JP5002721B1 - Operating gas generator - Google Patents

Operating gas generator Download PDF

Info

Publication number
JP5002721B1
JP5002721B1 JP2011195521A JP2011195521A JP5002721B1 JP 5002721 B1 JP5002721 B1 JP 5002721B1 JP 2011195521 A JP2011195521 A JP 2011195521A JP 2011195521 A JP2011195521 A JP 2011195521A JP 5002721 B1 JP5002721 B1 JP 5002721B1
Authority
JP
Japan
Prior art keywords
working gas
piston
cylinder
ignition
explosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011195521A
Other languages
Japanese (ja)
Other versions
JP2013057279A (en
Inventor
佳行 中田
Original Assignee
佳行 中田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳行 中田 filed Critical 佳行 中田
Priority to JP2011195521A priority Critical patent/JP5002721B1/en
Priority to PCT/JP2012/059273 priority patent/WO2013035367A1/en
Application granted granted Critical
Publication of JP5002721B1 publication Critical patent/JP5002721B1/en
Publication of JP2013057279A publication Critical patent/JP2013057279A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R7/00Intermittent or explosive combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/18Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke the charge flowing upward essentially along cylinder wall adjacent the inlet ports, e.g. by means of deflection rib on piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • F02F7/0019Cylinders and crankshaft not in one plane (deaxation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M2023/008Apparatus for adding secondary air to fuel-air mixture by injecting compressed air directly into the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

【課題】動作気体を動力源とする動力装置に動作気体を供給する動作気体発生装置を提供する。
【解決手段】本発明の動作気体発生装置は、動作気体を動力源とする装置に動作気体を供給するための装置であって、シリンダヘッドと、シリンダとハウジングケースとから成るシリンダブロックと、ピストンとコンロッドと回転ローターとから成るクランク伝達機構で構成され、ピストンとコンロッドと回転ローターの連結位置と、回転ローターの軸芯位置が上死点付近で直線状となる位置から膨張行程側に10〜25度進角した位置で点火し、燃焼室形成(圧縮)工程と、点火工程と、爆発・膨張行程と、掃気工程とを、ピストンが一往復サイクルで完了する構成とした手段を採る。
【選択図】図1
A working gas generator for supplying a working gas to a power device using the working gas as a power source is provided.
A working gas generator of the present invention is a device for supplying a working gas to a device using the working gas as a power source. The working gas generating device comprises a cylinder head, a cylinder block comprising a cylinder and a housing case, and a piston. The connecting position of the piston, the connecting rod, and the rotating rotor, and the position where the axial center of the rotating rotor is linear near the top dead center is 10 to the expansion stroke side. Ignition is performed at a position advanced by 25 degrees, and a means is adopted in which the piston is configured to complete the combustion chamber formation (compression) step, ignition step, explosion / expansion stroke, and scavenging step in one reciprocating cycle.
[Selection] Figure 1

Description

本発明は、動作気体を動力源とする動力装置に動作気体を供給する動作気体発生装置に関し、詳しくは、燃焼室内で燃料と空気を圧縮噴射し、これに所定条件下において混合気に点火し、燃焼による膨張力でピストンを往復運動させることで、該ピストンを作動弁としての機能を果たさせることを目的とした動作気体発生装置に関する。   The present invention relates to a working gas generator that supplies a working gas to a power unit that uses a working gas as a power source, and more specifically, compresses and injects fuel and air in a combustion chamber and ignites the mixture under a predetermined condition. The present invention relates to a working gas generator for reciprocating a piston with an expansion force due to combustion so that the piston functions as an operating valve.

燃料を機関内部で燃焼させ、発生する熱エネルギーを機械的エネルギーに変換して動力を得る内燃機関は、基本サイクルによってオットーサイクル、ディーゼルサイクル、サバティサイクルに分けられ、点火方式によって電気火花点火、圧縮点火、焼玉点火に分けられ、吸排気方式によって4サイクル、2サイクルに分けられ、ガソリンエンジンやディーゼルエンジンの基本的な作動原理として広く認識されている。   An internal combustion engine that burns fuel inside the engine and converts the generated thermal energy into mechanical energy to obtain power is divided into the Otto cycle, diesel cycle, and Sabati cycle by the basic cycle, and electric spark ignition by the ignition system, It is divided into compression ignition and fireball ignition, and is divided into 4 cycles and 2 cycles according to the intake and exhaust systems, and is widely recognized as the basic operating principle of gasoline engines and diesel engines.

上記のガソリンエンジンは、電気による火花を用いて点火する火花点火内燃機関や火花点火エンジンとも呼ばれるもので、主に、吸気・圧縮・点火(膨張)・排気の4つの工程をピストン2往復で終了する4ストロークエンジンと、前記4つの工程(吸排気同時の掃気)を一往復で終了する2ストロークエンジンとがあり、いずれも膨張現象がシリンダ内において、混合気の体積が最小となる付近で短時間に一気に行われ、燃焼容積がほぼ一定であることから定積燃焼サイクル、又はオットーサイクルと呼ばれるものである。その特徴は、排気量あたりの出力が大きく、また高速回転による運転も容易で、振動や騒音が少なく静寂性に優れていることから、主な用途としては乗用車、小型商業車、自動二輪車、小型船外機、小型作業機械などに広く利用されている。   The above gasoline engine is also called a spark ignition internal combustion engine or a spark ignition engine that ignites using electric sparks, and mainly completes the four steps of intake, compression, ignition (expansion), and exhaust in two reciprocations of the piston. There is a 4-stroke engine and a 2-stroke engine that completes the four steps (scavenging of intake and exhaust simultaneously) in one reciprocation, both of which are short in the vicinity of the volume of the air-fuel mixture being minimized in the cylinder. This is called a constant volume combustion cycle or Otto cycle because it is performed at once in time and the combustion volume is almost constant. Its features are large output per displacement, easy operation at high speeds, low noise and vibration, and excellent quietness. Main applications are passenger cars, small commercial vehicles, motorcycles, small size Widely used in outboard motors and small work machines.

他方、ディーゼルエンジンは、ピストンによって空気を圧縮し、シリンダ内の高温空気に燃料を噴射することで自己着火させるもので、ガソリンエンジン同様に、4ストロークエンジンと、2ストロークエンジンがある。但し、ディーゼルエンジンでは、火炎伝播速度がガソリンに比べて遅く、より低速のものがディーゼルサイクル(等圧サイクル)と呼ばれ、高速のものはサバテサイクル(複合サイクル)と呼ばれる。ディーゼルエンジンは内燃機関の中でも熱効率に優れ、低精製の燃料でも使用できて燃費が良い反面、シリンダ内の圧縮比が高くなることでエンジンの機械的強度が要求されることによって部品は重く嵩張り、部品コストも掛かる上、可動部重量部による機械的運動エネルギーの損失も大きくなるもので、さらにガソリンエンジンと比べると重量当たりの出力馬力ならびにトルクが低く、高回転が難しいことから馬力を高くすることができないものである。   On the other hand, a diesel engine compresses air with a piston and injects fuel into high-temperature air in a cylinder so as to self-ignite. Like a gasoline engine, there are a 4-stroke engine and a 2-stroke engine. However, in a diesel engine, the flame propagation speed is slower than that of gasoline, and a lower speed is called a diesel cycle (isobaric cycle), and a higher speed is called a Sabatate cycle (combined cycle). Diesel engines are excellent in thermal efficiency among internal combustion engines, and can be used with low-purity fuels, resulting in good fuel efficiency, but the compression ratio in the cylinder is high, and the mechanical strength of the engine is required, so the parts are heavy and bulky. In addition to the cost of parts, the loss of mechanical kinetic energy due to the weight of moving parts is also large, and the output horsepower and torque per weight are low compared to a gasoline engine, and the high horsepower is increased because high rotation is difficult. It is something that cannot be done.

従来からも、上記のサイクル方式、点火方式、吸気方式の組み合わせや改良によって燃焼効率を上げようとする数多くの内燃機関の提案がなされている。例えば、4サイクルエンジンのシリンダに、下死点時付近で開口する開口部を設け、開口部の外側に連接してロータリー弁などの弁および第二の吸気ポートを設け、燃焼室の上部に点火プラグを設け、下死点時のピストン上面に沿って空気がシリンダ内に流入する様に、第二の吸気ポートを設定し、しかも開口部の掃気工程の開口時に閉弁する様に、前記ロータリー弁などをする。この構成により、負圧のシリンダ内に、ピストン上面に沿って第二の吸気ポートから空気が流入する。すると、シリンダ内の上部に混合気層が、下部に空気層が層状に形成される「内燃機関装置」(特許文献1参照)が提案されている。   Conventionally, many proposals have been made for internal combustion engines that attempt to increase combustion efficiency by combining or improving the above-described cycle system, ignition system, and intake system. For example, a cylinder of a 4-cycle engine is provided with an opening that opens near the bottom dead center, a valve such as a rotary valve and a second intake port are provided outside the opening, and the upper part of the combustion chamber is ignited Provide a plug, set the second intake port so that air flows into the cylinder along the upper surface of the piston at the bottom dead center, and close the rotary valve so that it closes when the opening scavenging process is open Use a valve. With this configuration, air flows into the negative pressure cylinder from the second intake port along the upper surface of the piston. Then, an “internal combustion engine device” (see Patent Document 1) is proposed in which an air-fuel mixture layer is formed in the upper part of the cylinder and an air layer is formed in the lower part.

しかしながら、係る技術は、従来からの内燃機関同様に、圧縮工程における圧縮や吸気工程における吸気はピストンに行わせているものである。また、前述のガソリンエンジンやディーゼルエンジンを始め、上記の「内燃機関装置」(特許文献1)の内燃機関も、シリンダ内の爆発・膨張エネルギーをクランク機構で構成される機械的伝達機構によって回転軸に伝達する構造であるため、エネルギー変換による機械的損失等が大きく、熱効率でいうと、ガソリンで約20%程度、ディ―ゼルでも約30%程度しかない。   However, in the technology, like the conventional internal combustion engine, the piston in the compression process and the intake process in the intake process are performed. In addition, the internal combustion engine of the above-mentioned “internal combustion engine device” (Patent Document 1) such as the above-described gasoline engine and diesel engine also has a rotating shaft driven by a mechanical transmission mechanism configured of a crank mechanism for the explosion / expansion energy in the cylinder. Therefore, the mechanical loss due to energy conversion is large, and in terms of thermal efficiency, it is about 20% for gasoline and only about 30% for diesel.

そこで、本出願人は、従来の内燃機関のようなシリンダ内の爆発・膨張エネルギーをクランク機構を介して出力軸として得るのではなく、混合気体の燃焼に伴う気体の膨張によって発生する気体の流れを、直接の動力源として利用できるのではないかという着想の下、内燃機関装置内で発生する爆発・膨張により発生した気体を、より効率よく排出させるためにはどのようにすればよいかという課題の下、熱効率に優れた「動作気体発生装置」の提案に至ったものである。   Therefore, the present applicant does not obtain the explosion / expansion energy in the cylinder as in the conventional internal combustion engine as an output shaft through the crank mechanism, but the flow of gas generated by the expansion of the gas accompanying the combustion of the mixed gas. Can be used as a direct power source, how can the gas generated by the explosion and expansion generated in the internal combustion engine device be discharged more efficiently? Under the problem, the present inventors have led to the proposal of an “operating gas generator” having excellent thermal efficiency.

特開平7-279670号公報JP-A-7-279670

本発明は、内燃機関装置内で混合気の爆発により発生した気体を、より効率よく発生・排出し、動作気体を動力源とする動力装置に、動作気体を供給する装置を提供しようとするものである。   The present invention intends to provide an apparatus for supplying a working gas to a power apparatus that generates and discharges a gas generated by an explosion of an air-fuel mixture in an internal combustion engine apparatus more efficiently and uses the operating gas as a power source. It is.

本発明は、動作気体を動力源とする装置に動作気体を供給するための装置であって、シリンダヘッドと、シリンダと、ピストンと、コンロッドと、回転ローターと、ハウジングケースとから成り、前記シリンダヘッドには、燃料インジェクターとエアーインジェターと点火プラグとを備え、前記シリンダには、側壁下部の所定位置に動作気体掃気用マニホールドと側壁上部の所定位置に段差部とを備え、前記ピストンは、ピストンヘッドの形状が前記動作気体掃気用マニホールド側に向かって下方に傾斜するなだらかな曲面状に形成され、前記回転ローターは、軸芯が前記動作気体掃気用マニホールドと反対方向に所定距離だけオフセットするように前記ハウジングケースに内設され、前記ピストンと前記コンロッドと前記回転ローターの連結位置と、前記回転ローターの軸芯位置が上死点付近で直線状となる位置から爆発・膨張行程側に10〜25度進角した位置で点火し、燃焼室形成(圧縮)工程と点火工程と爆発・膨張行程と掃気工程とを、前記ピストンが一往復サイクルで完了する構成である手段を採る。   The present invention is an apparatus for supplying an operating gas to an apparatus that uses an operating gas as a power source, and includes a cylinder head, a cylinder, a piston, a connecting rod, a rotating rotor, and a housing case. The head includes a fuel injector, an air injector, and a spark plug, and the cylinder includes a working gas scavenging manifold at a predetermined position at a lower portion of the side wall and a step portion at a predetermined position at the upper portion of the side wall. The shape of the piston head is formed in a gently curved surface inclined downward toward the working gas scavenging manifold, and the rotary rotor is offset by a predetermined distance in the direction opposite to the working gas scavenging manifold. In the housing case, the piston, the connecting rod, and the rotating rotor are connected to each other. Ignition is performed at a position advanced by 10 to 25 degrees from the position where the axial center position of the rotary rotor is linear near the top dead center to the explosion / expansion stroke side, and a combustion chamber forming (compression) process and an ignition process Further, the explosive / expanding stroke and the scavenging process are taken by means of a configuration in which the piston is completed in one reciprocating cycle.

本発明に係る動作気体発生装置によれば、従来のシリンダ内の爆発・膨張エネルギーをクランク機構で構成される機械的伝達機構によって回転軸に伝達する手段ではなく、内燃機関装置内で発生する爆発・膨張による動力気体を直接の動作気体として供給するため、機械的伝達エネルギーへ返還し、これによって送風機等を駆動する装置に比べ、機械的損失が小さく、熱効率の高い動作気体を得ることができるという優れた効果を奏する。   According to the working gas generator of the present invention, the explosion generated in the internal combustion engine device, not the conventional means for transmitting the explosion / expansion energy in the cylinder to the rotating shaft by the mechanical transmission mechanism constituted by the crank mechanism.・ Because the power gas due to expansion is supplied as a direct working gas, it is returned to mechanical transmission energy, which makes it possible to obtain a working gas with less mechanical loss and higher thermal efficiency than a device that drives a blower or the like. There is an excellent effect.

また、本発明に係る動作気体発生装置によれば、タービンブレードに高速・高圧の動作気体を供給して、内燃機関の回転数と無関係に過給できるターボチャージャーを駆動することができるため、排気タービン式ターボチャージャー特有のターボラグのない過給を行わせることができるという優れた効果も奏し得る。   Further, according to the operating gas generator according to the present invention, it is possible to supply a high-speed, high-pressure operating gas to the turbine blade and drive a turbocharger that can be supercharged regardless of the rotational speed of the internal combustion engine. An excellent effect that supercharging without a turbo lag peculiar to a turbine-type turbocharger can be performed can also be achieved.

また、本発明に係る動作気体発生装置によれば、燃焼室の上方に設けられる燃料インジェクターとエアーインジェクターによって電子制御された燃料と圧縮空気を噴射させるため、種々のセンサーを用いて回転数や外気温度、或いは酸素濃度等といった諸条件から繊細な制御をさせて、より燃焼効率を上げることができるという優れた効果を奏し得る。   Further, according to the working gas generator of the present invention, the fuel and the compressed air, which are electronically controlled by the fuel injector and the air injector provided above the combustion chamber, are injected. It is possible to achieve an excellent effect that the combustion efficiency can be further increased by performing delicate control from various conditions such as temperature or oxygen concentration.

また、本発明に係る動作気体発生装置によれば、燃焼室の上方に設けられる燃料インジェクターにより燃料を燃焼室内に噴射するため、ガソリンの他にも、軽油、LPG、天然ガス、水素、メタノールなどの火炎伝播速度の速い燃料であれば、使用することができるという優れた効果を奏すると共に、混合気を圧縮する工程がないので、発火温度の低い燃料を用いてもノッキングという内燃機関特有の問題が生じないという優れた効果を奏し得る。   Further, according to the working gas generator according to the present invention, fuel is injected into the combustion chamber by the fuel injector provided above the combustion chamber, so that in addition to gasoline, light oil, LPG, natural gas, hydrogen, methanol, etc. As long as the fuel has a high flame propagation speed, there is an excellent effect that it can be used, and since there is no process for compressing the air-fuel mixture, there is no problem of knocking even when using fuel with a low ignition temperature. It is possible to achieve an excellent effect that no occurs.

また、本発明に係る動作気体発生装置によれば、シリンダ内の爆発・膨張エネルギーをクランク機構で構成される機械的伝達機構によって回転軸に伝達する構造を持たない構成であるため、往復運動を回転運動に変換するピストンと、コンロッドと、回転ローターがガソリンエンジンと比較して、重量、大きさ、剛性等の条件が高く要求されないことから、部品コスト低減ならびに可動部重量部による機械的運動エネルギーの損失が軽減できるという優れた効果を奏する。   Further, according to the working gas generator of the present invention, since the structure does not have a structure for transmitting the explosion / expansion energy in the cylinder to the rotating shaft by the mechanical transmission mechanism constituted by the crank mechanism, the reciprocating motion is performed. Compared to gasoline engines, pistons, connecting rods, and rotating rotors that convert to rotary motion are not required to have high weight, size, rigidity, and other conditions. There is an excellent effect that the loss of can be reduced.

本発明における動作気体発生装置の全体を示す模式的断面説明図である。(実施例1)It is a typical section explanatory view showing the whole working gas generating device in the present invention. Example 1 本発明における動作気体発生装置の燃焼室形成(圧縮)工程を示す模式的断面説明図である。It is typical sectional explanatory drawing which shows the combustion chamber formation (compression) process of the working gas generator in this invention. 本発明における動作気体発生装置の点火工程を示す模式的断面説明図である。It is typical sectional explanatory drawing which shows the ignition process of the working gas generator in this invention. 本発明における動作気体発生装置の爆発・膨張行程を示す模式的断面説明図である。It is typical sectional explanatory drawing which shows the explosion and expansion | swelling process of the working gas generator in this invention. 本発明における動作気体発生装置の掃気工程を示す模式的断面説明図である。It is typical cross-sectional explanatory drawing which shows the scavenging process of the working gas generator in this invention.

本発明の動作気体発生装置は、動作気体を動力源とする装置に動作気体を供給するための装置であって、シリンダヘッドと、シリンダとハウジングケースとから成るシリンダブロックと、ピストンと、コンロッドと、クランクシャフト(以下、本書面中では回転ローターという)とから成るクランク伝達機構で構成され、ピストンとコンロッドと回転ローターの連結位置と、回転ローターの軸芯位置が上死点付近で直線状となる位置から膨張行程側に10〜25度進角した位置で点火し、燃焼室形成(圧縮)工程と、点火工程と、爆発・膨張行程と、掃気工程とを、ピストンが一往復サイクルで完了する構成としたことを最大の特徴とするもので、以下実施例を図面に基づいて説明する。   A working gas generator of the present invention is a device for supplying a working gas to a device that uses the working gas as a power source, and includes a cylinder block comprising a cylinder head, a cylinder and a housing case, a piston, and a connecting rod. And a crank transmission mechanism composed of a crankshaft (hereinafter referred to as a rotating rotor in this document), and the connecting position of the piston, connecting rod, and rotating rotor, and the axial center position of the rotating rotor are linear in the vicinity of the top dead center. Is ignited at a position advanced by 10 to 25 degrees from the position to the expansion stroke side, and the piston completes the combustion chamber formation (compression) process, ignition process, explosion / expansion process, and scavenging process in one reciprocating cycle In the following, an embodiment will be described with reference to the drawings.

図1は、本発明における動作気体発生装置の全体を示す模式的断面説明図である。
本発明の動作気体発生装置1は、動作気体Kを動力源とする装置に動作気体Kを供給するための装置であって、シリンダヘッド10と、シリンダ20と、ハウジングケース60とから成るシリンダブロックと、ピストン30とコンロッド40と回転ローター50とから成るクランク伝達機構で構成される。
FIG. 1 is a schematic cross-sectional explanatory view showing the entire working gas generator in the present invention.
The working gas generator 1 of the present invention is a device for supplying the working gas K to a device using the working gas K as a power source, and is a cylinder block comprising a cylinder head 10, a cylinder 20, and a housing case 60. And a crank transmission mechanism including a piston 30, a connecting rod 40, and a rotating rotor 50.

シリンダヘッド10の燃焼室11上部には、ガソリン等の燃料Nを霧化状態あるいは気化状態で電子制御噴射する燃料インジェクター1と、コンプレッサー等で圧縮された空気Eを電子制御噴射するエアーインジェクター1と、電気的点火する点火プラグ1とを備えるものである。
The combustion chamber 11 the top of the cylinder head 10, a fuel injector 1 2 for electronically controlling injecting fuel N such as gasoline in the atomized state or vaporized state, air injector 1 for electronically controlling injects compressed air E by a compressor or the like 3, in which and a spark plug 1 4 electrically ignited.

燃料インジェクター1は、内部に電気的に開閉するニードルバルブを備え、そのバルブがプランジャーコアと電磁石とスプリングの働きによって開くと先端の噴射口から燃料噴射ポンプ(高圧フューエルポンプ)から送られてくる高圧の燃料Nをエアーインジェクター1とのタイミングを計って電子制御噴射する筒内燃料噴射装置である。
The fuel injector 1 2 is provided with a needle valve to electrically open and close the interior, the valve is sent from a fuel injection pump (high pressure fuel pump) from the injection port of the tip to open by the action of the plunger core and the electromagnet and a spring It comes a cylinder fuel injection system for electronically controlling injection measure the timing of the high pressure fuel N and air injector 1 3.

エアーインジェクター1は、内部に電気的に開閉するニードルバルブを備え、そのバルブがプランジャーコアと電磁石とスプリングの働きによって開くと先端の噴射口から空気圧縮ポンプ(コンプレッサーポンプ)から送られてくる高圧の空気Eを電子制御によって噴射する筒内空気噴射装置である。 Air injectors 1 3 is provided with a needle valve to electrically open and close the interior, sent from the air compressor pump (compressor pump) from the tip of the injection port when the valve is opened by the action of the plunger core and the electromagnet and a spring This is an in-cylinder air injection device that injects high-pressure air E by electronic control.

シリンダ20は、側壁下部の所定位置に動作気体Kが排出される動作気体掃気用マニホールド21と、段差部22とを備えている。ガソリンや水素のような火炎伝播速度の速い燃料では膨張時間は瞬間的であり、ピストン30はこの瞬間的な圧力変化による下向きの応力を十分に受ければよく、シリンダ20内の密閉状態を確保するストローク量は図面に示すような、わずかな段差部22があればよい。但し、点火のタイミングを10〜25度の範囲で進角θさせているため、実際の上死点においてピストンへッド31が該段差部22に衝突しないように、クリアランスCを確保しておくことはいうまでもない。また、前記動作気体掃気用マニホールド21の内部通路の上部開口位置は、前記したように、混合気の瞬間的な圧力変化による下向きの応力を十分に受け、ピストン30が降下し始めてから開口するような位置関係に配置し、前記動作気体掃気用マニホールド21の内部通路の底部開口位置は、ピストン30が下死点において、ピストンヘッド31のなだらかな傾斜面と、連続して繋がるような通路断面を形成するように位置させる。なお、シリンダー20の冷却に関しては図示していないが、放熱板等のヒートシンクによる空令や水冷式などが考え得る。   The cylinder 20 includes a working gas scavenging manifold 21 from which the working gas K is discharged at a predetermined position below the side wall, and a step portion 22. The fuel having a high flame propagation speed, such as gasoline or hydrogen, has an instantaneous expansion time, and the piston 30 only needs to receive sufficient downward stress due to the instantaneous pressure change to ensure a sealed state in the cylinder 20. The stroke amount only needs to have a slight step portion 22 as shown in the drawing. However, since the ignition timing is advanced in the range of 10 to 25 degrees, the clearance C is secured so that the piston head 31 does not collide with the stepped portion 22 at the actual top dead center. Needless to say. Further, as described above, the upper opening position of the internal passage of the working gas scavenging manifold 21 sufficiently receives the downward stress due to the instantaneous pressure change of the air-fuel mixture, and opens after the piston 30 starts to descend. The position of the bottom opening of the internal passage of the working gas scavenging manifold 21 is such that the piston 30 is continuously connected to the gentle inclined surface of the piston head 31 at the bottom dead center. Position to form. Although the cooling of the cylinder 20 is not shown, it is possible to use an air age or a water-cooling method using a heat sink such as a heat sink.

ピストン30は、ピストンヘッド31の形状が動作気体掃気用マニホールド21側に向かって下方に傾斜するなだらかな曲面状に形成され、コンロッド40と回転ローター50とから成るクランク伝達機構よって往復動することで、燃焼ガスを排出するための、言わば、バルブの役割を果たすものである。なお、本発明に係るピストン30はシリンダー20内で混合気を圧縮するものではないので、コンプレッションリングは不要である。但し、図示はしていないが、オイルリングについては必要に応じて設けることも有効である。   The piston 30 is formed in a gently curved surface in which the shape of the piston head 31 is inclined downward toward the operating gas scavenging manifold 21 side, and is reciprocated by a crank transmission mechanism including a connecting rod 40 and a rotating rotor 50. It serves as a valve for discharging combustion gas. Since the piston 30 according to the present invention does not compress the air-fuel mixture in the cylinder 20, no compression ring is required. However, although not shown, it is also effective to provide an oil ring as necessary.

ピストンヘッド31は、所謂天頂部が山形に盛り上がったコンベックスヘッドの変形した形状を有するもので、動作気体掃気用マニホールド21側に向かって下方に傾斜するなだらかな曲面状に形成し、燃焼室11の爆発・膨張エネルギーをそのなだらかな曲面で動作気体掃気用マニホールド21に導く形状を有するものである。   The piston head 31 has a deformed shape of a convex head in which a so-called zenith is raised in a mountain shape, and is formed in a gentle curved surface inclined downward toward the working gas scavenging manifold 21 side. The explosion / expansion energy is guided to the operating gas scavenging manifold 21 by its gentle curved surface.

コンロッド40は、一端に、ピストン30と連結するためのピストンピン挿入部となるスモールエンド41を有し、他端には、回転ローター50と連結するためのクランクピンにより挿入部となるビックエンド51を設け、ピストン30の往復運動を回転運動に変える役割を果たすものである。   The connecting rod 40 has a small end 41 serving as a piston pin insertion portion for connection to the piston 30 at one end, and a big end 51 serving as an insertion portion by a crank pin for connection to the rotating rotor 50 at the other end. , And serves to change the reciprocating motion of the piston 30 into a rotational motion.

回転ローター50は、一般にクランクシャフトと呼ばれる動力伝達用の軸と同様の構成であるが、クランクシャフトという名称では出力軸という観念が強いため、本書面では前記の通り回転ローター50としている。該回転ローター50は、ハウジングケース60内のジャーナル部にメタルやベアリング等を介して内設され、該ジャーナル部は、軸芯52が動作気体掃気用マニホールド21と反対方向に所定距離Rだけオフセットさせた(従来のクランクシャフトをピストンピンの中心位置から僅かにずらしたオフセットシリンダの様なもの)位置に設けられる。また、コンロッド40との連結する外周円上の反対側に振動を防止するバランスウエイト51を設け、ピストン30やコンロッド40の重量に係る慣性力と相殺させて振動を抑え、直線的な動作をしようとするピストン30を滑らかな回転運動に変えるものである。なお、所定距離Rのオフセット量は、回転ローターの軸芯52からコンロッド40のビッグエンド42の軸芯までの長さをMとしたとき、距離Rは、長さMにsin25を乗じた値となる。   The rotary rotor 50 has a configuration similar to that of a power transmission shaft generally called a crankshaft. However, since the idea of an output shaft is strong in the name of the crankshaft, the rotary rotor 50 is used in this document as described above. The rotary rotor 50 is installed in a journal portion in the housing case 60 via a metal, a bearing, or the like. The journal portion is configured such that the shaft core 52 is offset by a predetermined distance R in the direction opposite to the operating gas scavenging manifold 21. (Such as an offset cylinder in which the conventional crankshaft is slightly shifted from the center position of the piston pin). In addition, a balance weight 51 for preventing vibration is provided on the opposite side of the outer circumferential circle connected to the connecting rod 40, and the vibration is suppressed by offsetting the inertial force related to the weight of the piston 30 and the connecting rod 40 so as to perform a linear operation. The piston 30 is changed to a smooth rotational motion. The offset amount of the predetermined distance R is a value obtained by multiplying the length M by sin 25 when the length from the axis 52 of the rotary rotor to the axis of the big end 42 of the connecting rod 40 is M. Become.

本発明における動作気体発生装置1は、燃焼室11の爆発・膨張エネルギーを流動的な動作エネルギーとして利用しようとするもので、燃焼室11の爆発・膨張エネルギーの一部によって駆動するピストン30とコンロッド40と回転ローター50とから成るクランク伝達機構は、動力伝達機構として利用されるものではなく、動作気体Kを動作気体掃気用マニホールド21に導く作動弁の役割を果たすことを目的として設けられるものである。   The working gas generator 1 according to the present invention intends to use the explosion / expansion energy of the combustion chamber 11 as fluid operation energy, and the piston 30 and the connecting rod driven by a part of the explosion / expansion energy of the combustion chamber 11. The crank transmission mechanism composed of 40 and the rotary rotor 50 is not used as a power transmission mechanism, but is provided for the purpose of acting as an operating valve for guiding the operating gas K to the operating gas scavenging manifold 21. is there.

図2は、本発明における動作気体発生装置の燃焼室形成(圧縮)工程を示す模式的断面説明図である。
燃焼室形成(圧縮)工程は、燃焼室11での爆発・膨張エネルギーの慣性によって回転ローター50が上方に回転し、ピストンピンの位置にあるコンロッド40のスモールエンド41と回転ローター50の外周面に位置するコンロッド40のラージエンド42と回転ローター50の軸芯52が直線状になる位置までピストン30が上死点Hに向かってシリンダ20内が上昇し、シリンダ20の側壁上部の段差部22を塞いで燃焼室11が最小容積に形成したタイミングで、シリンダヘッド10に設けられている燃料インジェクター11とエアーインジェクター12によって燃料Nならびに圧縮空気Eが電子制御されて噴射される工程である。
FIG. 2 is a schematic cross-sectional explanatory view showing a combustion chamber forming (compression) step of the working gas generator in the present invention.
In the combustion chamber formation (compression) step, the rotary rotor 50 rotates upward due to the inertia of the explosion / expansion energy in the combustion chamber 11, and the small end 41 of the connecting rod 40 at the position of the piston pin and the outer peripheral surface of the rotary rotor 50. The piston 30 ascends toward the top dead center H until the large end 42 of the connecting rod 40 and the shaft core 52 of the rotary rotor 50 are in a straight line. This is a process in which the fuel N and the compressed air E are electronically controlled and injected by the fuel injector 11 and the air injector 12 provided in the cylinder head 10 at the timing when the combustion chamber 11 is formed to the minimum volume by closing.

図3は、本発明における動作気体発生装置の点火工程を示す模式的断面説明図である。
点火工程は、燃焼室11が最小容積に形成され、ピストンピンの位置にあるコンロッド40のスモールエンド41と回転ローター50の外周面に位置するコンロッド40のラージエンド42と回転ローター50の軸芯52が直線状となる位置から爆発・膨張行程側に10〜25度進角θした位置でデェストリビューターによって配電される点火プラグ14が電気的点火される工程である。
FIG. 3 is a schematic cross-sectional explanatory view showing an ignition process of the working gas generator in the present invention.
In the ignition process, the combustion chamber 11 is formed to a minimum volume, the small end 41 of the connecting rod 40 at the position of the piston pin, the large end 42 of the connecting rod 40 positioned on the outer peripheral surface of the rotating rotor 50, and the axis 52 of the rotating rotor 50. This is a step in which the spark plug 14 distributed by the distributor is electrically ignited at a position where the advance angle θ is 10 to 25 degrees toward the explosion / expansion stroke side from the position where is straight.

図4は、本発明における動作気体発生装置の爆発・膨張行程を示す模式的断面説明図である。
爆発・膨張行程は、燃焼室11内で爆発・膨張した動作気体Kは、ピストンヘッド10を下死点Lに向かって押し下げ、一部の爆発・膨張エネルギーで回転ローター50を下方に回転させる工程である。
FIG. 4 is a schematic cross-sectional explanatory view showing an explosion / expansion process of the working gas generator in the present invention.
In the explosion / expansion stroke, the working gas K exploding / expanding in the combustion chamber 11 pushes down the piston head 10 toward the bottom dead center L, and rotates the rotary rotor 50 downward with some explosion / expansion energy. It is.

図5は、本発明における動作気体発生装置の掃気工程を示す模式的断面説明図である。
掃気工程は、燃焼室11の爆発・排気を同時に行なうもので燃焼室11の爆発・膨張エネルギーによって発生した動作気体Kは、ピストン30の上端部32の形状が下方に傾斜するなだらかな曲面状に導かれ、動作気体掃気用マニホールド21側に向かって勢いよく掃気され、連結するタービン、ローター、プロペラ、ファン、ブレード、回転子等を回転駆動させる工程である。
FIG. 5 is a schematic cross-sectional explanatory view showing a scavenging process of the working gas generator in the present invention.
In the scavenging process, the combustion chamber 11 is exploded and exhausted at the same time. The working gas K generated by the explosion and expansion energy of the combustion chamber 11 has a gentle curved surface in which the shape of the upper end portion 32 of the piston 30 is inclined downward. This is a process in which the turbine, the rotor, the propeller, the fan, the blade, the rotor, and the like that are guided and rotated scavengingly toward the working gas scavenging manifold 21 side are rotationally driven.

以上で構成される内燃機関の燃焼サイクルを簡単に説明すると、ピストン30とコンロッド40と回転ローター50の連結位置と、回転ローター50の軸芯52位置が上死点H付近で直線状となる位置から膨張行程側に10〜25度進角θした位置で点火し、燃焼室11で発生した爆発・膨張エネルギーが動作気体Kとなって動作気体掃気用マニホールド21から勢いよく掃気される一連の燃焼室形成(圧縮)工程と、点火工程と、爆発・膨張行程と、掃気工程をピストン30が一往復サイクルで完了する構成で形成されるものである。   The combustion cycle of the internal combustion engine configured as described above will be briefly described. The connection position of the piston 30, the connecting rod 40, and the rotary rotor 50, and the position where the axial center 52 position of the rotary rotor 50 is linear near the top dead center H. A series of combustions that are ignited at a position that is advanced by 10 to 25 degrees from the expansion stroke side to the expansion stroke side, and the explosion / expansion energy generated in the combustion chamber 11 becomes the operating gas K and is scavenged from the operating gas scavenging manifold 21 The chamber 30 is formed with a configuration in which the piston 30 completes the reciprocating cycle in the chamber forming (compression) step, the ignition step, the explosion / expansion stroke, and the scavenging step.

本発明の動作気体発生装置は、小型軽量で高出力であることから、風力発電機の駆動源としたり、タービンブレードに高速・高圧の動作気体を供給して内燃機関の回転数と無関係に過給できるターボチャージャー、気球の高温膨張気体の供給装置など、多方面に利用することができるもので、本発明の動作気体発生装置の産業上の利用可能性は大とするものと解する。   Since the operating gas generator of the present invention is small, light, and has high output, it can be used as a drive source for a wind power generator, or supply high-speed and high-pressure operating gas to the turbine blades regardless of the rotational speed of the internal combustion engine. It can be used in various fields, such as a turbocharger that can be supplied, a high-temperature expansion gas supply device for balloons, etc., and it is understood that the industrial applicability of the operating gas generator of the present invention is large.

1 動作気体発生装置
10 シリンダヘッド
11 燃焼室
12 燃料インジェクター
13 エアーインジェクター
14 点火プラグ
20 シリンダ
21 動作気体掃気用マニホールド
22 段差部
30 ピストン
31 ピストンヘッド
40 コンロッド
41 スモールエンド
42 ビックエンド
50 回転ローター
51 バランスウエイト
52 軸芯
60 ハウジングケース
H 上死点
L 下死点
C クリアランス
R 所定距離
K 動作気体
N 燃料
E 圧縮空気
θ 進角
DESCRIPTION OF SYMBOLS 1 Operating gas generator 10 Cylinder head 11 Combustion chamber 12 Fuel injector 13 Air injector 14 Spark plug 20 Cylinder 21 Operating gas scavenging manifold 22 Step part 30 Piston 31 Piston head 40 Connecting rod 41 Small end 42 Big end 50 Rotating rotor 51 Balance weight 52 Shaft core 60 Housing case H Top dead center L Bottom dead center C Clearance R Predetermined distance K Operating gas N Fuel E Compressed air θ Advance angle

Claims (1)

動作気体を動力源とする装置に動作気体を供給するための装置であって、
シリンダヘッドと、
シリンダと、
ピストンと、
コンロッドと、
回転ローターと、
ハウジングケースとから成り、
前記シリンダヘッドには、燃料インジェクターとエアーインジェクターと点火プラグとを備え、
前記シリンダには、側壁下部の所定位置に動作気体掃気用マニホールドと側壁上部の所定位置に段差部とを備え、
前記ピストンは、ピストンヘッドの形状が前記動作気体掃気用マニホールド側に向かって下方に傾斜するなだらかな曲面状に形成され、
前記回転ローターは、軸芯が前記動作気体掃気用マニホールドと反対方向に所定距離だけオフセットするように前記ハウジングケースに内設され、
前記ピストンと前記コンロッドと前記回転ローターの連結位置と、前記回転ローターの軸芯位置が上死点付近で直線状となる位置から爆発・膨張行程側に10〜25度進角した位置で点火し、
燃焼室形成(圧縮)工程と点火工程と爆発・膨張行程と掃気工程とを、前記ピストンが一往復サイクルで完了する構成であることを特徴とする動作気体発生装置。
A device for supplying a working gas to a device using the working gas as a power source,
A cylinder head;
A cylinder,
A piston,
Connecting rod,
A rotating rotor,
Consisting of a housing case,
It said cylinder head is provided with a fuel injector and the air injector ignition plug,
The cylinder includes a working gas scavenging manifold at a predetermined position below the side wall and a stepped portion at a predetermined position above the side wall,
The piston is formed in a gently curved shape in which the shape of the piston head is inclined downward toward the working gas scavenging manifold side,
The rotary rotor is provided in the housing case so that an axis is offset by a predetermined distance in a direction opposite to the operating gas scavenging manifold,
Ignition is performed at a position where the connecting position of the piston, the connecting rod, and the rotary rotor, and the axial center position of the rotary rotor is a straight line near the top dead center, and advanced by 10 to 25 degrees toward the explosion / expansion stroke. ,
A working gas generator having a configuration in which the piston completes a combustion chamber formation (compression) step, an ignition step, an explosion / expansion stroke, and a scavenging step in one reciprocating cycle.
JP2011195521A 2011-09-08 2011-09-08 Operating gas generator Expired - Fee Related JP5002721B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011195521A JP5002721B1 (en) 2011-09-08 2011-09-08 Operating gas generator
PCT/JP2012/059273 WO2013035367A1 (en) 2011-09-08 2012-04-05 Working gas-generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195521A JP5002721B1 (en) 2011-09-08 2011-09-08 Operating gas generator

Publications (2)

Publication Number Publication Date
JP5002721B1 true JP5002721B1 (en) 2012-08-15
JP2013057279A JP2013057279A (en) 2013-03-28

Family

ID=46793996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195521A Expired - Fee Related JP5002721B1 (en) 2011-09-08 2011-09-08 Operating gas generator

Country Status (2)

Country Link
JP (1) JP5002721B1 (en)
WO (1) WO2013035367A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK178404B1 (en) * 2014-07-17 2016-02-08 Man Diesel & Turbo Deutschland Large slow-running turbocharged two-stroke self-igniting internal combustion engine with a starting air system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125108A (en) * 1974-03-20 1975-10-01
JPH0868331A (en) * 1994-08-29 1996-03-12 Mitsubishi Heavy Ind Ltd Combustion device of two-cycle engine
JP2002054457A (en) * 2000-08-10 2002-02-20 Takashi Nanjo Intermittent fuel injection type rotary internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125108A (en) * 1974-03-20 1975-10-01
JPH0868331A (en) * 1994-08-29 1996-03-12 Mitsubishi Heavy Ind Ltd Combustion device of two-cycle engine
JP2002054457A (en) * 2000-08-10 2002-02-20 Takashi Nanjo Intermittent fuel injection type rotary internal combustion engine

Also Published As

Publication number Publication date
JP2013057279A (en) 2013-03-28
WO2013035367A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
EP1819912B1 (en) Reciprocating machine
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
CN113039355A (en) Method for injecting ammonia fuel into a reciprocating engine
US5970924A (en) Arc-piston engine
US7621253B2 (en) Internal turbine-like toroidal combustion engine
CA2620602C (en) Homogeneous charge compression ignition (hcci) vane-piston rotary engine
JP4951143B1 (en) Three-output shaft type internal combustion engine
JP4286419B2 (en) Piston type internal combustion engine
US6021746A (en) arc-piston engine
JP5002721B1 (en) Operating gas generator
US20090320794A1 (en) Novel Internal Combustion Torroidal Engine
JP2013083199A (en) Inverted v-shape substantially-opposing engine of biaxial output type
JP2004530828A (en) Rotary internal combustion engine
US6941903B2 (en) System and method for adding air to an explosion chamber in an engine cylinder
RU118690U1 (en) INTERNAL COMBUSTION ENGINE
Jangalwa et al. Scuderi Split Cycle Engine: A Review
SureshBabu et al. Analysis of a Single Cylinder Combustion Engine Using CFD
KR102066306B1 (en) An internal combustion engine and a method of operating an internal combustion engine
WO2008073082A2 (en) Internal turbine-like toroidal combustion engine
Mao Research Progress of Two-Stroke Internal Combustion
KR101129125B1 (en) Gas mixture compressor
KR100475809B1 (en) Swirl apparatus in cylinder
CN116025464A (en) Rotary piston type rotor engine
KR100514632B1 (en) Structure of Revolution type engine
CN85102435A (en) One-stroke engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees