capacity corresponding to the vicinity of the intersection of each efficiency curve at the time of gas injection ON / OFF. Injection ON /
Since the switching of the OFF state is performed, a more efficient operation state is maintained throughout the variable compression capacity range of the compressor, and the economy is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態での空気調和機における室
外機内の構成について、制御ブロック図を付記して示す
冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram additionally showing a control block diagram of a configuration inside an outdoor unit in an air conditioner according to an embodiment of the present invention.

【図2】上記空気調和機における圧縮機の運転周波数と
冷凍能力、および成績係数との関係を示すグラフであ
る。
FIG. 2 is a graph showing a relationship between an operating frequency of a compressor, a refrigerating capacity, and a coefficient of performance in the air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 8 室外熱交換器 10 第1液管 11 気液分離器 12 第2液管 13 バイパス配管 14 開閉弁 15 空調制御装置(切換制御手段) DESCRIPTION OF SYMBOLS 1 Compressor 8 Outdoor heat exchanger 10 1st liquid pipe 11 Gas-liquid separator 12 2nd liquid pipe 13 Bypass piping 14 On-off valve 15 Air conditioning control device (switch control means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮能力可変な圧縮機(1)に冷媒循環
可能に接続した室外熱交換器(8)と室内熱交換器との
間の液管(10)(12)に気液分離器(11)を介装
し、この気液分離器(11)と圧縮機(1)の吸込側と
の間に、気液分離器(11)内のガス冷媒を圧縮機
(1)に返流させるガスインジェクション用のバイパス
配管(13)と、このバイパス配管(13)を通しての
流路を開閉する開閉弁(14)とを設けた空気調和機で
あって、上記開閉弁(14)の開閉切換え時に、この切
換え前後の冷凍能力が互いにほぼ同等になるように、ガ
スインジェクションの有無に伴う冷凍能力の変化に基づ
いて圧縮機(1)の圧縮能力を補正する切換制御手段
(15)を設けていることを特徴とする空気調和機。
A gas-liquid separator is provided in a liquid pipe (10) (12) between an outdoor heat exchanger (8) and an indoor heat exchanger connected to a compressor (1) having a variable compression capacity so as to circulate a refrigerant. (11) is interposed, and the gas refrigerant in the gas-liquid separator (11) is returned to the compressor (1) between the gas-liquid separator (11) and the suction side of the compressor (1). An air conditioner provided with a bypass pipe (13) for gas injection to be made and an on-off valve (14) for opening and closing a flow path through the bypass pipe (13), wherein the on-off switching of the on-off valve (14) is performed. In some cases, a switching control means (15) for correcting the compression capacity of the compressor (1) based on a change in the refrigeration capacity due to the presence or absence of gas injection is provided so that the refrigeration capacity before and after the switching is substantially equal to each other. An air conditioner characterized in that:
【請求項2】 負荷に応じて増減させる圧縮機(1)の
圧縮能力が、ガスインジェクション有りのときの効率曲
線と無しのときの効率曲線との交点近傍に対応する圧縮
能力に達した時に、上記開閉弁(14)の開閉切換えと
圧縮機(1)の圧縮能力の補正とを上記切換制御手段
(15)が行うことを特徴とする請求項1の空気調和
機。
2. When the compression capacity of the compressor (1) to be increased or decreased according to the load reaches a compression capacity corresponding to the vicinity of the intersection between the efficiency curve with gas injection and the efficiency curve without gas injection, The air conditioner according to claim 1, wherein the switching control means (15) switches between opening and closing the on-off valve (14) and correcting the compression capacity of the compressor (1).
JP30641397A 1997-10-20 1997-10-20 Air conditioner Expired - Fee Related JP3780666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30641397A JP3780666B2 (en) 1997-10-20 1997-10-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30641397A JP3780666B2 (en) 1997-10-20 1997-10-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11118263A true JPH11118263A (en) 1999-04-30
JP3780666B2 JP3780666B2 (en) 2006-05-31

Family

ID=17956729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30641397A Expired - Fee Related JP3780666B2 (en) 1997-10-20 1997-10-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP3780666B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659348A1 (en) * 2003-08-25 2006-05-24 Daikin Industries, Ltd. Freezing apparatus
JP2013119957A (en) * 2011-12-06 2013-06-17 Samsung Yokohama Research Institute Co Ltd Air conditioner
CN113091205A (en) * 2020-08-19 2021-07-09 广州松下空调器有限公司 Air conditioner abnormity detection method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659348A1 (en) * 2003-08-25 2006-05-24 Daikin Industries, Ltd. Freezing apparatus
EP1659348A4 (en) * 2003-08-25 2013-12-11 Daikin Ind Ltd Freezing apparatus
JP2013119957A (en) * 2011-12-06 2013-06-17 Samsung Yokohama Research Institute Co Ltd Air conditioner
CN113091205A (en) * 2020-08-19 2021-07-09 广州松下空调器有限公司 Air conditioner abnormity detection method and device

Also Published As

Publication number Publication date
JP3780666B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
EP2587193B1 (en) Air conditioner
US20070151268A1 (en) Air conditioner and refrigerant control method thereof
KR930007963B1 (en) Air conditioner
US20050198978A1 (en) Refrigerating machine
KR920007811B1 (en) Air conditioner
JPH11142001A (en) Air conditioner
JP2716248B2 (en) Heat pump type air conditioner
JPH0534582B2 (en)
KR100696120B1 (en) Air conditioner for simultaneously heating and cooling and OUT DOOR UINT in use with it and method for defrosting
JP3780666B2 (en) Air conditioner
JP2004278824A (en) Refrigeration cycle device and air conditioner
JP3646401B2 (en) Air conditioner
JP2985759B2 (en) Heat pump system
JP3781880B2 (en) Refrigeration apparatus with injection function
JPH07305915A (en) Air conditioner
KR100389640B1 (en) System for controlling air conditioner and method thereof
JP3480778B2 (en) Multi-type air conditioner
JP3979361B2 (en) Air conditioner
JP2983782B2 (en) Air conditioner
KR20020028522A (en) Indoor fan control method for multitype airconditioner
JPH03230060A (en) Heat pump type air conditioner
JP2023146975A (en) air conditioner
JPH01163548A (en) Method of controlling heating in heat pump air conditioner
JPH03137457A (en) Freezer device
JP2022051016A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees