JPH11117763A - Gas turbine - Google Patents

Gas turbine

Info

Publication number
JPH11117763A
JPH11117763A JP31759597A JP31759597A JPH11117763A JP H11117763 A JPH11117763 A JP H11117763A JP 31759597 A JP31759597 A JP 31759597A JP 31759597 A JP31759597 A JP 31759597A JP H11117763 A JPH11117763 A JP H11117763A
Authority
JP
Japan
Prior art keywords
intake
air
fuel
hole
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31759597A
Other languages
Japanese (ja)
Inventor
Yoshinobu Murayama
良信 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31759597A priority Critical patent/JPH11117763A/en
Publication of JPH11117763A publication Critical patent/JPH11117763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas turbine with no vibration, in a simple structure and with ease of maintenance and start, as a prime mover for mobile or stationary industrial machinery including an automobile and a generator, supervisor to a reciprocating engine in performance, cost and exhaust component. SOLUTION: An intake air stay 2 in a cover 1 is partitioned from a combustion chamber 5 in a cylinder 4 with a partition wall 3 to prevent explosive pressure from negatively applied on a compression blade. The combustion chamber is formed in an annular shape to encircle an intake air hole 47 so that inflow intake air and injected fuel can be put in contact with an electric heat tap 52 without fail to be ignited and exploded. Explosive gas is swirled and expanded with insulated heat and blown to an axial blade on its whole periphery to turn a shaft 30 and turn the compression blade with an axial current and a final double current in the cylinder. The adjacent blade is reversed to straighten the explosive gas, reverse the blade in the cylinder and compress and straighten intake air. An intake air valve 48 is forcibly opened by the pressure in the intake air stay 2, fuel in a pump room 32 is pushed by a piston 34 with its movement, injected from a jet and put in contact with the electric heat tap together with inflow intake air to be ignited and exploded, the intake air valve is closed with its pressure and fuel is absorbed into the pump room with is movement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は農業機械、建設機械、
自動車、舶用等の移動及び発電機、コンプレッサー、電
熱併給機等定置の産業機械の原動機として現在支配的で
あるレシプロエンジンに替われる高い性能とコスト、燃
料消費率、維持管理費、振動、排気公害等の低い構造簡
単な取り扱い易い小形ガスタービンに関するものであ
る。
The present invention relates to an agricultural machine, a construction machine,
High performance and cost, fuel consumption rate, maintenance and management cost, vibration, exhaust pollution that can be replaced by reciprocating engines, which are now dominant as prime movers for stationary industrial machinery such as automobiles, marine vehicles, and generators, compressors, and cogeneration systems. The present invention relates to a small gas turbine which has a low structure and is easy to handle.

【0002】[0002]

【従来の技術】従来のガスタービンは軸流又はふく流の
圧縮機で空気を燃焼室に圧送し、燃料を噴射して燃焼さ
せ、高圧燃焼ガスを軸流又はふく流のタービンに吹きつ
けて動力を得る。その為次ぎの欠点を持つ。 (イ) 圧縮と燃焼は連続しており、燃焼室のガス圧は
圧縮機にも及び負の仕事となり、熱効率を下げる。 (ロ) 出力側のタービンは高温の燃焼ガスに連続して
曝されるので、羽根が高温となり羽根の強度から燃焼ガ
スの温度を高く出来ず、熱効率が低くなる。 (ハ) 精密な羽根を多数植え付けた従来の軸流タービ
ンでは高価で小形には成り立たない。以上の点でガスタ
ービンは小形では熱効率が低く、これを補う熱交換装置
等でコストが嵩み、かさ張り、従来のレシプロエンジン
に対抗出来なかつた。レシプロエンジンはシリンダ内の
ピストンで閉ざされた空間内の間欠燃焼をする。したが
つて (イ) 圧縮と燃焼が別の行程で行われるので、燃焼ガ
ス圧が圧縮行程に負の作用をおよぼさない。 (ロ) 冷却されたシリンダ内の燃焼で、高い燃焼温度
が使え、高い熱効率が得られる。しかしレシプロエンジ
ンは (イ) シリンダブロック、ピストン、ロッド、クラン
ク軸、動弁機構、冷却装置等、構成部品が複雑で点数も
多く、コストが嵩む。 (ロ) 往復運動から来る振動が避けられない。 (ハ) シリンダとピストン、クランク軸と、ロッド、
動弁機構等高い圧力を受けて摺動する部分が多く、その
潤滑の為潤滑油が必要で管理に手間が掛かる。 (ニ) 冷却する部分が多く、冷却水等の維持管理に手
間が掛かる。
2. Description of the Related Art In a conventional gas turbine, air is pumped into a combustion chamber by an axial or radial compressor, fuel is injected and burned, and high-pressure combustion gas is blown onto an axial or radial turbine. Get power. Therefore, it has the following disadvantages. (A) Compression and combustion are continuous, and the gas pressure in the combustion chamber is also negative for the compressor, reducing thermal efficiency. (B) Since the turbine on the output side is continuously exposed to the high-temperature combustion gas, the temperature of the blades becomes high and the temperature of the combustion gas cannot be increased due to the strength of the blades, resulting in low thermal efficiency. (C) A conventional axial turbine in which a number of precision blades are planted is expensive and cannot be made compact. In view of the above points, the gas turbine is small in size and has low thermal efficiency, and the cost is bulky and bulky due to the heat exchange device or the like that compensates for this, and it cannot be matched with the conventional reciprocating engine. A reciprocating engine performs intermittent combustion in a space closed by a piston in a cylinder. Therefore, (a) Since compression and combustion are performed in different strokes, the combustion gas pressure does not have a negative effect on the compression stroke. (B) High combustion temperature can be used and high thermal efficiency can be obtained by combustion in the cooled cylinder. However, the reciprocating engine has the following problems: (a) the components are complicated, have many points, such as a cylinder block, a piston, a rod, a crankshaft, a valve train, and a cooling device, and the cost is high. (B) Vibration from reciprocation is inevitable. (C) Cylinder and piston, crankshaft and rod,
There are many parts that slide under high pressure, such as a valve operating mechanism, and lubrication oil is required for lubrication, and management is troublesome. (D) There are many parts to be cooled, and it takes time to maintain and manage the cooling water.

【0003】[0003]

【発明が解決しようとする課題】[Problems to be solved by the invention]

(イ) 圧縮と燃焼を仕切つて、別行程の間欠燃焼とす
る。 (ロ) 爆発圧力が圧縮側に及ばぬ様にして、負の仕事
を無くする。 (ハ)異常爆発防止の為空気のみ圧縮し、燃焼室に燃料
を噴射する。 (ニ) 高温ガスが吹きつける衝動羽根と軸流羽根の冷
却。 (ホ) 高温ガスに曝されるケースの冷却。 (ヘ) 点火方法。 (ト) 始動方法。 (チ) 排気タービン過給に依る圧縮比の向上。 (リ) 潤滑油を必要とする摺動部分を少なくする。 (ヌ) 構成部品の点数を少なく且つ簡単にして、製造
に要するエネルギーの消費を最小限にする。大気温暖化
防止の為、今後の原動機は作動中のエネルギー消費を少
なくするだけでなく、その構成部品の製造に要するエネ
ルギーの消費も少なくせねばならない。
(B) Compression and combustion are separated to make intermittent combustion in another process. (B) Eliminate negative work by preventing the explosion pressure from reaching the compression side. (C) Only air is compressed to prevent abnormal explosion, and fuel is injected into the combustion chamber. (D) Cooling of impulse blades and axial flow blades blown by high-temperature gas. (E) Cooling the case exposed to high-temperature gas. (F) Ignition method. (G) Starting method. (H) Improvement of compression ratio due to supercharging of exhaust turbine. (I) Reduce the number of sliding parts that require lubricating oil. (U) The number of components is reduced and simplified to minimize the energy consumption required for manufacturing. To prevent atmospheric warming, future prime movers must not only reduce energy consumption during operation, but also reduce the energy consumption required to manufacture their components.

【0004】[0004]

【課題を解決する為の手段】[Means for solving the problem]

(イ) 圧縮側の吸気溜2と燃焼側の燃焼室5を隔壁3
で仕切る。 (ロ) 隔壁3に設けた吸気孔47を吸気弁48で塞
ぐ。 (ハ) 吸気圧に依り吸気弁48が開く時、ピストン3
4に押された燃料が逆止弁46を押し開いてキャップ4
9に設けた数個の燃料噴孔50から燃焼室5内に噴射さ
れ、同時に吸気孔47から吸気が流入する。 (ニ) 燃焼室5を隔壁3とシリンダー4に囲まれた環
状とし、吸気孔47を囲んで始まり、一周して吸気孔4
7の手前で終わり、流入した吸気と噴射された燃料が確
実に電熱栓52の赤熱部に流れ点火爆発させる。 (ホ) 爆発圧力で吸気弁48は閉じ、その圧力は圧縮
羽根には及ばない。 (ヘ) 吸気弁48が閉じる時、ポンプ室32内に逆止
弁44を押開いて燃料が吸いこまれる。 (ト) 燃料供給孔43から吸いこまれる燃料はばね4
1で押された針弁40をレバー37で操作して増減停止
される。 (チ) 針弁40の軸芯に空気孔42を設け、調節ねじ
38で燃料に混じる空気量を調節する。噴射燃料の量と
ポンプ室32の容量の差を空気を混ぜて調整する。又空
気を混ぜると噴射時の燃料の霧化が良くなる。 (リ) 隔壁3と円筒10と14及び朝顔56の端は気
体の流れに沿った斜の隙間として、ガス漏れを最小限に
する。 (ヌ) 点火爆発した燃焼ガスは片方が閉ざされた環状
の燃焼室5内で一方向に旋回しつつ断熱膨張し、シリン
ダー4と円筒9と14の間を流れ、全周で軸駆動軸流羽
根8を回し、円筒9内の軸流圧縮羽根10を回し、吸気
を圧縮し、中心のボス11のキー12を介して軸30を
回す。 (ル) 軸駆動軸流羽根8は円筒内の軸流圧縮羽根10
で冷却され、且つ間欠燃焼で燃焼温度が高くても平均ガ
ス温度は低く、軸駆動軸流羽根8の温度は強度を失わな
い範囲に納まる。 (ヲ) 軸駆動軸流羽根8を通過した燃焼ガスは従来の
ガスタービンでは固定案内羽根で整流されるが、本発明
では逆転軸流羽根13が整流する。しかしベアリング1
7で軸30に回転自在に支承されるので、整流の抵抗で
逆転し、円筒14内の逆転圧縮羽根15を回し、吸気を
圧縮する。軸30に負荷が掛かり、軸駆動軸流羽根8の
回転が下がると、逆転軸流羽根13の回転が増し、逆転
圧縮羽根15の吸気圧縮が増し、出力が増す。排気過給
である。 (ワ) 軸駆動軸流羽根8と逆転軸流羽根13の対は重
ねる程出力が増す。 (カ) 始動は空気タンク26に圧入された空気をノブ
18を引いて針弁22を開き、空気を軸駆動軸流羽根8
に吹きつけ、回転させる。フライホイール29等の慣性
力で暫く回転し、その間にマグネット23とコイル24
を巻いた鉄心25で発電された電気で電熱栓52の先端
が赤熱し、吸気の圧力上昇で吸気弁48が開き、噴射さ
れた燃料と吸気が赤熱部に触れ、点火爆発し始動する。 (ヨ) 始動後は高圧の燃焼ガスが空気タンク26に圧
入し蓄えられ、次ぎの始動で使われる。空気の圧入は最
初だけである。 (タ) シリンダー4には冷却ひれ6を設け、カバー5
8で覆い、朝顔56からの排気ガスの噴出に空気が吸い
だされ冷却される。 (レ) 軸30をカバー1と朝顔56に回転自在に支承
する軸受31と54及び逆転圧縮羽根15を軸30に回
転自在に支承する軸受17はいずれもグリス密封とし、
潤滑油の使用は全く無い。軸受の周りは吸気圧縮でグリ
スが溶ける温度にはならない。 (ソ) 構成部品は点数も少なくシンプルで、大部分が
アルミダイキャストか精密鋳鉄で出来、製造に要するエ
ネルギー量は同出力の従来のガスタービンやレシプロエ
ンジンより少ない。
(B) The compression side intake reservoir 2 and the combustion side combustion chamber 5 are partitioned by a partition wall 3.
Partition with. (B) The intake hole 47 provided in the partition 3 is closed with the intake valve 48. (C) When the intake valve 48 opens due to the intake pressure, the piston 3
4 pushes the check valve 46 open and the cap 4
The fuel is injected into the combustion chamber 5 from several fuel injection holes 50 provided in the nozzle 9, and at the same time, intake air flows from the intake holes 47. (D) The combustion chamber 5 is formed into an annular shape surrounded by the partition wall 3 and the cylinder 4, and starts around the intake hole 47, goes around once, and rotates around the intake hole 4.
Ending just before 7, the inflow air and the injected fuel surely flow into the glowing portion of the electric hot plug 52, causing ignition explosion. (E) The intake valve 48 is closed by the explosion pressure, and the pressure does not reach the compression blade. (F) When the intake valve 48 is closed, the check valve 44 is pushed and opened into the pump chamber 32, and fuel is sucked. (G) The fuel sucked from the fuel supply hole 43 is the spring 4
The needle valve 40 pushed by 1 is operated by the lever 37 to be increased / decreased and stopped. (H) An air hole 42 is provided in the shaft of the needle valve 40, and the amount of air mixed with the fuel is adjusted by the adjusting screw 38. The difference between the amount of injected fuel and the capacity of the pump chamber 32 is adjusted by mixing air. Also, mixing air improves the atomization of fuel during injection. (I) The end of the partition wall 3, the cylinders 10 and 14, and the end of the morning glory 56 are inclined gaps along the gas flow to minimize gas leakage. (G) The ignited and exploded combustion gas adiabatically expands while rotating in one direction in the closed annular combustion chamber 5, flows between the cylinder 4 and the cylinders 9 and 14, and has a shaft driving axial flow all around. The blade 8 is turned, the axial compression blade 10 in the cylinder 9 is turned to compress the intake air, and the shaft 30 is turned via the key 12 of the central boss 11. (L) The shaft drive axial flow blade 8 is an axial flow compression blade 10 in a cylinder.
Even if the combustion temperature is high due to intermittent combustion, the average gas temperature is low, and the temperature of the shaft drive axial flow blade 8 falls within a range where the strength is not lost. (ヲ) The combustion gas that has passed through the shaft drive axial flow blades 8 is rectified by the fixed guide blades in the conventional gas turbine, but the reverse axial flow blades 13 are rectified in the present invention. But bearing 1
Since it is rotatably supported on the shaft 30 at 7, the rotation is reversed by the rectification resistance, and the reverse compression blade 15 in the cylinder 14 is turned to compress the intake air. When a load is applied to the shaft 30 and the rotation of the shaft drive axial flow blade 8 decreases, the rotation of the reverse axial flow blade 13 increases, the intake compression of the reverse compression blade 15 increases, and the output increases. Exhaust supercharging. (W) The output increases as the pair of the shaft drive axial flow blade 8 and the reverse rotation axial flow blade 13 overlaps. (F) At the start, the air pressurized into the air tank 26 is pulled by the knob 18 to open the needle valve 22 and the air is supplied to the axial drive blade 8.
And rotate it. The magnet 23 and the coil 24 are rotated for a while by the inertia force of the flywheel 29 and the like.
The tip of the electric hot-plug 52 is red-heated by the electricity generated by the iron core 25 wound, and the intake valve 48 is opened by a rise in the intake pressure, so that the injected fuel and the intake touch the red-hot portion, ignite and explode to start. (G) After the start, the high-pressure combustion gas is press-fitted into the air tank 26 and stored, and is used in the next start. Air injection is only the first. (T) A cooling fin 6 is provided on the cylinder 4 and a cover 5 is provided.
8, air is sucked out by the emission of exhaust gas from the morning glory 56 and cooled. (D) The bearings 31 and 54 for rotatably supporting the shaft 30 on the cover 1 and the bosh 56 and the bearing 17 for rotatably supporting the reverse compression blade 15 on the shaft 30 are all sealed with grease.
There is no use of lubricating oil. The temperature around the bearing does not reach the temperature at which grease melts due to intake compression. (S) The components are simple with few points and are mostly made of aluminum die cast or precision cast iron, and require less energy than conventional gas turbines and reciprocating engines with the same output.

【0005】[0005]

【作用】本発明の作用を述べる。 (イ) ノブ18を引くと、空気タンク26内の圧縮空
気が軸駆動軸流羽根8に吹きつけ、軸30を回す。空気
圧力が不足の時は、空気圧入孔19から空気ポンプで空
気を圧入し圧力を補う。軸30はフライホイール29や
キー止めされた各羽根車の慣性で暫く回り続ける。 (ロ) 軸流圧縮羽根10やふく流圧縮羽根7の回転
で、吸気溜2の圧力が上り吸気弁48が押開かれ、燃焼
室5に吸気が流入する。 (ハ) 吸気弁48が開く時、ポンプ室32内の燃料が
ピストン34で押され横孔36から弁軸の芯を通る細孔
35を通って、逆止弁46を押開き、キャップ49の燃
料噴孔50から燃焼室5に噴射される。 (ニ) 燃焼室5は吸気孔47を囲んで始まり、隔壁3
とシリンダー4に囲まれた環状をなし一周して吸気孔4
7の手前で終わるので、流入吸気と噴射燃料は一方向に
流れ、すぐ川下に突きでた電熱栓52の赤熱部に触れ点
火爆発する。 (ホ) 爆発した燃焼ガスの圧力に押され、吸気弁48
は閉じ、ガス圧はふく流圧縮羽根7や軸流圧縮羽根10
には及ばない。 (ヘ) 吸気弁48が閉じる時、ポンプ室32に燃料が
ピストン34の作用で逆止弁44を押開いて吸いこまれ
る。 (ト) 燃料供給孔43からの燃料はばね41で押され
た針弁40をレバー37を操作して増減停止される。 (チ) 針弁40の軸芯の空気孔42から空気が吸いこ
まれ、燃料に混じる。空気量はねじ38で調整される。
この空気で燃料の噴射量とポンプ室32の容量の差を埋
め、又噴射時の燃料の霧化を助ける。 (リ) 点火爆発した燃焼ガスは吸気孔47を囲む壁の
為、環状の燃焼室5を一方向に旋回し、断熱膨張しなが
ら、全周で軸駆動軸流羽根8に吹きつけ、これと軸流圧
縮羽根10と軸30を回す。 (ヌ) 軸駆動軸流羽根8を通過した燃焼ガスは逆転軸
流羽根13の迎え角が逆の為、これで整流されると共
に、これと逆転圧縮羽根15を逆転させ、吸気圧縮と整
流を行う。軸30に負荷がかかり、軸駆動軸流羽根8の
回転が下がると、逆転軸流羽根13と逆転圧縮羽根15
の回転が増し、吸気の圧送が増え出力の低下を防ぐ。こ
の対は図示の例では2段であるが、3段4段とすれば出
力が増し、熱効率が向上する。 (ル) 始動で軸30が回ると、このフランジにねじ止
めされたマグネット23が回り、カバー1にねじ止めさ
れた鉄心25に巻かれたコイル24に発電されコイルの
一端が繋がれた電熱栓52の先端を赤熱させる。赤熱が
不十分な時は空気圧入孔19から空気を圧入補充して再
度ノブ18を引く。 (ヲ) 最後に排気ガスは朝顔56から排出され、隣接
するカバー58で覆はれたシリンダー3の冷却ひれ6の
間から空気を吸いだし冷却する。
The operation of the present invention will be described. (A) When the knob 18 is pulled, the compressed air in the air tank 26 blows on the axial drive blade 8 to rotate the shaft 30. When the air pressure is insufficient, air is injected by an air pump through the air injection hole 19 to supplement the pressure. The shaft 30 continues to rotate for a while due to the inertia of the flywheel 29 and each keyed impeller. (B) With the rotation of the axial compression blades 10 and the fin compression blades 7, the pressure in the intake reservoir 2 rises, the intake valve 48 is pushed open, and the intake air flows into the combustion chamber 5. (C) When the intake valve 48 opens, the fuel in the pump chamber 32 is pushed by the piston 34, passes through the small hole 35 passing through the center of the valve shaft from the lateral hole 36, pushes the check valve 46 open, and opens the cap 49. The fuel is injected from the fuel injection holes 50 into the combustion chamber 5. (D) The combustion chamber 5 starts around the intake hole 47,
And make a circle surrounded by cylinder 4
Since it ends just before 7, the inflowing intake air and the injected fuel flow in one direction, touch the red hot part of the electric hot-plug 52 immediately protruding downstream, and ignite and explode. (E) The intake valve 48 is pushed by the pressure of the explosive combustion gas.
Is closed, and the gas pressure is reduced to the flow compression blade 7 or the axial compression blade 10.
Less than. (F) When the intake valve 48 is closed, fuel is pushed into the pump chamber 32 by the action of the piston 34 to open and close the check valve 44. (G) The fuel from the fuel supply hole 43 is stopped by increasing or decreasing the needle valve 40 pushed by the spring 41 by operating the lever 37. (H) Air is sucked in from the air hole 42 of the shaft of the needle valve 40 and mixes with fuel. The amount of air is adjusted by screws 38.
This air fills the difference between the fuel injection amount and the capacity of the pump chamber 32, and assists in atomizing the fuel during injection. (I) The ignition and explosion of the combustion gas, due to the wall surrounding the intake hole 47, swirls the annular combustion chamber 5 in one direction and blows the shaft drive axial flow blades 8 around the entire circumference while adiabatically expanding. The axial compression blade 10 and the shaft 30 are turned. (V) Since the angle of attack of the reversing axial flow blade 13 is reversed, the combustion gas that has passed through the shaft drive axial flow blade 8 is rectified by this, and the reverse compression blade 15 is rotated in reverse to perform the intake compression and rectification. Do. When a load is applied to the shaft 30 and the rotation of the shaft drive axial flow blade 8 decreases, the reverse axial flow blade 13 and the reverse compression blade 15 are rotated.
The rotation of the pump increases and the pumping of the intake air increases, preventing the output from decreasing. Although this pair has two stages in the illustrated example, three stages and four stages increase the output and improve the thermal efficiency. (L) When the shaft 30 rotates at the time of starting, the magnet 23 screwed to the flange turns, and the electric power is generated by the coil 24 wound around the iron core 25 screwed to the cover 1 and one end of the coil is connected to the electric plug. The tip of 52 is glowed. When the red heat is insufficient, air is replenished by pressurizing air from the air press-in hole 19 and the knob 18 is pulled again. (ヲ) Finally, the exhaust gas is discharged from the morning glory 56, and the air is sucked and cooled from between the cooling fins 6 of the cylinder 3 covered with the adjacent cover 58.

【0006】[0006]

【実施例】【Example】

(イ) 始動時の電熱栓52の赤熱には、電池を使え
ば、コストは下がるが、電池の管理に手間とコストが掛
かる。 (ロ) 始動を電池とセルモーターでするには、軸30
を高速で回す増速装置が必要。電動コンプレッサーで高
圧空気を羽根に吹きつけるのが有利である。 (ハ) 燃料は灯油であるが、軽油やガソリンも使え
る。 (ニ) 動力はフライホイール29と軸30先端の両方
から取り出せる。
(A) If a battery is used for the red heat of the electric hot-plug 52 at the time of starting, the cost is reduced, but the management of the battery requires labor and cost. (B) In order to start with a battery and a cell motor, the shaft 30
Needs a speed-increasing device to rotate at high speed. It is advantageous to blow high-pressure air to the blades with an electric compressor. (C) Fuel is kerosene, but light oil and gasoline can also be used. (D) Power can be taken out from both the flywheel 29 and the tip of the shaft 30.

【0007】[0007]

【発明の効果】【The invention's effect】

(イ) 本発明は吸気溜2と燃焼室5が隔壁3で仕切ら
れ、燃焼室5に流入した吸気と噴射された燃料が電熱栓
52の赤熱部に触れ、点火爆発するとその圧力で吸気弁
48は閉じ、爆発圧力がふく流圧縮羽根7や軸流圧縮羽
根10に及ばぬので、負の仕事は生じず、熱効率が高く
なる。 (ロ) 逆転軸流羽根13で爆発ガスを整流し、逆転圧
縮羽根15を逆転し、吸気を整流圧縮する。従来の固定
案内羽根は整流のみで抵抗になる。 (ハ) 軸30に負荷がかかり回転が下がると、逆転軸
流羽根13と逆転圧縮羽根15の回転が増し、出力の低
下を補う。 (ニ) 吸気弁39が開く時だけ燃料が噴射されるの
で、燃料の無駄が無く、燃料消費率が良くなる。 (ホ) 燃料は空気を混ぜて噴射されるので霧化が良
い。着火は電気火花でなく電熱栓52の赤熱部に依るの
で、灯油、軽油、ガソリンが使える。 (ヘ) 各羽根は円筒で仕切られ外を爆発ガスが流れ内
を吸気が流れるので、内の圧縮羽根が冷却ひれとなつて
外の軸流羽根を冷やすので、燃焼温度を高く出来熱効率
が高くなる。 (ト) 高温ガスに曝されるシリンダー4は冷却ひれ6
を設け、カバー58で覆い、朝顔56から噴出する排気
に空気を吸いださせて冷却する。 (チ) 軸受はすべて吸気内にあるので、グリス密封ベ
アリングを用いるが、グリスは溶けださない。潤滑油は
一切使用しない。 (リ) 燃焼室5内の点火爆発の圧力で吸気弁48が閉
じ、燃焼ガスは環状の燃焼室5内を旋回しながら断熱膨
張し、全周で軸流羽根に吹きつけ、温度と圧力が下が
り、吸気溜2内の吸気圧が高くなり、吸気弁48を押開
き、点火爆発を繰返す。この間欠燃焼の為、燃焼温度を
充分高く出来、熱効率が高くなる。 (ヌ) 燃焼の間隔はゆつくりだが、軸30は毎分数万
回転で回り、小形で高出力が得られる。 (ル) 回転運動のみからなり、振動が無くコンパクト
で、従来のレシプロエンジンに替わつて安価で維持管理
容易な原動機を提供出来る。
(A) In the present invention, the intake reservoir 2 and the combustion chamber 5 are separated by the partition wall 3, and the intake air flowing into the combustion chamber 5 and the injected fuel come into contact with the red-hot portion of the electric hot-plug 52, and when the ignition explodes, the intake valve is depressed by the pressure. 48 is closed and the explosion pressure does not reach the flow compression blade 7 and the axial compression blade 10, so that no negative work occurs and the thermal efficiency is increased. (B) The explosion gas is rectified by the reverse axial flow blade 13, the reverse compression blade 15 is reversed, and the intake air is rectified and compressed. Conventional fixed guide vanes become resistance only by rectification. (C) When a load is applied to the shaft 30 and the rotation is reduced, the rotation of the reverse axial flow blade 13 and the reverse compression blade 15 is increased to compensate for a decrease in output. (D) Since fuel is injected only when the intake valve 39 is opened, there is no waste of fuel and the fuel consumption rate is improved. (E) Since the fuel is injected after mixing with air, atomization is good. Ignition depends on the red hot part of the electric hot-plug 52 instead of electric spark, so kerosene, light oil and gasoline can be used. (F) Each blade is partitioned by a cylinder and explosive gas flows outside and intake air flows inside, so the internal compression blades become cooling fins and cool the external axial flow blades, so the combustion temperature is high and the heat efficiency is high. Become. (G) The cylinder 4 exposed to the high-temperature gas has a cooling fin 6
Is provided, and is covered with a cover 58, and the air discharged from the morning glory 56 sucks air for cooling. (H) Since all the bearings are in the intake air, grease sealed bearings are used, but the grease does not melt. Do not use any lubricating oil. (I) The intake valve 48 is closed by the pressure of the ignition explosion in the combustion chamber 5, and the combustion gas is adiabatically expanded while swirling in the annular combustion chamber 5, and is blown to the axial flow vanes all around, so that the temperature and pressure are reduced. Then, the intake pressure in the intake reservoir 2 increases, and the intake valve 48 is pushed open to repeat ignition and explosion. Due to this intermittent combustion, the combustion temperature can be made sufficiently high, and the thermal efficiency increases. (G) Although the interval of combustion is slow, the shaft 30 rotates at tens of thousands of revolutions per minute, and a small and high output is obtained. (L) It is possible to provide an inexpensive and easy-to-maintain prime mover that consists of only rotary motion, has no vibration, is compact, and can replace conventional reciprocating engines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の横断面図FIG. 1 is a cross-sectional view of the present invention.

【図2】本発明の正面部分断面図FIG. 2 is a partial front sectional view of the present invention.

【符号の説明】[Explanation of symbols]

1 カバー 21 ばね 41 ば
ね 2 吸気溜 22 針弁 42 空
気孔 3 隔壁 23 マグネット 43 燃
料供給孔 4 シリンダー 24 コイル 44 逆
止弁 5 燃焼室 25 鉄心 45 ば
ね 6 冷却ひれ 26 空気タンク 46 逆
止弁 7 ふく流圧縮羽根 27 通気孔 47 吸
気孔 8 軸駆動軸流羽根 28 ボルト 48 吸
気弁 9 円筒 29 フライホイール 49 キ
ャップ 10 軸流圧縮羽根 30 軸 50
燃料噴孔 11 ボス 31 軸受 51
Oリング 12 キー 32 ポンプ室 52
電熱栓 13 逆転軸流羽根 33 ねじ 53
細隙 14 円筒 34 ピストン 54
軸受 15 逆転圧縮羽根 35 細孔 55
ボス 16 ボス 36 横孔 56
朝顔 17 軸受 37 レバー 57
ねじ 18 ノブ 38 ねじ 58
カバー 19 空気圧入孔 39 横孔 69
ろ材 20 むしゴム 40 針弁
Reference Signs List 1 cover 21 spring 41 spring 2 intake reservoir 22 needle valve 42 air hole 3 partition 23 magnet 43 fuel supply hole 4 cylinder 24 coil 44 check valve 5 combustion chamber 25 iron core 45 spring 6 cooling fin 26 air tank 46 check valve 7 wipe Flow compression blade 27 Vent hole 47 Intake hole 8 Shaft drive shaft flow blade 28 Bolt 48 Intake valve 9 Cylindrical 29 Flywheel 49 Cap 10 Axial flow compression blade 30 Shaft 50
Fuel injection hole 11 Boss 31 Bearing 51
O-ring 12 key 32 pump chamber 52
Electric plug 13 Reverse axial flow blade 33 Screw 53
Slot 14 Cylinder 34 Piston 54
Bearing 15 Reverse compression blade 35 Pores 55
Boss 16 Boss 36 Side hole 56
Morning glory 17 bearing 37 lever 57
Screw 18 Knob 38 Screw 58
Cover 19 Air injection hole 39 Side hole 69
Filter media 20 Male rubber 40 Needle valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(イ) カバー1と隔壁3とシリンダー4
をねじで止め、空気溜2と燃焼室5を形成し、両方を繋
ぐ吸気孔17を燃料噴射機構を持つ吸気弁48で塞ぐ。
又燃焼室5に赤熱部を突きだし、吸気弁48の近くに電
熱栓52をシリンダー4にねじ込む。 (ロ) カバー1とボス55に保持された軸受31と5
4で軸30を回転自在に支持する。 (ハ) 軸30にふく流圧縮羽根7をキー12で固着
し、隔壁3で覆う。 (ニ) 円筒9の外側に軸駆動軸流羽根8を、内側に軸
流圧縮羽根10を設け中心のボス11をキー12で軸3
0に固着する。 (ホ) 円筒14の外側に逆転軸流羽根13を、内側に
逆転圧縮羽根15を設け、中心のボス16を軸受17を
介して軸30に回転自在に取り付ける。 (ヘ) 各羽根の迎え角は円筒9と14の内と外で逆、
隣接する羽根とも逆とし、円筒の外を流れる燃焼ガスに
依り互いに逆に回転し、円筒内では互いに逆に回転して
吸気を圧縮し、最後にふく流圧縮羽根7で吸気溜2に圧
縮される。 (ト) 隔壁3の端、円筒9と14の両端、朝顔56の
端の各隙間53は気体の流れに沿った斜めにする。 (チ) シリンダー4の外側に冷却ひれ6を設け、カバ
ー58で覆い、朝顔56から吹きだす排気ガスに空気が
吸いだされて冷却する。以上のごとく構成されたガスタ
ービン。
1. A cover 1, a partition 3 and a cylinder 4.
Is screwed to form the air reservoir 2 and the combustion chamber 5, and the intake hole 17 connecting both is closed by an intake valve 48 having a fuel injection mechanism.
Further, a red-hot portion is protruded into the combustion chamber 5, and an electric heating plug 52 is screwed into the cylinder 4 near the intake valve 48. (B) Bearings 31 and 5 held by cover 1 and boss 55
At 4, the shaft 30 is rotatably supported. (C) The flow compression blade 7 is fixed to the shaft 30 with the key 12 and covered with the partition wall 3. (D) The axial drive blade 8 is provided outside the cylinder 9 and the axial compression blade 10 is provided inside, and the center boss 11 is mounted on the shaft 3 with the key 12.
Fix to 0. (E) A reverse axial flow blade 13 is provided outside the cylinder 14 and a reverse compression blade 15 is provided inside, and the central boss 16 is rotatably mounted on the shaft 30 via the bearing 17. (F) The angle of attack of each blade is reversed inside and outside of cylinders 9 and 14,
It is also rotated in the opposite direction by the combustion gas flowing outside the cylinder, and rotates in the cylinder in the opposite direction to compress the intake air. Finally, the compressed air is compressed into the intake reservoir 2 by the flow compression blade 7. You. (G) The gaps 53 at the end of the partition wall 3, both ends of the cylinders 9 and 14, and the end of the morning glory 56 are slanted along the gas flow. (H) A cooling fin 6 is provided outside the cylinder 4 and is covered with a cover 58, and air is sucked into exhaust gas blown out from the morning glory 56 to cool it. The gas turbine configured as described above.
【請求項2】(イ) 空気溜2はカバー1と隔壁3に囲
まれた環状で、吸気孔47の手前で始まりそれを囲んで
終わる。それでふく流圧縮羽根7で圧縮旋回させられた
吸気は吸気孔47を取り囲む壁に衝突して更に圧縮され
る。 (ロ) 燃焼室5は隔壁3とシリンダー4に囲まれた環
状で、吸気孔47を囲んで始まりその手前で終わる。そ
れで吸気孔47より流入する吸気と燃料噴射孔50から
噴射された燃料は必ず一方向に旋回し、すぐ川下の電熱
栓52の赤熱部に触れ、確実に点火爆発し、その爆風は
強い旋回流となつて軸駆動軸流羽根8の回転方向に沿つ
て回転力を与える。以上のごとく構成された燃焼装置を
備えたガスタービン。
(2) The air reservoir 2 is an annular shape surrounded by the cover 1 and the partition 3, and starts and ends before the intake hole 47 and ends therewith. Thus, the intake air compressed and swirled by the fins 7 collides with the wall surrounding the intake hole 47 and is further compressed. (B) The combustion chamber 5 is an annular shape surrounded by the partition wall 3 and the cylinder 4, and starts around the intake hole 47 and ends shortly before the intake hole 47. Thus, the intake air flowing from the intake hole 47 and the fuel injected from the fuel injection hole 50 always swirl in one direction, immediately touch the red-hot portion of the electric hot-plug 52 downstream, and reliably ignite and explode. As a result, a rotational force is applied along the rotational direction of the axial drive blade 8. A gas turbine including the combustion device configured as described above.
【請求項3】(イ) 隔壁3に設けた吸気孔47をばね
45で引かれた吸気弁48で塞ぐ。この軸芯に細孔35
を設け、傘側の端はばねで押された逆止弁46で塞ぎ、
数個の燃料噴孔50を持つキャップ49をねじ込む。絹
孔35の他端はピストン34をねじ33で取り付け塞
ぐ。横孔36で細孔35とポンプ室32を繋ぐ。ポンプ
室32はOリング51で油密に保つ。ポンプ室32には
ばね45を納めピストン34を押して、吸気弁48を隔
壁3に密着させる。ポンプ室32にはばねで押された逆
市弁44を介して燃料が供給される。 (ロ) 燃料供給孔43からの燃料はばね41で押され
た針弁40をレバー37で操作して加減停止される。 (ハ) 針弁40の軸芯に空気孔42を設け、燃料には
空気を混ぜる。混ぜる空気量はねじ38で調節する。 (ニ) 吸気圧で吸気弁48が押開かれると、ポンプ室
32内の燃料は逆止弁46を押開いて燃料噴孔50から
燃焼室2に噴出し、流入吸気と共に電熱栓52の赤熱部
に触れて点火爆発する。その圧力で吸気弁48は閉じ、
ピストン32内に逆止弁44を押開いて燃料が入る。以
上のごとく構成された燃料供給噴射装置を備えたガスタ
ービン。
3. An intake hole 47 provided in the partition wall 3 is closed by an intake valve 48 pulled by a spring 45. A fine hole 35
Is provided, and the end on the umbrella side is closed with a check valve 46 pressed by a spring,
A cap 49 having several fuel injection holes 50 is screwed. The other end of the silk hole 35 attaches and closes the piston 34 with the screw 33. The horizontal hole 36 connects the fine hole 35 and the pump chamber 32. The pump chamber 32 is kept oil-tight by an O-ring 51. A spring 45 is placed in the pump chamber 32 and the piston 34 is pushed to bring the intake valve 48 into close contact with the partition wall 3. Fuel is supplied to the pump chamber 32 via a check valve 44 pushed by a spring. (B) The fuel from the fuel supply hole 43 is operated by the lever 37 to operate the needle valve 40 pushed by the spring 41, and is stopped. (C) An air hole 42 is provided in the axis of the needle valve 40, and air is mixed with the fuel. The amount of air to be mixed is adjusted with the screw 38. (D) When the intake valve 48 is pushed and opened by the intake pressure, the fuel in the pump chamber 32 pushes and opens the check valve 46 to squirt from the fuel injection hole 50 into the combustion chamber 2, and the red heat of the electric hot plug 52 together with the inflowing intake air. Touch the part and explode. At that pressure, the intake valve 48 closes,
The check valve 44 is pushed open in the piston 32 and fuel enters. A gas turbine including the fuel supply injection device configured as described above.
【請求項4】(イ) 軸30のフランジにマグネット2
3をフライホイール29とねじ28で共締めする。 (ロ) マグネット23を囲んでコイル24を巻いた鉄
心25をカバー1にねじ止めする。コイル24の一端は
電熱栓52に繋ぎ、他端はカバー1にアースする。回線
には抵抗を挟む。 (ハ) 空気タンク26に空気圧入孔19から空気を圧
入する。空気は虫ゴム20を押開いて圧入される。始動
後は高圧燃焼ガスがばね21で押された針弁22を押開
いて蓄えられ、次ぎの始動に備える。 (ニ) ノブ32を引くと、圧縮空気が通気孔27を通
り、軸駆動軸流羽根8に吹きつけ、軸30を回す。 (ホ) 軸30はフライホイール29や円筒9等の慣性
力で暫く回り、その間に発電された電気で電熱栓52の
先端は赤熱する。 (ヘ) 軸30が回ると軸流圧縮羽根10とふく流圧縮
羽根7の回転で空気溜2の圧力が上がり、吸気弁48が
押開かれ、ピストン34に押され、燃料噴孔50から燃
料が燃焼室5に噴射され、流入吸気と共に電熱栓52の
赤熱部に触れ、点火爆発する。その圧力で吸気弁48は
閉じ、高圧燃焼ガスは閉じられた環状の燃焼室5内で断
熱膨張し、旋回しながら全周で軸駆動軸流羽根8に吹き
つけ、キーで固着された軸30を回す。以上のごとく構
成された始動と点火装置を持つガスタービン。
4. A magnet 2 is mounted on the flange of the shaft 30.
3 is fastened together with the flywheel 29 and the screw 28. (B) The core 25 around which the coil 24 is wound around the magnet 23 is screwed to the cover 1. One end of the coil 24 is connected to the electric heating plug 52, and the other end is grounded to the cover 1. There is a resistor between the lines. (C) Air is injected into the air tank 26 from the air injection hole 19. The air pushes the insect rubber 20 open and is press-fitted. After the start, the high-pressure combustion gas pushes open the needle valve 22 pushed by the spring 21 and is stored to prepare for the next start. (D) When the knob 32 is pulled, the compressed air passes through the vent hole 27 and blows to the shaft driving axial flow blade 8 to rotate the shaft 30. (E) The shaft 30 rotates for a while due to the inertial force of the flywheel 29, the cylinder 9, and the like, and the tip of the electric hot-plug 52 glows red with electricity generated during the rotation. (F) When the shaft 30 rotates, the pressure of the air reservoir 2 increases due to the rotation of the axial compression blades 10 and the fin compression blades 7, the intake valve 48 is pushed open, pushed by the piston 34, and the fuel is injected from the fuel injection hole 50. Is injected into the combustion chamber 5 and touches the red-hot part of the electric hot-plug 52 together with the inflowing intake air, causing an explosion by ignition. At that pressure, the intake valve 48 closes, and the high-pressure combustion gas adiabatically expands in the closed annular combustion chamber 5 and blows all the way around the shaft drive axial flow vanes 8 while turning, and the shaft 30 fixed by a key is rotated. Turning the. A gas turbine having a starting and ignition device configured as described above.
JP31759597A 1997-10-13 1997-10-13 Gas turbine Pending JPH11117763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31759597A JPH11117763A (en) 1997-10-13 1997-10-13 Gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31759597A JPH11117763A (en) 1997-10-13 1997-10-13 Gas turbine

Publications (1)

Publication Number Publication Date
JPH11117763A true JPH11117763A (en) 1999-04-27

Family

ID=18089979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31759597A Pending JPH11117763A (en) 1997-10-13 1997-10-13 Gas turbine

Country Status (1)

Country Link
JP (1) JPH11117763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855296A (en) * 2019-11-28 2021-05-28 余四艳 Efficient and environment-friendly new energy fuel cross-boundary generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855296A (en) * 2019-11-28 2021-05-28 余四艳 Efficient and environment-friendly new energy fuel cross-boundary generator

Similar Documents

Publication Publication Date Title
CA1135061A (en) Constant volume, continuous external combustion rotary engine with piston compressor and expander
US8733317B2 (en) Rotary, internal combustion engine
US9057322B2 (en) Rotary internal combustion engine
US3893300A (en) External combustion engine and engine cycle
US7621253B2 (en) Internal turbine-like toroidal combustion engine
CN101363360A (en) Pneumatic air distributing engine
US4974556A (en) Internal combustion engine
CN204591470U (en) A kind of rotor blade formula piston inner combustion engine
JPH11117763A (en) Gas turbine
JP4951143B1 (en) Three-output shaft type internal combustion engine
US20090320794A1 (en) Novel Internal Combustion Torroidal Engine
JPH1182061A (en) Gas turbine
CN210686064U (en) Pressure storage type engine
JPH11218033A (en) Gas turbine
US5953914A (en) Steam powered head device for producing a high RPM engine
GB2195400A (en) Heat engine incorporating a rotary vane device
CN2413031Y (en) Energy-soving compound diesel and gasoline internal combustion engine
Keller Small wankel engines
KR20090076224A (en) Rotary engine
CN104595022A (en) Internal combustion rotor engine
JP2001152870A (en) Intermittent combustion gas turbine
JP2000192822A (en) Intermittent combustion gas turbine
US2982271A (en) Hot gas producer of the freee-piston type and method for starting and operating the same
CN110953064B (en) Rotary cylinder engine
JP5002721B1 (en) Operating gas generator