JP2000192822A - Intermittent combustion gas turbine - Google Patents

Intermittent combustion gas turbine

Info

Publication number
JP2000192822A
JP2000192822A JP10319748A JP31974898A JP2000192822A JP 2000192822 A JP2000192822 A JP 2000192822A JP 10319748 A JP10319748 A JP 10319748A JP 31974898 A JP31974898 A JP 31974898A JP 2000192822 A JP2000192822 A JP 2000192822A
Authority
JP
Japan
Prior art keywords
air
shaft
combustion gas
valve
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10319748A
Other languages
Japanese (ja)
Inventor
Yoshinobu Murayama
良信 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10319748A priority Critical patent/JP2000192822A/en
Publication of JP2000192822A publication Critical patent/JP2000192822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an intermittent combustion gas turbine causing no vibration, having a simple structure, facilitating start, and allowing the use of kerosene, light oil, and gasoline. SOLUTION: This gas turbine is constituted in such a way that several intake holes 63 provided on a bulkhead 6 which shuts off compression and combustion are blocked by a check valve 45 which is opened by compression air pressure and is closed by combustion gas pressure. Air-fuel mixture is sucked and injected by a valve shaft piston 47 on the combustion side due to opening and closing of the valve, is applied to a red heat part of an electric heating plug 43, and is ignited and exploded. Fuel from a fuel nozzle 54 is mixed into air entering from an intake hole 76. A needle valve 56 integral with a piston 73 which is linked to an air intake port 61 through a ventilation hole 55 and moves in a chamber 57 whose pressure is increased and decreased in accordance with an amount of flowing air controls fuel from the fuel nozzle 54 and controls the rotation of a shaft 33. Combustion gas is adiabatically expanded at pressure several times compressed air pressure in an annular combustion chamber 70 closed by the check valve 45, turns, and is blasted against a double flow drive blade 5 at whole periphery to rotate it and then rotate an axial flow blade.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は農業機械、建設機械、
自動車、船舶等の移動用及び発電機、コンプレッサー、
電熱併給機等定置用の産業機械の原動機として、現在支
配的であるレシプロエンジンに替わる性能とコスト、燃
料消費率、維持管理費、振動、排気公害等の低い構造簡
単な取り扱い易い小形ガスタービンに関するものであ
る。
The present invention relates to an agricultural machine, a construction machine,
For moving vehicles, ships, etc. and generators, compressors,
As a prime mover for stationary industrial machines such as electric cogeneration systems, it is a small gas turbine that is easy to handle and has low performance, cost, fuel consumption rate, maintenance and management cost, vibration, exhaust pollution, etc. Things.

【0002】[0002]

【従来の技術】従来のガスタービンは軸流又は吹く流の
圧縮機で空気を燃焼室に圧送し、燃料を噴射して燃焼さ
せ、燃焼ガスを軸流又はふく流のタービンに吹きつけて
動力を得る。その為次ぎの欠点を持つ。 (イ) 圧縮と燃焼は連続しており、圧縮空気と燃焼ガ
スの圧力は同じとなり燃焼圧力を圧縮圧力より高く出来
ない事が熱効率を高く出来ない理由の一つである。図3
参照。 (ロ) 出力側のタービンは高温の燃焼ガスに連続して
曝されるので、羽根が高温となり、羽根の強度から燃焼
ガスの温度を高く出来ず、熱効率を高く出来ない理由の
一つである。 (ハ) 耐熱材料の精密な羽根を多数植え付けた従来の
軸流タービンは複雑高価で小形には成り立たない。 以上の点でガスタービンは小形では熱効率が低く、これ
を補う熱交換装置等でコストが嵩み、かさ張り、従来の
レシプロエンジンに対抗出来なかつた。レシプロエンジ
ンはシリンダ内のピストンと弁で閉ざされた空間内で間
欠燃焼をする。したがつて (イ) 圧縮と燃焼が別の行程で行われるので、燃焼ガ
ス圧力は圧縮された空気圧の数倍となり、その膨張仕事
は大きくなる。 (ロ) 冷却されたシリンダ内の燃焼で、高い燃焼温度
が使え、高い熱効率が得られる。しかしレシプロエンジ
ンは (イ) シリンダブロック、ピストン、コネクティング
ロッド、クランク軸、動弁機構、冷却装置等構成部品が
複雑で点数も多く、コストが嵩む。 (ロ) 往復運動から来る振動が避けられない。 (ハ) シリンダーとピストン、クランク軸とロッドメ
タル、動弁機構等高い圧力を受けて摺動する部分が多
く、機械ロスが多く、潤滑の為潤滑油が必要。 (ニ) 冷却する為、冷却水とラジエータが必要であ
る。 (ホ) 排ガス規制が世界中で年々厳しくなつている。
2. Description of the Related Art In a conventional gas turbine, air is pumped into a combustion chamber by an axial or blowing flow compressor, fuel is injected and burned, and combustion gas is blown to an axial or blowing flow turbine to generate power. Get. Therefore, it has the following disadvantages. (A) Compression and combustion are continuous, and the pressure of the compressed air and the combustion gas are the same, and the inability to raise the combustion pressure above the compression pressure is one of the reasons why the thermal efficiency cannot be increased. FIG.
reference. (B) Since the turbine on the output side is continuously exposed to high-temperature combustion gas, the temperature of the blades becomes high. This is one of the reasons why the temperature of the combustion gas cannot be increased due to the strength of the blades and the thermal efficiency cannot be increased. . (C) A conventional axial turbine in which a large number of precision blades made of a heat-resistant material are planted is complicated and expensive and cannot be made compact. In view of the above points, the gas turbine is small in size and has low thermal efficiency, and the cost is bulky and bulky due to the heat exchange device or the like that compensates for this, and it cannot be matched with the conventional reciprocating engine. A reciprocating engine performs intermittent combustion in a space closed by a piston and a valve in a cylinder. Therefore, (a) Since compression and combustion are performed in different strokes, the combustion gas pressure becomes several times the compressed air pressure, and the expansion work increases. (B) High combustion temperature can be used and high thermal efficiency can be obtained by combustion in the cooled cylinder. However, the reciprocating engine has the following problems: (a) The components such as a cylinder block, a piston, a connecting rod, a crankshaft, a valve operating mechanism, and a cooling device are complicated, have many points, and are expensive. (B) Vibration from reciprocation is inevitable. (C) There are many parts that slide under high pressure, such as cylinders and pistons, crankshafts and rod metals, and valve trains, causing large mechanical losses and requiring lubricating oil for lubrication. (D) Cooling water and radiators are required for cooling. (E) Emission regulations are becoming stricter year after year around the world.

【0003】[0003]

【発明が解決しようとする課題】(イ) 圧縮と燃焼を
仕切つて、別行程の間欠燃焼とする。 (ロ) 爆発圧力が圧縮側に及ばぬ様にして、爆発圧力
を高くする。 (ハ) 異状爆発防止の為、空気のみ圧縮し、燃焼室に
燃料を噴射する。 (ニ) 高温ガスが吹きつけるふく流と軸流の駆動羽根
を空気圧縮側で冷却。 (ホ) 高温ガスに曝されるシリンダの冷却。 (ヘ) 点火方法。 (ト) 始動方法。 (チ) 軸受を高温ガスから遠ざけ、グリス密封ベアリ
ングを使う。 (リ) 摺動部分をなくし、潤滑油を不要とする。 (ヌ) 排ガス規制への対応。 (ル) 構成部品の点数を少なく簡単にして、製造に要
するエネルギーを減らし、コストを下げる。
(A) Compression and combustion are separated to make intermittent combustion in another process. (B) Increase the explosion pressure so that it does not reach the compression side. (C) To prevent abnormal explosion, only air is compressed and fuel is injected into the combustion chamber. (D) The fin and axial flow drive blades sprayed with high-temperature gas are cooled on the air compression side. (E) Cooling cylinders exposed to high-temperature gas. (F) Ignition method. (G) Starting method. (H) Keep bearings away from hot gases and use grease sealed bearings. (I) Eliminates sliding parts and eliminates the need for lubricating oil. (V) Response to exhaust gas regulations. (L) The number of components is reduced and simplified, the energy required for production is reduced, and the cost is reduced.

【0004】[0004]

【課題を解決する為の手段】(イ) 圧縮側の吸気溜3
と燃焼側の燃焼室70を隔壁6で仕切る。 (ロ) 隔壁6に設けた1〜数個の吸気孔63を逆止弁
45で塞ぐ。 (ハ) 吸気圧に依り逆止弁63が開く時、ピストン4
7が吸入された混合気を逆止弁74を押し開いて噴孔4
4から赤熱した電熱栓43に向け噴射され、又吸気孔6
3から吸気が流入する。 (ニ) 燃焼室70は隔壁6とシリンダー10に囲まれ
た環状で、吸気孔63を囲んで始まり、一周して吸気孔
63の手前で終わり、流入した吸気と噴射された燃料が
電熱栓43の赤熱部に触れ、点火爆発する。 (ホ) 爆発圧力で逆止弁45は閉じ、爆発圧力は圧縮
側には及ばない。 (ヘ) 逆止弁45が閉じる時、孔75内に混合気が吸
いこまれる。 (ト) 燃料ノズル54より吸いこまれる燃料は針弁5
6で制御される。 (チ) 針弁56と一体のピストン73がチャンバー5
7内の圧力の増減で摺動する。 (リ) チャンバー57は通気孔55と通気パイプ60
でタービンの空気取入口61に通じる。 (ヌ) 空気取入口61を流れる空気の速度の増減に依
り、チャンバー57の圧力が増減し、針弁56が動い
て、燃料ノズル54からの燃料を制御する。 (ル) 隔壁6の内周と開き円筒4の開き部外周には、
かぎ細隙を設け、熱膨張を逃げて、ガス漏れを最小限に
する。 (ヲ) 点火爆発した燃焼ガスは閉ざされた環状の燃焼
室70内で、一方向に旋回しつつ断熱膨張し、全周でふ
く流駆動羽根5に吹きつけ回転させ、軸流駆動羽根11
を回転させ、逆転軸流羽根16を逆転整流し、軸流駆動
羽根18を回転させ、空気取入口61に案内されて冷却
ひれ14の間から空気を吸いだし、ガス温度を下げて放
出される。 (ワ) ふく流駆動羽根5は背面のふく流圧縮羽根2
で、又軸流駆動羽根11と15及び軸流逆転整流羽根1
6は逸れぞれ一体内周の軸流圧縮羽根12と21及び逆
転圧縮羽根20で冷却され、間欠燃焼と相待つて燃焼温
度を充分高く取る事が出来、熱効率が高くなる。 (カ) 軸受35と37は燃焼ガスから離れて温度は上
がらず、グリス密封ベアリングが使用出来、潤滑油は不
要である。 (ヨ) 軸流駆動羽根11を出た燃焼ガスは迎え角を逆
にした逆転整流羽根16が逆転整流する。ドライベアリ
ング23で回転自在に支承の為、整流抵抗で逆転し、内
周の逆転圧縮羽根20で空気を逆転整流圧縮する。軸3
3の回転が負荷の為下がると、逆転整流羽根16の回転
が増し、逆転整流圧縮羽根20の空気圧縮が増し、軸回
転低下に依る空気圧縮低下を補う。 (タ) 軸流駆動羽根と逆転軸流整流羽根の対を重ねる
程出力が増し、燃料消費率が向上する。 (レ) 始動はノブ64を引き針弁67を開き、空気タ
ンク65に蓄圧された空気をふく流駆動羽根5に吹きつ
け回転させる。フライホイール32等の慣性力で回転し
ている間にマグネット29で鉄心31に巻いたコイル3
0に発電された電気で電熱栓43の先が赤熱し、吸気圧
で逆止弁45が開き、噴射された混合気が赤熱部に触
れ、点火爆発し始動する。 (ソ) 始動後は高圧の燃焼ガスが空気タンク65に圧
入し畜えられ、次ぎの始動で使われる。空気の圧入は最
初と補充だけである。 (ツ) シリンダー10には冷却ひれ14を設け、カバ
ー15で覆い、排気ガスの噴出に空気が吸いだされ冷却
される。 (ネ) 軸33をカバー1に回転自在に支承する軸受3
5と37はグリス密封とし、又逆転整流羽根16を回転
自在に支承するにはドライベアリング23を用ひ、潤滑
油の使用は全く無い。 (ナ) 構成部品は点数も少なく簡単で、大部分がアル
ミダイキャストかプレス成形で出来、製造に要するエネ
ルギー量は同出力の従来のガスタービンやレシプロエン
ジンより少ない。
[Means for Solving the Problems] (A) Compression side intake reservoir 3
And the combustion chamber 70 on the combustion side is partitioned by the partition 6. (B) One to several intake holes 63 provided in the partition 6 are closed with the check valve 45. (C) When the check valve 63 opens due to the intake pressure, the piston 4
7 opens the check valve 74 to open the air-fuel mixture,
4 is injected toward the hot red hot plug 43,
The intake air flows in from No. 3. (D) The combustion chamber 70 has an annular shape surrounded by the partition wall 6 and the cylinder 10, starts around the intake hole 63, makes a round, and ends just before the intake hole 63. Touching the glowing part of, ignite and explode. (E) The check valve 45 is closed by the explosion pressure, and the explosion pressure does not reach the compression side. (F) When the check valve 45 is closed, the air-fuel mixture is sucked into the hole 75. (G) The fuel sucked from the fuel nozzle 54 is the needle valve 5
6 is controlled. (H) The piston 73 integrated with the needle valve 56 is the chamber 5
It slides by the increase and decrease of the pressure in 7. (I) The chamber 57 has a ventilation hole 55 and a ventilation pipe 60.
To the air inlet 61 of the turbine. (V) The pressure in the chamber 57 increases and decreases according to the increase and decrease in the velocity of the air flowing through the air intake 61, and the needle valve 56 moves to control the fuel from the fuel nozzle 54. (R) On the inner periphery of the partition wall 6 and the outer periphery of the open portion of the open cylinder 4,
Keying slots are provided to escape thermal expansion and minimize gas leakage. (ヲ) The ignited and exploded combustion gas is adiabatically expanded while swirling in one direction in the closed annular combustion chamber 70, and is blown and rotated around the entire circumference on the fin drive blade 5 to rotate the axial flow drive blade 11.
Is rotated to reversely rectify the reversing axial flow vanes 16, rotate the axial flow driving vanes 18, and are guided by the air intake 61 to suck air from between the cooling fins 14 and discharge at a reduced gas temperature. . (W) The flow driving blade 5 is the flow compression blade 2 on the back side.
And the axial-flow driving blades 11 and 15 and the axial-flow reverse rectifying blade 1
6 is cooled by the axial compression blades 12 and 21 and the reversing compression blade 20 on the inner circumference, respectively, so that the combustion temperature can be set sufficiently high after waiting for intermittent combustion and the thermal efficiency is increased. (F) The bearings 35 and 37 are separated from the combustion gas and do not rise in temperature, so that grease sealed bearings can be used and no lubricating oil is required. (G) The combustion gas that has flowed out of the axial flow driving blade 11 is reversely rectified by the reverse rectifying blade 16 whose angle of attack is reversed. Since the bearing is rotatably supported by the dry bearing 23, the rotation is reversed by the rectifying resistance, and the air is reversely rectified and compressed by the reverse compression blade 20 on the inner periphery. Axis 3
When the rotation of 3 decreases due to the load, the rotation of the reverse rectifying blade 16 increases, the air compression of the reverse rectifying compression blade 20 increases, and the decrease in air compression due to the lower shaft rotation is compensated. (T) The more the pair of the axial flow driving blade and the reverse axial flow rectifying blade is stacked, the higher the output is, and the higher the fuel consumption is. (D) To start, the knob 64 is pulled, the needle valve 67 is opened, and the air stored in the air tank 65 is blown against the flow drive blade 5 to rotate. Coil 3 wound around iron core 31 by magnet 29 while rotating by inertia force of flywheel 32 or the like
The tip of the electric hot-plug 43 is red-heated by the electricity generated to zero, the check valve 45 is opened by the intake pressure, and the injected air-fuel mixture touches the red-hot part, ignites and explodes to start. (S) After the start, the high-pressure combustion gas is injected into the air tank 65 and can be used for the next start. Air injection is only initial and refilling. (X) A cooling fin 14 is provided on the cylinder 10 and is covered with a cover 15, and air is sucked into the exhaust gas jet to be cooled. (D) Bearing 3 that rotatably supports shaft 33 on cover 1
Grease seals 5 and 37 are used, and a dry bearing 23 is used to rotatably support the reverse rectifying vane 16 without using any lubricating oil. (4) The components are simple and have a small number of components. Most of the components can be made by aluminum die-casting or press molding, and require less energy than conventional gas turbines and reciprocating engines of the same output.

【0005】[0005]

【作用】本発明の作用を述べる。 (イ) ノブ64を引くと、空気タンク65内の圧縮空
気がふく流駆動羽根5に吹きつけ、軸33を回す。空気
圧力が不足の時は、空気孔71から空気ポンプで空気を
圧入し圧力を補う。軸33はフライホイール32やキー
止めされた各羽根車の慣性で暫く回り続け発電し、電熱
栓を赤熱させる。 (ロ) ふく流や軸流の圧縮羽根の回転で、吸気溜3の
圧力が上がり、逆止弁45が押開かれ、燃焼室70に空
気が流入する。 (ハ) 逆止弁45が開く時、孔75内の混合気がピス
トン47で押され吐出孔49を通つて、逆止弁74を押
開き、噴孔44から電熱栓43に向け燃焼室70に噴射
される。 (ニ) 燃焼室70は吸気孔63を囲んで始まり、隔壁
6とシリンダー10に囲まれた環状をなし、一周して吸
気孔63の手前で終わり、流入吸気と噴射燃料は一方向
に流れ、川下に突きでた電熱栓43の赤熱部に触れ点火
爆発する。 (ホ) 燃焼ガスの圧力に押され、逆止弁45は閉じ、
ガス圧は圧縮羽根には及ばない。 (ヘ) 逆止弁45が閉じる時、孔75に混合気がピス
トン47で逆止弁50を押し開いて吸いこまれる。 (ト) 燃料ノズル54からの燃料は針弁56で制御さ
れる。 (チ) 針弁56と一体のピストン73はチャンバー5
7内でばね58に押され動く。軸33の回転が上がり、
空気取入口61を流れる吸気の流速が増すと圧力が下が
り、通気パイプ60と通気孔55を通じてチャンバー5
7内の圧力が下り、ばね58に抗してピストン73が動
き、針弁56が燃料ノズル54からの燃料を制限し、軸
33の回転の上昇を止める。 (リ) 燃焼ガスは吸気孔63を囲む壁の為、環状の燃
焼室70を一方向に旋回し、断熱膨張しつつ全周でふく
流駆動羽根5に吹きつけ、凝れを回し、更に軸流駆動羽
根11を回し、逆転整流羽根16で逆転整流し、軸流駆
動羽根18を回す。 (ヌ) 逆転整流羽根16の迎え角が逆の為、燃焼ガス
はこれで整流されると共に、内周の逆転圧縮羽根20を
逆転させ、吸気の整流と圧縮を行う。軸33に負荷がか
かり回転が下がると、逆転羽根の回転が増し、吸気の圧
送が増え、出力の低下を防ぐ。正転と逆転の軸流羽根の
対を増す程出力が増し、熱効率が向上する。 (ル) 始動で軸33が回ると、マグネット29が回
り、鉄心31に巻かれたコイル30に発電され、コイル
の一端が繋がれた電熱栓43の先を赤熱させる。赤熱が
不充分な時は空気孔71から空気を圧入補充して再度ノ
ブ64を引く。 (ヲ) 最後に燃焼ガスは排出するとき、カバー15で
覆われたシリンダー10の冷却ひれ14の間から空気を
吸いだし冷却する。
The operation of the present invention will be described. (A) When the knob 64 is pulled, the compressed air in the air tank 65 blows against the flow drive blade 5 to rotate the shaft 33. When the air pressure is insufficient, air is injected from the air hole 71 with an air pump to supplement the pressure. The shaft 33 continues to rotate for a while due to the inertia of the flywheel 32 and each of the keyed impellers, and generates electric power to heat the electric hot-plug. (B) The pressure of the intake reservoir 3 rises due to the rotation of the compression blade of the fin flow or the axial flow, the check valve 45 is pushed open, and air flows into the combustion chamber 70. (C) When the check valve 45 is opened, the air-fuel mixture in the hole 75 is pushed by the piston 47 and passes through the discharge hole 49 to push the check valve 74 open. Injected to. (D) The combustion chamber 70 starts around the intake hole 63, forms an annular shape surrounded by the partition wall 6 and the cylinder 10, makes a round and ends before the intake hole 63, and the inflow intake air and the injected fuel flow in one direction. It touches the red hot part of the electric plug 43 protruding downstream and ignites and explodes. (E) Pushed by the pressure of the combustion gas, the check valve 45 closes,
The gas pressure does not reach the compression blade. (F) When the check valve 45 is closed, the air-fuel mixture is sucked into the hole 75 by pushing the check valve 50 open with the piston 47. (G) The fuel from the fuel nozzle 54 is controlled by the needle valve 56. (H) The piston 73 integral with the needle valve 56 is
It is pushed by a spring 58 in 7 and moves. The rotation of the shaft 33 goes up,
When the flow rate of the intake air flowing through the air intake 61 increases, the pressure decreases, and the chamber 5 is formed through the ventilation pipe 60 and the ventilation hole 55.
7, the piston 73 moves against the spring 58, the needle valve 56 restricts the fuel from the fuel nozzle 54, and stops the rotation of the shaft 33 from rising. (I) Since the combustion gas is a wall surrounding the intake hole 63, the combustion gas swirls in the annular combustion chamber 70 in one direction, blows the agitating blade 5 over the entire circumference while adiabatically expanding, turns stiffness, and further rotates the axial flow. The drive blade 11 is turned, the reverse rotation rectification is performed by the reverse rotation rectification blade 16, and the axial flow drive blade 18 is rotated. (V) Since the angle of attack of the reverse rotation rectification blade 16 is opposite, the combustion gas is rectified by this, and the reverse rotation compression blade 20 on the inner circumference is reversely rotated to rectify and compress the intake air. When the load is applied to the shaft 33 and the rotation is reduced, the rotation of the reversing blade is increased, and the pumping of the intake air is increased to prevent the output from lowering. The output increases as the number of pairs of forward and reverse axial flow blades increases, and the thermal efficiency improves. (L) When the shaft 33 rotates at the start, the magnet 29 rotates, and the coil 30 wound around the iron core 31 generates electric power, and the tip of the electric plug 43 to which one end of the coil is connected is glowed red. When the red heat is insufficient, air is refilled by pressurizing air from the air hole 71 and the knob 64 is pulled again. (ヲ) Finally, when the combustion gas is exhausted, air is sucked and cooled from between the cooling fins 14 of the cylinder 10 covered with the cover 15.

【0006】[0006]

【実施例】(イ) 始動時の電熱栓43の赤熱には、電
池も使えるが、電池の管理に手間とコストが掛かる。 (ロ) 始動を電池とセルモーターでする為には、軸3
3を高速で回す増速装置が必要。電動コンプレッサーで
高圧空気を羽根に吹きつけるのが有利である。 (ハ) 燃料は灯油であるが、軽油やガソリンも使え
る。 (ニ) 動力はフライホイール32と軸33先端の両方
から取り出せる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (A) A battery can be used for the red heat of the electric hot-plug 43 at the time of starting, but it takes time and cost to manage the battery. (B) In order to start with battery and cell motor, shaft 3
A speed-increasing device that turns 3 at high speed is required. It is advantageous to blow high-pressure air to the blades with an electric compressor. (C) Fuel is kerosene, but light oil and gasoline can also be used. (D) Power can be taken out from both the flywheel 32 and the shaft 33 tip.

【0007】[0007]

【発明の効果】(イ) 本発明は吸気溜3と燃焼室70
が隔壁6で仕切られ、燃焼室70内の爆発圧力で逆止弁
45は閉じ、爆発圧力の数倍になり、その分仕事量が大
きくなり、熱効率が高くなる。図3参照。 (ロ) 燃焼ガスは先ずふく流駆動羽根5に吹きつけ、
軸流駆動羽根数段に相当する動力を発生するので、全体
の羽根段数を減らす事が出来る。 (ハ) ふく流駆動羽根5を出た燃焼ガスは迎え角が逆
の逆転整流羽根16で整流され、整流抵抗で逆転し、内
周の逆転圧縮羽根20を逆転し、吸気を整流圧縮し、軸
33に負荷が掛かり回転が下がると、逆転整流羽根16
と逆転圧縮羽根20の回転が増し、出力の低下を補う。 (ニ) 逆止弁45が開く時だけ混合気が噴射されるの
で、燃料の無駄が無く燃料消費率が良くなる。 (ホ) 燃料は空気を混ぜて噴射されるので霧化が良
い。着火は電気火花でなく電熱栓43の赤熱に依るので
灯油、軽油、ガソリンが使える。 (ヘ) 各軸流羽根はリング13、17、19で仕切ら
れ、外を燃焼ガスが流れ、内を吸気が流れる。羽根は一
枚の板で出来ているので、内の圧縮羽根が外の軸流羽根
を冷やすので、燃焼温度を高く出来、熱効率が高くな
る。 (ト) 高温ガスに曝されるシリンダー10は冷却ひれ
14を設け、カバー15で覆い噴出する燃焼ガスに空気
を吸いださせ冷却する。 (チ) 軸受35、37はグリス密封ベアリングを用
う。 (リ) 爆発圧力で逆止弁45が閉じ、燃焼ガスは閉じ
られた環状の燃焼室70内を旋回し、断熱膨張し、全周
でふく流駆動羽根5に吹きつけ、その後軸流羽根に吹き
つけ、温度と圧力が下がり、吸気溜3内の圧力が高くな
り、逆上弁45を押開き、点火爆発を繰り返す。この間
欠燃焼の為、燃焼温度と圧力を高く出来熱効率画高くな
り、燃焼の間隔はゆっくりだが、軸33は毎分数万回転
し、小形高出力となる。 (ヌ) 回転運動のみからなり、振動が無くコンパクト
で、電池や潤滑油や冷却水が不用で、維持管理が簡単。
又構成部品も簡単で少なくコストが安い。
(A) The present invention relates to an intake reservoir 3 and a combustion chamber 70.
Are separated by the partition wall 6, the check valve 45 is closed by the explosion pressure in the combustion chamber 70, the pressure becomes several times the explosion pressure, the work amount is increased by that amount, and the thermal efficiency is increased. See FIG. (B) The combustion gas is first blown to the fin-driven blade 5
Since power corresponding to several stages of axial flow driving blades is generated, the total number of blades can be reduced. (C) The combustion gas that has flowed out of the flow drive blade 5 is rectified by the reverse rectifying blade 16 having the opposite angle of attack, is reversed by the rectifying resistance, reverses the reverse compression blade 20 on the inner circumference, and rectifies and compresses the intake air. When a load is applied to the shaft 33 and the rotation is reduced, the reverse rectifying blade 16 is rotated.
As a result, the rotation of the reverse compression blade 20 increases to compensate for a decrease in output. (D) Since the air-fuel mixture is injected only when the check valve 45 is opened, there is no waste of fuel and the fuel consumption rate is improved. (E) Since the fuel is injected after mixing with air, atomization is good. Ignition depends on the red heat of the electric hot-plug 43 instead of electric spark, so kerosene, light oil and gasoline can be used. (F) Each axial flow blade is partitioned by rings 13, 17, and 19, and the combustion gas flows outside and the intake air flows inside. Since the blades are made of a single plate, the inner compression blades cool the outer axial flow blades, so that the combustion temperature can be increased and the thermal efficiency can be increased. (G) The cylinder 10 exposed to the high-temperature gas is provided with a cooling fin 14, which is covered with a cover 15 and sucks air into the jetting combustion gas to cool it. (H) The bearings 35 and 37 use grease sealed bearings. (I) The check valve 45 is closed by the explosion pressure, and the combustion gas swirls in the closed annular combustion chamber 70, adiabatically expands, and is blown to the fin-driven blade 5 all around, and then to the axial-flow blade. Spraying, the temperature and the pressure decrease, the pressure in the intake reservoir 3 increases, the push-up valve 45 is opened and the ignition explosion is repeated. Because of this intermittent combustion, the combustion temperature and pressure can be increased to increase the thermal efficiency, and the combustion interval is slow, but the shaft 33 rotates tens of thousands of revolutions per minute, resulting in a small high output. (U) Consisting of only rotary motion, compact with no vibration, no batteries, lubricating oil or cooling water, and easy maintenance.
Also, the components are simple and small, and the cost is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の横断面図FIG. 1 is a cross-sectional view of the present invention.

【図2】本発明の正面部分断面図FIG. 2 is a partial front sectional view of the present invention.

【図3】本発明のP V線図FIG. 3 is a PV diagram of the present invention.

【符号の説明】[Explanation of symbols]

1 カバー 21 軸流圧縮羽根 41
ばね止め座金 2 ふく流圧縮羽根 22 ボス 42
弁ばね 3 吸気溜 23 ドライベアリング 43
電熱栓 4 開き円筒 24 ディスタンスカラー44
噴孔 5 ふく流駆動羽根 25 ボス 45
逆止弁 6 隔壁 26 キー 46
ばね 7 キー 27 テーパーカラー 47
ピストン 8 ボス 28 ナット 48
逆止弁 9 支柱 29 マグネット 49
吐出弁 10 シリンダー 30 コイル 50
逆止弁 11 軸流駆動羽根 31 鉄心 51
燃料供給金具 12 軸流圧縮羽根 32 フライホイール 52
逆止弁 13 リング 33 軸 53
ばね 14 冷却ひれ 34 ビス 54
燃料ノズル 15 カウリング 35 ベアリング 55
通気孔 16 逆転整流羽根 36 止め輪 56
針弁 17 リング 37 ベアリング 57
チャンバー 18 軸流駆動羽根 38 キャップ 58
ばね 19 リング 39 弁軸 59
針弁 20 逆転圧縮羽根 40 テーパー駒 60
通気パイプ 61 空気取入口 71 空気孔 62 針弁レバー 72 逆止弁 63 吸気孔 73 ピストン 64 ノブ 74 逆止弁 65 空気タンク 75 孔 66 ばね 76 吸入孔 67 針弁 68 細孔 69 通気孔 70 燃焼室
1 cover 21 axial flow compression blade 41
Spring stopper washer 2 Flow compression blade 22 Boss 42
Valve spring 3 Intake reservoir 23 Dry bearing 43
Electric heat plug 4 Open cylinder 24 Distance collar 44
Injection hole 5 Rinse drive blade 25 Boss 45
Check valve 6 Partition wall 26 Key 46
Spring 7 key 27 Taper collar 47
Piston 8 Boss 28 Nut 48
Check valve 9 Prop 29 Magnet 49
Discharge valve 10 Cylinder 30 Coil 50
Check valve 11 Axial drive blade 31 Iron core 51
Fuel supply bracket 12 Axial compression blade 32 Flywheel 52
Check valve 13 Ring 33 Shaft 53
Spring 14 Cooling fin 34 Screw 54
Fuel nozzle 15 Cowling 35 Bearing 55
Vent hole 16 Reverse rectifying vane 36 Retaining ring 56
Needle valve 17 Ring 37 Bearing 57
Chamber 18 Axial drive blade 38 Cap 58
Spring 19 Ring 39 Valve stem 59
Needle valve 20 Reverse compression blade 40 Taper piece 60
Ventilation pipe 61 Air intake 71 Air hole 62 Needle valve lever 72 Check valve 63 Intake hole 73 Piston 64 Knob 74 Check valve 65 Air tank 75 Hole 66 Spring 76 Suction hole 67 Needle valve 68 Pores 69 Vent hole 70 Combustion chamber

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年12月11日(1998.12.
11)
[Submission date] December 11, 1998 (1998.12.
11)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(イ)ガスタービンの空気圧縮側と燃焼側
との間を隔壁6で仕切る。 (ロ) 隔壁6に1〜数個の吸気孔63を設け、それを
逆止弁45で塞ぐ。 (ハ) 逆止弁45の吸気側の弁軸39をばね42で引
く。燃焼側の弁軸をピストン47として燃焼室70の壁
に設けた孔75に挿入する。 (ニ) ピストン47の軸芯の孔に逆止弁軸48を挿入
し、ばね46で押し、先端の逆止弁50で吸入孔76を
塞ぐ。 (ホ) 吸入孔76に燃料ノズル54を突出させる。 (ヘ) 針弁56を燃料ノズル54に相対して設ける。 (ト) 針弁56に一体のピストン73をチャンバー5
7内を摺動させ、ばね58で押す。 (チ) チャンバー57を通気孔55と通気パイプ60
でタービンの空気取入口61とつなぐ。 (リ) 孔75の先端から斜めに吐出孔49を設け、逆
止弁74で塞ぐ。逆止弁74の後端は噴孔44を形成
し、電熱栓の赤熱部43の方向を向く (ヌ) チャンバー57に通じる孔を針弁59でねじ止
めで塞ぎ、レバー62で針弁59を開閉する。 以上のように構成された燃料噴射と回転制御の構造を持
つ間欠燃焼ガスタービン
(1) A partition 6 partitions a gas turbine between an air compression side and a combustion side. (B) One or several intake holes 63 are provided in the partition wall 6 and closed with the check valve 45. (C) The valve shaft 39 on the intake side of the check valve 45 is pulled by the spring 42. The combustion-side valve shaft is inserted as a piston 47 into a hole 75 provided in the wall of the combustion chamber 70. (D) The check valve shaft 48 is inserted into the hole of the shaft of the piston 47, pressed by the spring 46, and the suction valve 76 is closed by the check valve 50 at the tip. (E) The fuel nozzle 54 is protruded from the suction hole 76. (F) The needle valve 56 is provided to face the fuel nozzle 54. (G) The piston 73 integral with the needle valve 56 is placed in the chamber 5
7, and is pushed by a spring 58. (H) The chamber 57 is provided with the ventilation hole 55 and the ventilation pipe 60.
To connect to the air inlet 61 of the turbine. (I) A discharge hole 49 is provided diagonally from the tip of the hole 75 and closed by a check valve 74. The rear end of the check valve 74 forms the injection hole 44 and faces the direction of the glowing portion 43 of the electric hot-plug. The hole leading to the chamber 57 is closed with a needle valve 59 with a screw and the lever 62 is used to close the needle valve 59. Open and close. Intermittent combustion gas turbine with fuel injection and rotation control structure configured as above
【請求項2】(イ) カバー1に保持されたベアリング
35と37で軸33を回転自在に保持し、ベアリング3
5と37を2個の止輪36で抜け止めする。 (ロ) ベアリング37の先にふく流タービンのボス8
をキー7で軸33に固定する。 (ハ) 逆転整流タービンのボス22をドライベアリン
グ23を介してデイスタンスカラー24上に回転自在に
保持する。 (ニ) 軸流タービンのボス25をキー26を介して軸
33に固定する。 (ホ) テーパーカラー27を介してナット28で締め
つける。 以上のごとく構成された軸の支持及びふく流、軸流、逆
転整流装置装着の間欠燃焼ガスタービン。
(2) The shaft 33 is rotatably held by bearings 35 and 37 held on the cover 1,
5 and 37 are stopped with two retaining rings 36. (B) The boss 8 of the flow turbine that flows past the bearing 37
Is fixed to the shaft 33 with the key 7. (C) The boss 22 of the reverse commutation turbine is rotatably held on the distance collar 24 via the dry bearing 23. (D) The boss 25 of the axial flow turbine is fixed to the shaft 33 via the key 26. (E) Tighten with the nut 28 via the taper collar 27. The intermittent combustion gas turbine equipped with the shaft support, the fin flow, the axial flow, and the reverse rectification device configured as described above.
【請求項3】(イ) 1枚の板金をプレス成形して、外
周を軸流駆動羽根11、内周を軸流圧縮羽根12とす
る。燃焼ガスと空気を仕分けるリング13を介してふく
流タービンの開き円筒4にねじで締めつける。 (ロ) 1枚の板金をプレス成形して、外周を迎え角を
逆にした逆転整流羽根16、内周を迎え角を逆にした逆
転整流圧縮羽根20とする。燃焼ガスと空気を仕分ける
リング17を両側からリベットで締めつける。中心部に
ボス22を両側からリベットで締めつける。ドライベア
リング23を介して軸33に差し込んだデスタンスカラ
ー24に回転自在に保持する。燃焼ガスを逆転整流し、
その駆動力で内周で空気を逆転整流圧縮する。 (ハ) 1枚の板金をプレス成形して、外周を軸流駆動
羽根18、内周を軸流圧縮羽根21とする。燃焼ガスと
空気を仕分けるリング19を両側からリベットで締めつ
ける。中心部はボス25を両側からリベットで締付け
る。ボス25をキー26で軸33に固定する。テーパー
カラー27を介してナット28で軸33に締めつける。 (ニ) ロとハの組み合わせを追加する程出力は増し、
燃料消費率は向上する。 以上のように構成された軸流、逆転整流軸流構造を持つ
間欠燃焼ガスタービン。
(3) One sheet metal is press-formed to form an axial drive blade 11 on the outer periphery and an axial compression blade 12 on the inner periphery. It is screwed into the open cylinder 4 of the fin turbine through a ring 13 for separating the combustion gas and air. (B) One sheet metal is press-formed to form a reverse rectifying vane 16 whose outer periphery has an opposite angle of attack and a reverse rectifying compressor blade 20 whose inner periphery has an opposite angle of attack. The ring 17 for separating the combustion gas and the air is riveted from both sides. The boss 22 is riveted to the center from both sides. It is rotatably held by a distance collar 24 inserted into a shaft 33 via a dry bearing 23. Reverse rectification of combustion gas,
The driving force reversely rectifies and compresses the air on the inner circumference. (C) One sheet metal is press-formed, and the outer circumference is used as the axial drive blade 18 and the inner circumference is used as the axial compression blade 21. The ring 19 for separating the combustion gas and the air is riveted from both sides. At the center, the boss 25 is riveted from both sides. The boss 25 is fixed to the shaft 33 with the key 26. It is tightened to the shaft 33 with the nut 28 via the taper collar 27. (D) The output increases as the combination of b and c is added,
Fuel consumption is improved. The intermittent combustion gas turbine having the axial flow and reverse commutation axial flow structure configured as described above.
JP10319748A 1998-10-05 1998-10-05 Intermittent combustion gas turbine Pending JP2000192822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10319748A JP2000192822A (en) 1998-10-05 1998-10-05 Intermittent combustion gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319748A JP2000192822A (en) 1998-10-05 1998-10-05 Intermittent combustion gas turbine

Publications (1)

Publication Number Publication Date
JP2000192822A true JP2000192822A (en) 2000-07-11

Family

ID=18113739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319748A Pending JP2000192822A (en) 1998-10-05 1998-10-05 Intermittent combustion gas turbine

Country Status (1)

Country Link
JP (1) JP2000192822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556358A (en) * 2020-12-25 2021-03-26 中国平煤神马集团尼龙科技有限公司 Drying device for caprolactam test

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556358A (en) * 2020-12-25 2021-03-26 中国平煤神马集团尼龙科技有限公司 Drying device for caprolactam test

Similar Documents

Publication Publication Date Title
US8156902B2 (en) Gas-steam engine
US20140130770A1 (en) Two-Stroke Reciprocating Piston Combustion Engine
JPH0674749B2 (en) Combined turbine engine
CN101363360A (en) Pneumatic air distributing engine
US7621253B2 (en) Internal turbine-like toroidal combustion engine
US3818875A (en) Pollution-free combustion engine and unique fuel therefor
CN106481449A (en) Ring cylinder formula circular rotor engine
US3040530A (en) Rotary external combustion engine
WO2000058610A1 (en) Apparatus for generating power using heat of both cooling water and exhaust gas of internal combustion engines
JP2000192822A (en) Intermittent combustion gas turbine
CN201092883Y (en) Rotary plate-type internal combustion engine
CN109322741B (en) Engine assembly
CN210686064U (en) Pressure storage type engine
CZ2021557A3 (en) Rotary internal combustion engine
JPH1182061A (en) Gas turbine
JPH11218033A (en) Gas turbine
JP2006258087A (en) Rotary type external combustion engine
CN104595022A (en) Internal combustion rotor engine
CN104005845A (en) Helix rotor engine without crankshaft
JP2001152870A (en) Intermittent combustion gas turbine
JPH11117763A (en) Gas turbine
US5749220A (en) Turbocharged RAM tornado engine with transmission and heat recovery system
CN203879623U (en) Spiral line crankshaft-free rotor engine
JP5002721B1 (en) Operating gas generator
JPH10227228A (en) Gas turbine