JP3780666B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3780666B2
JP3780666B2 JP30641397A JP30641397A JP3780666B2 JP 3780666 B2 JP3780666 B2 JP 3780666B2 JP 30641397 A JP30641397 A JP 30641397A JP 30641397 A JP30641397 A JP 30641397A JP 3780666 B2 JP3780666 B2 JP 3780666B2
Authority
JP
Japan
Prior art keywords
compressor
gas
valve
switching
gas injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30641397A
Other languages
Japanese (ja)
Other versions
JPH11118263A (en
Inventor
徹 鈴木
幸正 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP30641397A priority Critical patent/JP3780666B2/en
Publication of JPH11118263A publication Critical patent/JPH11118263A/en
Application granted granted Critical
Publication of JP3780666B2 publication Critical patent/JP3780666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Description

【0001】
【発明の属する技術分野】
この発明は、室外熱交換器と室内熱交換器とを相互に接続する液管中に介装した気液分離器からガス冷媒を圧縮機に返流させるためのガスインジェクション用のバイパス配管を備える空気調和機に関するものである。
【0002】
【従来の技術】
空気調和機における例えば暖房運転は、圧縮機からの吐出ガス冷媒を室内熱交換器から室外熱交換器へと循環させることによって行われる。このとき、蒸発器として機能する室外熱交換器で外気からの吸熱が行われ、凝縮器として機能する室内熱交換器での放熱で室内暖房が行われる。
【0003】
ところで、暖房運転時に外気温度が低いと充分な暖房能力を得難くなる。この場合、室内熱交換器で凝縮して室外熱交換器へと流れる液冷媒中へのガス冷媒の混入割合が多くなる。このガス冷媒は、室外熱交換器に供給されても外気からの吸熱作用には殆ど寄与しない。そこで、このガス冷媒を分離して圧縮機に返流させる操作、いわゆるガスインジェクションを行うことで、このガス冷媒は圧縮機で二段圧縮されて再度室内熱交換器に供給されることになり、これによって、室内熱交換器での凝縮が生じ易くなって全体的な暖房能力が向上する。
【0004】
このようなガスインジェクションを行うために、従来、圧縮能力が一定の圧縮機を設けた空気調和機において、室内熱交換器と室外熱交換器との間の液管中に気液分離器を介装し、この気液分離器と圧縮機の吸込側との間に、開閉弁の介設されたバイパス配管を設けたものが知られている。この場合、上記したように能力が不足気味になり易い暖房運転時に、上記開閉弁を開弁してガスインジェクションを併用した運転を行い、冷房運転時には、上記開閉弁を閉弁状態で保持してガスインジェクション無しで運転するような制御が行われている。
【0005】
なお、近年は、インバータ制御により圧縮能力が可変な圧縮機を内装する空気調和機が主流になってきており、このような空気調和機に、上記のようなガスインジェクション用のバイパス配管を設けて構成する場合においては、例えば暖房運転時に一律にガスインジェクションを行う構成とする必要はない。つまり、負荷が小さい間は、圧縮能力可変範囲内でこの負荷に余裕を持って対応でき、この場合には、ガスインジェクション無しの運転の方がより高い効率での運転状態を維持することができる。したがって、負荷の増加に対応して圧縮機の運転周波数が所定の周波数に達したときに、バイパス配管に介設されている開閉弁の開閉切換えを行い、これによって、上記周波数を超える高周波数域で、ガスインジェクションを併用した運転となるように制御することが考えられる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のように圧縮機の運転周波数が所定の周波数に達したときに、バイパス配管に介設されている開閉弁の開閉切換えを単に行うだけの制御では、空調快適性が損なわれ易いという問題が発生する。
【0007】
つまり、負荷の変化に応じて運転周波数を変化させながら空調運転を行っているときにガスインジェクションの切換えを行うと、これに伴って冷凍能力が急変する。このため、例えばガスインジェクション無しの運転から有りの運転への切換え時には能力過多になり易く、逆にガスインジェクション有りの運転から無しの運転に切換わった時には能力不足を生じ易い。この結果、室内空調温度が設定温度を超えた後のサーモOFF時間が長くなったり、また、能力不足により設定温度に達するまでの時間が長くなるなど、空調制御性が低下し、これによって快適性が損なわれてしまう。
【0008】
この発明は、上記した問題点に鑑みなされたもので、その目的は、ガスインジェクションの切換えを行う際の空調快適性の低下を抑制し得ると共に、さらに、より経済性を向上し得る空気調和機を提供することにある。
【0009】
【課題を解決するための手段】
そこで、請求項1の空気調和機は、圧縮能力可変な圧縮機1に冷媒循環可能に接続した室外熱交換器8と室内熱交換器との間の液管10・12に気液分離器11を介装し、この気液分離器11と圧縮機1の吸込側との間に、気液分離器11内のガス冷媒を圧縮機1に返流させるガスインジェクション用のバイパス配管13と、このバイパス配管13を通しての流路を開閉する開閉弁14とを設けた空気調和機であって、上記開閉弁14の開閉切換え時において、開閉弁14の開切換え時には圧縮機1の圧縮能力を低下させると共に、開閉弁14の閉切換え時には圧縮機1の圧縮能力を増加させることにより、圧縮機1の切換え前後の冷凍能力が互いにほぼ同等になるように、ガスインジェクションの有無に伴う冷凍能力の変化に基づいて圧縮機1の圧縮能力を補正する切換制御手段15を設け、さらに、負荷に応じて増減させる圧縮機1の圧縮能力が、ガスインジェクション有りのときの効率曲線と無しのときの効率曲線との交点近傍に対応する圧縮能力に達した時に、上記開閉弁14の開閉切換えと圧縮機1の圧縮能力の補正とを上記切換制御手段15が行うべく構成したことを特徴としている。
【0010】
上記構成の空気調和機においては、例えば、ガスインジェクション無しの運転から、開閉弁14を開弁してガスインジェクション有りの運転に切換える際には、この切り換えに伴って冷凍能力が増加する分、圧縮機1の圧縮能力を低下させる制御が切換制御手段15によって行われる。また、ガスインジェクション有りの運転から、開閉弁14を閉弁してガスインジェクション無しの運転に切換える際には、冷凍能力がこの切換えによって低下する分、圧縮機1の圧縮能力を増加させる制御が行われる。
【0011】
これによって、ガスインジェクションの切換え時にも、全体的な冷凍能力の変動は抑えられ、負荷の変化に対応した運転状態が維持されて能力過多や能力不足になることが防止されるので、空調快適性の低下が抑制される。
【0013】
このような構成によって、さらに経済性を向上することができる。つまり、効率の観点では、圧縮機1が圧縮能力の高い領域で運転されているときには、ガスインジェクション有りの運転の方が無しの運転のときよりも効率は高く、逆に圧縮機1が圧縮能力の低い領域で運転されているときには、ガスインジェクション無しの運転の方が効率が高くなるのが一般的である。そこで、ガスインジェクション有りのときの効率曲線と無しのときの効率曲線とが交差する点の近傍において、ガスインジェクション無しの運転とガスインジェクション有りの運転との切換えを行うことにより、圧縮機における圧縮能力可変範囲の全体にわたって、より効率の高い運転状態が維持され、経済性が向上する。
【0014】
【発明の実施の形態】
次に、この発明の空気調和機の具体的な実施形態について、図面を参照しつつ詳細に説明する。
【0015】
図1は、セパレート形空気調和機における室外機内の構成を示す冷媒回路図である。図のように、この室外機には圧縮機1が内装されており、この圧縮機1の吐出配管2と、アキュムレータ3・3が介設された吸込配管4とは、それぞれ四路切換弁5に接続されている。上記圧縮機1は、その回転速度、つまり圧縮能力を制御するためのインバータ1aを有するものである。
【0016】
四路切換弁5には、その一方の切換ポートに第1ガス管6が、また、他方の切換ポートに第2ガス管7がそれぞれ接続されている。この第2ガス管7に、室外熱交換器8が接続され、さらに、この室外熱交換器8に、順次、減圧機構としての電動膨張弁9が介設された第1液管10と、気液分離器11と、減圧機構としての電動膨張弁9’が介設された第2液管12とが接続されている。
【0017】
この第2液管12の先端と、前記第1ガス管6の先端との間に、図示してはいないが、室内熱交換器が内装された室内機が連絡配管を介して接続され、これによって、圧縮機1からの吐出冷媒が、室外熱交換器8と室内熱交換器とを通過した後に圧縮機1に返流される冷媒循環回路が構成される。
【0018】
すなわち、四路切換弁5を図中実線で示すような切換位置に位置させて圧縮機1を運転すると、圧縮機1からの吐出冷媒が図中実線矢印に沿って循環し、このとき、室外熱交換器8が蒸発器として機能して外部より吸熱する一方、室内熱交換器が凝縮器として機能し、その放熱によって室内暖房が行われる。
【0019】
一方、四路切換弁5を上記から切換えて、圧縮機1からの吐出冷媒を図中破線矢印に沿って循環させることにより、室外熱交換器8が凝縮器として機能すると共に、室内熱交換器が蒸発器として機能する冷房運転が行われる。
【0020】
前記第1液管10と第2液管12とから成る液管(冷暖いずれの場合にも高圧側となる位置)に介装されている気液分離器11は、さらに、バイパス配管13によって圧縮機1の中間ポートに接続され、このバイパス配管13には、電磁弁よりなる開閉弁14が介設されている。
【0021】
密閉容器状の気液分離器11内においては、第1液管10と第2液管12とがこの気液分離器11の底部に近接する位置に開口する一方、バイパス配管13は気液分離器11の上壁近傍の位置に開口している。これにより、例えば暖房運転時に第2液管12からこの気液分離器11内に流入した冷媒は、これにガス成分が混入していれば、ガス相と液相とにこの気液分離器11内で上下に分離し、分離した液冷媒が第1液管10へと供給される。また、冷房運転時においても、上記同様に、第1液管10からの冷媒は、気液分離器11内でガス相と液相とに上下に分離し、分離した液冷媒が第2液管12へと供給される。
【0022】
一方、気液分離器11内で上部側に分離したガス冷媒は、前記した開閉弁14が開弁されていれば、バイパス配管13を通して圧縮機1に返流され、このガス冷媒は、アキュムレータ3を通して返流されたガス冷媒と共に、圧縮機1で圧縮され吐出されることになる(以下、このように開閉弁14を開弁し、バイパス配管13を通して気液分離器11内のガス冷媒を圧縮機1に返流させる運転を、ガスインジェクションという)。
【0023】
上記した開閉弁14の開閉制御は、この空気調和機全体を監視し、圧縮機1の圧縮能力、すなわち、その回転速度を負荷に応じて定める周波数制御を行いながら、暖房運転もしくは冷房運転を制御する空調制御装置(切換制御手段)15によって行われる。以下、その制御内容について説明する。
【0024】
図2の(b)には、前記インバータ1aによる圧縮機1の運転周波数と、暖房能力或いは冷房能力(以下、これらを総称して冷凍能力という)との関係を、また、同図(a)には、運転周波数と成績係数(COP)との関係をそれぞれ示している。図中破線で示す曲線は、開閉弁14をOFF、すなわち、前記ガスインジェクションを行わずに運転したとき(以下、ガスインジェクションOFFという)の能力曲線および成績係数曲線(以下、効率曲線という)であり、図中実線で示す曲線は、開閉弁14をON、すなわち、開閉弁14を開弁してガスインジェクションを併用したとき(以下、ガスインジェクションONという)の能力曲線および効率曲線である。
【0025】
冷凍能力は、運転周波数が大きくなるほど増加し、かつ、ガスインジェクションON時には、OFF時よりも大きな冷凍能力が得られる。
【0026】
一方、効率曲線は、特定の運転周波数で最大値を有する上に凸の曲線となるのが一般的である。そして、ガスインジェクションONでは、効率が最大となるときの運転周波数がガスインジェクションOFFのときよりも高周波数側にずれ、したがって、ガスインジェクションON時とOFF時との効率曲線は互いに交差する。この交差点での運転周波数をFpとすると、このFpよりも低い周波数では、ガスインジェクションOFFでの運転の方がON時よりも高い効率が得られ、一方、Fpを超える周波数では、ガスインジェクションONでの運転の方が、より高い効率が得られる。
【0027】
そこで、本実施形態では、前記空調制御装置15により、上記した交差点に対応する運転周波数Fpを含む近傍領域を、ガスインジェクションON/OFFの切換領域として、開閉弁14の開閉制御が行われる。すなわち、同図(b)において、ガスインジェクションONとOFFとでの各運転における冷凍能力が互いに同等になる運転周波数の組み合わせのうち、上記した交差点に対応する周波数Fpをほぼ中心とする周波数の組み合わせF1 ・F2 を求め、これらが、空調制御装置15に、切換時の下限周波数F1 ・上限周波数F2 として予め記憶されている。なお、F1 〜F2 の周波数範囲を切換範囲Scとすると、同図(a)に示されているように、この範囲ScでガスインジェクションON/OFFの切換えを行っても、効率には殆ど差を生じない。
【0028】
上記した切換範囲Scの下限周波数F1 ・上限周波数F2 が記憶されている空調制御装置15は、まず、下限周波数F1 未満では開閉弁14を閉弁状態に保持してガスインジェクションOFFでの運転を行う一方、上限周波数F2 を超える範囲では、開閉弁14を開弁してガスインジェクションONでの運転を行う。
【0029】
そして、切換範囲Scにおいては、例えば、この切換範囲Scよりも低域側から、負荷に応じて漸増させている運転周波数がF1 、Fpを順次超えてF2 に達した時に、開閉弁14を開弁させ、ガスインジェクションOFFの運転からONの運転に切換える。そして同時に、運転周波数をF2 からF1 に一旦低下させる制御を行う。その後、開閉弁14の開弁状態を保持して、周波数を負荷に応じて高域側へと漸増させる。
【0030】
このような制御により、ガスインジェクションOFF→ONの切換えに伴う能力増加分は圧縮機1の圧縮能力の低下によって補償され、全体的な冷凍能力の変動は生じず、かつ、より高い効率での運転状態が維持される。
【0031】
一方、ガスインジェクションONの状態において、切換範囲Scよりも高域側から漸減させている運転周波数が切換範囲Scに達したときには、この運転周波数がさらにF2 、Fpを順次通過してF1 に達した時に、開閉弁14を閉弁させる。同時に、運転周波数をF1 からF2 に一旦上昇させ、その後、開閉弁14の閉弁状態を保持して、周波数を負荷に応じて低域側へと漸減させる制御を行う。これにより、上記同様に、開閉弁14の開閉切換に伴う能力変動が抑えられ、また、より高い運転効率が維持される。
【0032】
以上の説明のように、本実施形態においては、ガスインジェクションON/OFFの切換えに当たり、この切り換え前後における冷凍能力の変動が生じないように圧縮機1の圧縮能力を変更させる制御が同時に行われる。これにより、良好な空調快適性を維持することができる。また、上記の切換えは、ガスインジェクションON/OFFでの各効率曲線が交差する近傍領域で行われ、この領域を挟んで低域側と高域側とで、それぞれ、より効率の高い運転状態が選択されるので、全体にわたって消費電力が低減され、経済性が向上する。
【0033】
以上にこの発明の具体的な実施形態について説明したが、この発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、上記実施形態では、室外機に1台の室内機を接続したセパレート形空気調和機を例に挙げたが、室外機に複数の室内機を接続して構成されるマルチタイプの空気調和機にも本発明を適用することが可能である。
【0034】
また、上記では、ガスインジェクションON/OFF時の各効率曲線の交点に対応する運転周波数Fpに対し、これを中心とする切換範囲Scを定め、この範囲Scの下限周波数F1 と上限周波数F2 とで、ガスインジェクションON/OFFの切換えをそれぞれ行う構成としたが、例えば、運転周波数が増減する過程のいずれにおいても、上記のFpに達した時点で切換えるようにすること等も可能である。
【0035】
もっともこの場合には、図2中二点鎖線で示すように、運転周波数が増加する過程でFpに達したときには、運転周波数をFpからF1'まで低下させる必要があり、また、運転周波数が減少する過程でFpに達したときには、FpからF2'まで増加させる必要がある。この切換え範囲F1'〜F2'は、上記実施形態における切換範囲Scよりも広く、これによって、切換え直後の効率がより低いものとなるので、上記実施形態のように、Fpをほぼ中心としてその両側にそれぞれ設定した下限周波数とF1 と上限周波数F2 とで、ガスインジェクションON/OFFの切換えを行うようにすることが望ましい。
【0036】
さらに、本発明の請求項1の範囲においては、上記した効率曲線の交点に対応する周波数Fpの近傍以外のその他の特定周波数領域で、開閉弁14の開閉切換えを行うようにすることも可能である。
【0037】
【発明の効果】
以上の説明のように、この発明の請求項1の空気調和機においては、ガスインジェクションON/OFFの切換えを行うに際し、これに伴う冷凍能力の変化を補償するように圧縮機の圧縮能力が補正される。これにより、全体的な冷凍能力の変動が抑えられ、負荷の変化に対応した運転状態が維持されて能力過多や能力不足になることが防止されるので、空調快適性が維持される。
【0038】
また、上記空気調和機においては、負荷に応じて増減させる圧縮機の圧縮能力が、ガスインジェクションON/OFF時の各効率曲線の交点近傍に対応する圧縮能力に達した時に、ガスインジェクションON/OFFの切換えが行われるので、圧縮機の圧縮能力可変範囲の全体にわたって、より効率の高い運転状態が維持され、経済性が向上する。
【図面の簡単な説明】
【図1】本発明の一実施形態での空気調和機における室外機内の構成について、制御ブロック図を付記して示す冷媒回路図である。
【図2】上記空気調和機における圧縮機の運転周波数と冷凍能力、および成績係数との関係を示すグラフである。
【符号の説明】
1 圧縮機
8 室外熱交換器
10 第1液管
11 気液分離器
12 第2液管
13 バイパス配管
14 開閉弁
15 空調制御装置(切換制御手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a bypass pipe for gas injection for returning a gas refrigerant from a gas-liquid separator interposed in a liquid pipe connecting the outdoor heat exchanger and the indoor heat exchanger to each other. It relates to air conditioners.
[0002]
[Prior art]
For example, the heating operation in the air conditioner is performed by circulating the discharge gas refrigerant from the compressor from the indoor heat exchanger to the outdoor heat exchanger. At this time, the outdoor heat exchanger functioning as an evaporator absorbs heat from the outside air, and the indoor heating is performed by heat radiation from the indoor heat exchanger functioning as a condenser.
[0003]
By the way, when the outside air temperature is low during the heating operation, it becomes difficult to obtain a sufficient heating capacity. In this case, the mixing ratio of the gas refrigerant into the liquid refrigerant that condenses in the indoor heat exchanger and flows to the outdoor heat exchanger increases. Even if this gas refrigerant is supplied to the outdoor heat exchanger, it hardly contributes to the heat absorption action from the outside air. Therefore, by performing an operation of separating the gas refrigerant and returning it to the compressor, so-called gas injection, the gas refrigerant is compressed in two stages by the compressor and supplied to the indoor heat exchanger again. Thereby, condensation in the indoor heat exchanger is likely to occur, and the overall heating capacity is improved.
[0004]
In order to perform such gas injection, conventionally, in an air conditioner provided with a compressor having a constant compression capacity, a gas-liquid separator is interposed in the liquid pipe between the indoor heat exchanger and the outdoor heat exchanger. It is known that a bypass pipe provided with an on-off valve is provided between the gas-liquid separator and the suction side of the compressor. In this case, as described above, during the heating operation in which the capacity tends to be insufficient, the on-off valve is opened and the gas injection is used in combination, and during the cooling operation, the on-off valve is held closed. Control is performed to operate without gas injection.
[0005]
In recent years, air conditioners equipped with compressors whose compression capacity is variable by inverter control have become mainstream, and such air conditioners are provided with a bypass pipe for gas injection as described above. In the case of the configuration, for example, it is not necessary to have a configuration in which gas injection is uniformly performed during heating operation. In other words, while the load is small, it is possible to cope with this load with a margin within the variable compression capacity range. In this case, operation without gas injection can maintain an operation state with higher efficiency. . Therefore, when the operating frequency of the compressor reaches a predetermined frequency in response to the increase in load, the on-off valve installed in the bypass pipe is switched to open and close, thereby allowing a high frequency range exceeding the above frequency. Thus, it is conceivable to control the operation so as to be combined with gas injection.
[0006]
[Problems to be solved by the invention]
However, when the operating frequency of the compressor reaches a predetermined frequency as described above, the air conditioning comfort is likely to be impaired by the control that simply performs opening / closing switching of the opening / closing valve interposed in the bypass pipe. A problem occurs.
[0007]
That is, if the gas injection is switched while the air-conditioning operation is performed while changing the operation frequency according to the change in the load, the refrigeration capacity changes suddenly. For this reason, for example, the capacity tends to be excessive when switching from the operation without gas injection to the operation with gas injection, and conversely, the capacity shortage tends to occur when the operation with gas injection is switched to the operation without gas injection. As a result, the air-conditioning controllability decreases, such as the longer the thermo-off time after the indoor air-conditioning temperature exceeds the set temperature, and the longer the time until it reaches the set temperature due to insufficient capacity, thereby improving comfort. Will be damaged.
[0008]
The present invention has been made in view of the above-described problems, and an object thereof is an air conditioner that can suppress a decrease in air-conditioning comfort when performing gas injection switching and can further improve economy. Is to provide.
[0009]
[Means for Solving the Problems]
Therefore, the air conditioner according to claim 1 includes a gas-liquid separator 11 in the liquid pipes 10 and 12 between the outdoor heat exchanger 8 and the indoor heat exchanger connected to the compressor 1 having a variable compression capacity so that the refrigerant can be circulated. Between the gas-liquid separator 11 and the suction side of the compressor 1, a gas injection bypass pipe 13 for returning the gas refrigerant in the gas-liquid separator 11 to the compressor 1, and this an air conditioner provided with an opening and closing valve 14 for opening and closing the flow path through the bypass pipe 13, reducing the compression capability of the compressor 1 is Oite by breaking switching of the on-off valve 14, when open switching-off valve 14 At the same time, by increasing the compression capacity of the compressor 1 when the on-off valve 14 is switched, the change in the refrigeration capacity due to the presence or absence of gas injection so that the refrigeration capacity before and after the switching of the compressor 1 becomes substantially equal Based on compression The switching control means 15 for correcting the first compression capability provided further compression capability of the compressor 1 is increased or decreased in accordance with the load, near the intersection of the efficiency curve when the efficiency curve and without the case of there gas injection When the corresponding compression capacity is reached, the switching control means 15 is configured to perform opening / closing switching of the on-off valve 14 and correction of the compression capacity of the compressor 1 .
[0010]
In the air conditioner having the above configuration, for example, when switching from an operation without gas injection to an operation with gas injection by opening the on-off valve 14, the compression capacity is increased by the amount that the refrigeration capacity increases with this switching. Control for reducing the compression capacity of the machine 1 is performed by the switching control means 15. Further, when switching from the operation with gas injection to the operation without gas injection by closing the on-off valve 14, control is performed to increase the compression capacity of the compressor 1 as much as the refrigerating capacity is reduced by this switching. Is called.
[0011]
As a result, even when gas injection is switched, fluctuations in the overall refrigeration capacity are suppressed, and operating conditions corresponding to changes in load are maintained, preventing excessive capacity and insufficient capacity. Is suppressed.
[0013]
With such a configuration, the economy can be further improved. That is, from the viewpoint of efficiency, when the compressor 1 is operated in a region where the compression capacity is high, the efficiency is higher in the operation with gas injection than in the operation without the gas injection. When the vehicle is operated in a low region, the efficiency is generally higher in the operation without gas injection. Therefore, by switching between the operation without gas injection and the operation with gas injection in the vicinity of the point where the efficiency curve with and without gas injection intersects, the compression capacity in the compressor More efficient operating conditions are maintained throughout the variable range, improving economy.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, specific embodiments of the air conditioner of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a refrigerant circuit diagram illustrating a configuration inside an outdoor unit in a separate air conditioner. As shown in the figure, a compressor 1 is built in the outdoor unit, and a discharge pipe 2 of the compressor 1 and a suction pipe 4 provided with accumulators 3 and 3 are respectively provided with four-way switching valves 5. It is connected to the. The compressor 1 has an inverter 1a for controlling the rotation speed, that is, the compression capacity.
[0016]
The four-way switching valve 5 has a first gas pipe 6 connected to one switching port and a second gas pipe 7 connected to the other switching port. An outdoor heat exchanger 8 is connected to the second gas pipe 7, and a first liquid pipe 10 in which an electric expansion valve 9 serving as a pressure reducing mechanism is sequentially inserted in the outdoor heat exchanger 8; The liquid separator 11 is connected to a second liquid pipe 12 provided with an electric expansion valve 9 ′ as a pressure reducing mechanism.
[0017]
Although not shown, an indoor unit with an indoor heat exchanger is connected between the tip of the second liquid pipe 12 and the tip of the first gas pipe 6 via a communication pipe. Thus, a refrigerant circulation circuit is constructed in which the refrigerant discharged from the compressor 1 is returned to the compressor 1 after passing through the outdoor heat exchanger 8 and the indoor heat exchanger.
[0018]
That is, when the compressor 1 is operated with the four-way switching valve 5 positioned at the switching position shown by the solid line in the figure, the refrigerant discharged from the compressor 1 circulates along the solid line arrow in the figure, While the heat exchanger 8 functions as an evaporator and absorbs heat from the outside, the indoor heat exchanger functions as a condenser, and indoor heating is performed by the heat radiation.
[0019]
On the other hand, by switching the four-way switching valve 5 from the above and circulating the refrigerant discharged from the compressor 1 along the broken line arrow in the figure, the outdoor heat exchanger 8 functions as a condenser and the indoor heat exchanger. A cooling operation is performed in which functions as an evaporator.
[0020]
The gas-liquid separator 11 interposed in the liquid pipe (the position on the high pressure side in both cases of cooling and heating) composed of the first liquid pipe 10 and the second liquid pipe 12 is further compressed by the bypass pipe 13. Connected to the intermediate port of the machine 1, the bypass pipe 13 is provided with an opening / closing valve 14 made of an electromagnetic valve.
[0021]
In the gas-liquid separator 11 in the sealed container shape, the first liquid pipe 10 and the second liquid pipe 12 open to a position close to the bottom of the gas-liquid separator 11, while the bypass pipe 13 is gas-liquid separated. It opens at a position near the upper wall of the vessel 11. Thereby, for example, if the refrigerant that has flowed into the gas-liquid separator 11 from the second liquid pipe 12 during the heating operation is mixed with the gas component, the gas-liquid separator 11 is separated into the gas phase and the liquid phase. The separated liquid refrigerant is supplied to the first liquid pipe 10. Also during the cooling operation, similarly to the above, the refrigerant from the first liquid pipe 10 is separated into the gas phase and the liquid phase in the gas-liquid separator 11 and the separated liquid refrigerant becomes the second liquid pipe. 12 is supplied.
[0022]
On the other hand, the gas refrigerant separated to the upper side in the gas-liquid separator 11 is returned to the compressor 1 through the bypass pipe 13 if the on-off valve 14 is opened. This gas refrigerant is supplied to the accumulator 3. The gas refrigerant returned through the compressor is compressed and discharged by the compressor 1 (hereinafter, the on-off valve 14 is opened and the gas refrigerant in the gas-liquid separator 11 is compressed through the bypass pipe 13 in this way. The operation of returning the gas to the machine 1 is called gas injection).
[0023]
The on-off control of the on-off valve 14 described above monitors the entire air conditioner, and controls the heating operation or the cooling operation while performing the frequency control that determines the compression capacity of the compressor 1, that is, the rotation speed according to the load. This is performed by the air conditioning control device (switching control means) 15. The details of the control will be described below.
[0024]
FIG. 2B shows the relationship between the operating frequency of the compressor 1 by the inverter 1a and the heating capacity or cooling capacity (hereinafter collectively referred to as refrigeration capacity). Shows the relationship between the operating frequency and the coefficient of performance (COP). Curves shown by broken lines in the figure are performance curves and coefficient of performance curves (hereinafter referred to as efficiency curves) when the on-off valve 14 is turned off, that is, when the gas injection is not performed (hereinafter referred to as gas injection OFF). The curves shown by the solid lines in the figure are the performance curve and the efficiency curve when the on-off valve 14 is turned on, that is, when the on-off valve 14 is opened and gas injection is used together (hereinafter referred to as gas injection ON).
[0025]
The refrigeration capacity increases as the operating frequency increases, and a larger refrigeration capacity can be obtained when gas injection is ON than when OFF.
[0026]
On the other hand, the efficiency curve is generally an upwardly convex curve having a maximum value at a specific operating frequency. When the gas injection is ON, the operating frequency when the efficiency is maximum is shifted to a higher frequency side than when the gas injection is OFF. Therefore, the efficiency curves when the gas injection is ON and when they are OFF intersect each other. Assuming that the operation frequency at this intersection is Fp, at a frequency lower than this Fp, the operation with gas injection OFF can obtain higher efficiency than when it is ON, while at the frequency exceeding Fp, the gas injection is ON. The higher efficiency can be obtained by driving.
[0027]
Therefore, in the present embodiment, the air-conditioning control device 15 performs opening / closing control of the opening / closing valve 14 using the vicinity region including the operation frequency Fp corresponding to the above-described intersection as the gas injection ON / OFF switching region. That is, in FIG. 5B, among the combinations of operating frequencies at which the refrigeration capacities in the respective operations with gas injection ON and OFF are equal to each other, a combination of frequencies with the frequency Fp corresponding to the above intersection as the center. F 1 and F 2 are obtained, and these are previously stored in the air conditioning controller 15 as the lower limit frequency F 1 and the upper limit frequency F 2 at the time of switching. Assuming that the frequency range of F 1 to F 2 is the switching range Sc, as shown in FIG. 5A, even if the gas injection ON / OFF switching is performed within this range Sc, the efficiency is almost zero. There is no difference.
[0028]
The air-conditioning control device 15 in which the lower limit frequency F 1 and the upper limit frequency F 2 of the switching range Sc described above are stored first holds the on-off valve 14 in the closed state when the gas frequency is lower than the lower limit frequency F 1 . while performing the operation, in a range exceeding the upper limit frequency F 2 performs the operation of gas injection is ON by opening the on-off valve 14.
[0029]
In the switching range Sc, for example, when the operating frequency gradually increased according to the load reaches F 2 from F 1 and Fp in order from the lower side than the switching range Sc, the on-off valve 14 To switch from gas injection OFF operation to ON operation. At the same time, control is performed to temporarily reduce the operating frequency from F 2 to F 1 . Thereafter, the open state of the on-off valve 14 is maintained, and the frequency is gradually increased to the high frequency side according to the load.
[0030]
By such control, the increase in capacity due to switching from gas injection OFF to ON is compensated for by the decrease in the compression capacity of the compressor 1, so that the overall refrigeration capacity does not fluctuate and the operation is performed with higher efficiency. State is maintained.
[0031]
On the other hand, when the operating frequency that is gradually decreased from the higher range side than the switching range Sc reaches the switching range Sc in the state where the gas injection is ON, the operating frequency further passes through F 2 and Fp to F 1 . When reaching, the on-off valve 14 is closed. At the same time, the operation frequency is temporarily increased from F 1 to F 2 , and thereafter, the valve closing state of the on-off valve 14 is maintained and the frequency is gradually decreased to the low frequency side according to the load. As a result, similarly to the above, capacity fluctuations associated with opening / closing switching of the on-off valve 14 are suppressed, and higher operating efficiency is maintained.
[0032]
As described above, in the present embodiment, when switching the gas injection ON / OFF, the control for changing the compression capacity of the compressor 1 is performed at the same time so that the refrigeration capacity does not fluctuate before and after the switching. Thereby, favorable air-conditioning comfort can be maintained. Further, the above switching is performed in the vicinity region where the respective efficiency curves at the gas injection ON / OFF intersect, and the operation state with higher efficiency is obtained on each of the low frequency side and the high frequency side across this region. Since it is selected, power consumption is reduced over the entire area, and economic efficiency is improved.
[0033]
Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention. For example, in the above-described embodiment, a separate type air conditioner in which one indoor unit is connected to the outdoor unit has been described as an example. However, a multi-type air conditioner configured by connecting a plurality of indoor units to the outdoor unit. The present invention can also be applied to.
[0034]
Further, in the above, for the operating frequency Fp corresponding to the intersection of the respective efficiency curves at the time of gas injection ON / OFF, a switching range Sc centered on this is defined, and the lower limit frequency F 1 and the upper limit frequency F 2 of this range Sc. Thus, the gas injection ON / OFF switching is performed. However, for example, in any process of increasing or decreasing the operating frequency, it is possible to switch the gas injection when the above Fp is reached.
[0035]
However, in this case, as shown by the two-dot chain line in FIG. 2, when the operating frequency reaches Fp in the process of increasing the operating frequency, it is necessary to decrease the operating frequency from Fp to F 1 ′. When Fp is reached in the process of decreasing, it is necessary to increase from Fp to F 2 '. This switching range F 1 ′ to F 2 ′ is wider than the switching range Sc in the above-described embodiment, and as a result, the efficiency immediately after switching becomes lower. Therefore, as in the above-described embodiment, Fp is substantially centered. It is desirable to perform gas injection ON / OFF switching at the lower limit frequency, F 1, and upper limit frequency F 2 respectively set on both sides.
[0036]
Further, within the scope of claim 1 of the present invention, the on-off valve 14 can be switched on and off in a specific frequency region other than the vicinity of the frequency Fp corresponding to the intersection of the efficiency curves described above. is there.
[0037]
【The invention's effect】
As described above, in the air conditioner according to claim 1 of the present invention, when the gas injection is switched ON / OFF, the compression capacity of the compressor is corrected so as to compensate for the change in the refrigerating capacity associated therewith. Is done. Thereby, the fluctuation | variation of the whole refrigerating capacity is suppressed, and since the driving | running state corresponding to the change of load is maintained and it is prevented that it becomes overcapacity or insufficient capacity | capacitance, air-conditioning comfort is maintained.
[0038]
In the above air conditioner, when the compression capacity of the compressor that increases or decreases according to the load reaches the compression capacity corresponding to the vicinity of the intersection of each efficiency curve at the time of gas injection ON / OFF, the gas injection ON / OFF Therefore, a more efficient operation state is maintained over the entire compression capacity variable range of the compressor, and the economy is improved.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram with a control block diagram added to the configuration of an outdoor unit in an air conditioner according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the operating frequency of the compressor, the refrigeration capacity, and the coefficient of performance in the air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 8 Outdoor heat exchanger 10 1st liquid pipe 11 Gas-liquid separator 12 2nd liquid pipe 13 Bypass piping 14 On-off valve 15 Air-conditioning control apparatus (switching control means)

Claims (1)

圧縮能力可変な圧縮機(1)に冷媒循環可能に接続した室外熱交換器(8)と室内熱交換器との間の液管(10)(12)に気液分離器(11)を介装し、この気液分離器(11)と圧縮機(1)の吸込側との間に、気液分離器(11)内のガス冷媒を圧縮機(1)に返流させるガスインジェクション用のバイパス配管(13)と、このバイパス配管(13)を通しての流路を開閉する開閉弁(14)とを設けた空気調和機であって、上記開閉弁(14)の開閉切換え時において、開閉弁(14)の開切換え時には圧縮機(1)の圧縮能力を低下させると共に、開閉弁(14)の閉切換え時には圧縮機(1)の圧縮能力を増加させることにより、圧縮機(1)の切換え前後の冷凍能力が互いにほぼ同等になるように、ガスインジェクションの有無に伴う冷凍能力の変化に基づいて圧縮機(1)の圧縮能力を補正する切換制御手段(15)を設け、さらに、負荷に応じて増減させる圧縮機(1)の圧縮能力が、ガスインジェクション有りのときの効率曲線と無しのときの効率曲線との交点近傍に対応する圧縮能力に達した時に、上記開閉弁(14)の開閉切換えと圧縮機(1)の圧縮能力の補正とを上記切換制御手段(15)が行うべく構成したことを特徴とする空気調和機。A gas-liquid separator (11) is connected to the liquid pipes (10) and (12) between the outdoor heat exchanger (8) and the indoor heat exchanger, which are connected to the compressor (1) having a variable compression capacity so that the refrigerant can circulate. For gas injection between the gas-liquid separator (11) and the suction side of the compressor (1) for returning the gas refrigerant in the gas-liquid separator (11) to the compressor (1). bypass piping (13), a closing valve (14) and the provided air conditioner for opening and closing a flow path through the bypass pipe (13), Oite by breaking switching of the on-off valve (14), closing When the valve (14) is switched open, the compression capacity of the compressor (1) is reduced, and when the on-off valve (14) is closed, the compression capacity of the compressor (1) is increased . Make sure that the refrigeration capacities before and after switching are almost equal to each other. Compressor based on the change in the refrigerating capacity due to no (1) switching control means for correcting the compression capability (15) is provided for, further, the compression capacity of the compressor (1) increased or decreased depending on the load, the gas injection When the compression capacity corresponding to the vicinity of the intersection of the efficiency curve with and without the efficiency curve is reached, the switching of the on-off valve (14) and the correction of the compression capacity of the compressor (1) are performed as described above. An air conditioner configured to be performed by a switching control means (15) .
JP30641397A 1997-10-20 1997-10-20 Air conditioner Expired - Fee Related JP3780666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30641397A JP3780666B2 (en) 1997-10-20 1997-10-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30641397A JP3780666B2 (en) 1997-10-20 1997-10-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11118263A JPH11118263A (en) 1999-04-30
JP3780666B2 true JP3780666B2 (en) 2006-05-31

Family

ID=17956729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30641397A Expired - Fee Related JP3780666B2 (en) 1997-10-20 1997-10-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP3780666B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757967B2 (en) * 2003-08-25 2006-03-22 ダイキン工業株式会社 Refrigeration equipment
JP6010294B2 (en) * 2011-12-06 2016-10-19 株式会社サムスン日本研究所 Air conditioner
CN113091205B (en) * 2020-08-19 2022-03-08 广州松下空调器有限公司 Air conditioner abnormity detection method and device

Also Published As

Publication number Publication date
JPH11118263A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
EP2587193B1 (en) Air conditioner
US5673570A (en) Oil equalizing operation control device for air conditioner
JP4394709B2 (en) Apparatus and method for preventing accumulation of liquid refrigerant in air conditioner
JP6792057B2 (en) Refrigeration cycle equipment
US20070151268A1 (en) Air conditioner and refrigerant control method thereof
JP2005077084A (en) Air-conditioner, and control method therefor
JPH11142001A (en) Air conditioner
KR20200134809A (en) An air conditioning apparatus and control method thereof
JP3780666B2 (en) Air conditioner
JP2002174463A (en) Refrigerating apparatus
KR20070018640A (en) Apparatus for controlling the driving of an air conditioner having plural compressors and method therefor
US20220381483A1 (en) Refrigeration Cycle Apparatus
JP2004278824A (en) Refrigeration cycle device and air conditioner
JP3646401B2 (en) Air conditioner
JP6010294B2 (en) Air conditioner
JP3781880B2 (en) Refrigeration apparatus with injection function
JP7407920B2 (en) Refrigeration cycle equipment
KR100389640B1 (en) System for controlling air conditioner and method thereof
JP3480778B2 (en) Multi-type air conditioner
JPH07305915A (en) Air conditioner
CN113518886B (en) Refrigeration cycle device
JP3164840B2 (en) Air conditioner refrigeration oil recovery equipment
JPH04222354A (en) Operation controller for refrigerating equipment
JPS60114669A (en) Air conditioner
JPH03230060A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees