JPH11111945A - Semiconductor memory and manufacture thereof - Google Patents

Semiconductor memory and manufacture thereof

Info

Publication number
JPH11111945A
JPH11111945A JP9271210A JP27121097A JPH11111945A JP H11111945 A JPH11111945 A JP H11111945A JP 9271210 A JP9271210 A JP 9271210A JP 27121097 A JP27121097 A JP 27121097A JP H11111945 A JPH11111945 A JP H11111945A
Authority
JP
Japan
Prior art keywords
film
bpsg film
charge storage
storage electrode
bpsg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9271210A
Other languages
Japanese (ja)
Inventor
Hisashi Ogawa
久 小川
Susumu Matsumoto
晋 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP9271210A priority Critical patent/JPH11111945A/en
Publication of JPH11111945A publication Critical patent/JPH11111945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure a required storage capacity without increasing the height of a charge storage electrode. SOLUTION: BPO4 crystal 14 is precipitated in a BPSG film by heat treating the BPSG film 13 controlled to a prescribed density, the BPSG film is etched anisotropically into a desired shape, then the surface of a BPSG film 15 in the desired shape is etched by a first isotropic etching condition, and recessed and projected parts 16 are formed on a film surface by utilizing the etching speed difference in the BPSG film and the crystal. Then, when a polysilicon film 17 to be a part of the charge storage electrode is formed on the surface of the BPSG film 15, where the recessed and projected parts 16 are formed and furthermore the BPSG film 15 is removed by a second isotropic etching condition, the charge storage electrode 11 provided with recessed and projected parts 12 for which the recessed and projected parts 16 are transferred to the surface of the polysilicon film 17 is formed. As a result, the surface area of the charge storage electrode 11 is increased and the required storage capacity is secured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体記憶装置お
よびその製造方法に関するものである。
The present invention relates to a semiconductor memory device and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、ダイナミック・ランダムアクセス
・メモリ(DRAM)において多結晶シリコンを電荷蓄積
電極に用いて立体的な三次元構造を持つ電荷蓄積電極を
形成して十分な蓄積容量を確保している。
2. Description of the Related Art In recent years, in a dynamic random access memory (DRAM), a charge storage electrode having a three-dimensional three-dimensional structure is formed by using polycrystalline silicon as a charge storage electrode to secure a sufficient storage capacity. I have.

【0003】この一例として所謂円筒型セルと呼ばれる
円筒型の電荷蓄積電極も実用化されつつある。図3は、
従来技術におけるメモリセル部の断面の一例を示したも
のであり、円筒型の電荷蓄積電極9によって電極表面積
を増加させ、必要な蓄積容量を確保するものである。
As one example, a cylindrical charge storage electrode called a so-called cylindrical cell is being put to practical use. FIG.
This shows an example of a cross section of a memory cell portion in a conventional technique, in which a cylindrical charge storage electrode 9 increases an electrode surface area and secures a necessary storage capacity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、さらに微細化を進めるときに必要な蓄積容
量を確保するために円筒部の高さを高くする必要があ
り、その結果メモリセル部と周辺回路部との絶対段差が
大きくなって、後工程のコンタクト及び配線層の形成が
困難になるという問題があった。
However, in the above-mentioned conventional structure, it is necessary to increase the height of the cylindrical portion in order to secure a storage capacity necessary for further miniaturization. There has been a problem that the absolute level difference from the peripheral circuit portion becomes large, and it becomes difficult to form the contact and the wiring layer in the subsequent process.

【0005】本発明は、上記問題点に鑑みてなされたも
ので、電荷蓄積電極の高さを増大しなくても、必要な蓄
積容量を確保できる半導体記憶装置およびその製造方法
を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a semiconductor memory device capable of securing a required storage capacity without increasing the height of a charge storage electrode, and a method of manufacturing the same. It is the purpose.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体記憶装置は、所謂円筒型の電荷蓄積
電極を持つ半導体記憶装置において、電荷蓄積電極がそ
の円筒側壁部に凹凸を備えていることを特徴とするもの
である。
In order to achieve the above object, a semiconductor memory device according to the present invention is a semiconductor memory device having a so-called cylindrical charge storage electrode. It is characterized by having.

【0007】また、本発明の半導体記憶装置の製造方法
は、半導体基板に形成されたメモリセル上の所定の濃度
に制御されたBPSG膜を熱処理してBPSG膜中に結
晶を析出させる工程と、前記BPSG膜を異方性エッチ
ングして所望の形状に形成する工程と、前記所望の形状
に形成されたBPSG膜表面を第一の等方性エッチング
条件でエッチングしてBPSG膜と結晶とのエッチング
速度差によりBPSG膜表面に凹凸を形成する工程と、
凹凸が形成された前記BPSG膜表面を含む基板全面に
導電性膜を形成する工程と、前記導電性膜を異方性エッ
チングして前記BPSG膜の側壁部のみに残存させる工
程と、第二の等方性エッチング条件で前記BPSG膜を
除去し凹凸が転写された前記導電性膜表面を露出させて
凹凸を備えた電荷蓄積電極を形成する工程とを有するこ
とを特徴とするものである。
Further, the method of manufacturing a semiconductor memory device of the present invention includes a step of heat-treating a BPSG film controlled to a predetermined concentration on a memory cell formed on a semiconductor substrate to precipitate crystals in the BPSG film; Forming a desired shape by anisotropically etching the BPSG film; and etching the BPSG film and the crystal by etching the surface of the BPSG film formed in the desired shape under a first isotropic etching condition. Forming irregularities on the BPSG film surface by a speed difference;
A step of forming a conductive film on the entire surface of the substrate including the surface of the BPSG film on which the irregularities are formed, a step of anisotropically etching the conductive film and leaving only the side wall of the BPSG film, Removing the BPSG film under isotropic etching conditions, exposing the conductive film surface to which the irregularities have been transferred, and forming a charge storage electrode having irregularities.

【0008】上記構成によれば、円筒部の側壁に凹凸を
備えることによって電荷蓄積電極の表面積が増大し、従
来の円筒型セルに比べて同じ蓄積容量を実現するための
円筒部の高さを低減することができる。
[0008] According to the above configuration, the surface area of the charge storage electrode is increased by providing irregularities on the side wall of the cylindrical portion, and the height of the cylindrical portion for realizing the same storage capacity as that of a conventional cylindrical cell is reduced. Can be reduced.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら詳細に説明する。図1は、本発
明の一実施の形態における半導体記憶装置のメモリセル
部の断面を示したものである。なお、図3と同一構成要
素には同一の符号を付してある。すなわち、図1におい
て、1はP型シリコン基板、2は素子分離用酸化膜、3
はゲート電極、4はn~拡散層、5はビット線、6はB
PSG膜、7はTEOS膜、8はポリシリコン膜、10は
対向電極である。また、11は電荷蓄積電極、12は電荷蓄
積電極11の側壁部に形成された凹凸である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a cross section of a memory cell portion of a semiconductor memory device according to an embodiment of the present invention. The same components as those in FIG. 3 are denoted by the same reference numerals. That is, in FIG. 1, 1 is a P-type silicon substrate, 2 is an oxide film for element isolation, 3
Is a gate electrode, 4 is an n-diffusion layer, 5 is a bit line, 6 is B
A PSG film, 7 is a TEOS film, 8 is a polysilicon film, and 10 is a counter electrode. Reference numeral 11 denotes a charge storage electrode, and reference numeral 12 denotes unevenness formed on a side wall of the charge storage electrode 11.

【0010】電荷蓄積電極11の内側面に凹凸12を備える
ことにより、凹凸12の無い場合に比べて電荷蓄積電極11
の表面積を増大させることが可能である。例えば、凹凸
により内側面の表面積が30%増加した場合、64MDRA
M相当のメモリセルにおいて凹凸の無い電荷蓄積電極と
同じ蓄積容量を得るための電極の高さは約50nm低減でき
るため、メモリセル部分と周辺回路部分の段差がその分
低減でき、後工程のコンタクト及び配線形成が容易にな
る。
By providing unevenness 12 on the inner side surface of the charge storage electrode 11, the charge storage electrode 11
Can be increased. For example, when the surface area of the inner side surface is increased by 30% due to unevenness, 64 MDRA
In a memory cell equivalent to M, the height of the electrode for obtaining the same storage capacity as the charge storage electrode without unevenness can be reduced by about 50 nm, so that the level difference between the memory cell portion and the peripheral circuit portion can be reduced by that amount, and the contact in the later process can be reduced. In addition, wiring can be easily formed.

【0011】次に、本発明の一実施の形態における半導
体記憶装置の製造方法について、図2を参照しながら説
明する。図2は、メモリセル形成の工程順断面を示した
ものである。
Next, a method of manufacturing a semiconductor memory device according to an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view illustrating a process of forming a memory cell.

【0012】まず、図2(a)に示したように、P型シリ
コン基板1上に素子分離用酸化膜2、ゲート酸化膜(図
示せず)を介してゲート電極3、n~拡散層4を順次形成
した後、一方のn~拡散層4に接続するビット線5を形
成する。次に、第一の絶縁膜であるBPSG膜6および
第二の絶縁膜であるTEOS膜7にコンタクトホールを
開口して、他方のn~拡散層4に接続する第一の導電性
膜としての第一のポリシリコン膜8を形成し、さらにそ
の上にBPSG膜13を形成する。このBPSG膜13のB
およびPの濃度はそれぞれ5.3重量%および5.5重量%と
する。
First, as shown in FIG. 2A, a gate electrode 3 and an n ~ diffusion layer 4 are formed on a P-type silicon substrate 1 through an isolation oxide film 2 and a gate oxide film (not shown). Are sequentially formed, and a bit line 5 connected to one of the n ~ diffusion layers 4 is formed. Next, contact holes are opened in the BPSG film 6 serving as the first insulating film and the TEOS film 7 serving as the second insulating film, and the first conductive film is connected to the other n ~ diffusion layer 4. A first polysilicon film 8 is formed, and a BPSG film 13 is further formed thereon. B of this BPSG film 13
And the concentration of P is 5.3% by weight and 5.5% by weight, respectively.

【0013】次に、図2(b)に示したように、BPSG
膜13を成長後、第一の熱処理として窒素雰囲気中、温度
700℃で2時間の熱処理を行い、さらに続いて第二の熱
処理として窒素雰囲気中、温度850℃で35分間の熱処理
を行うことによりBPSG膜中にBPO4結晶14を析出
させる。
Next, as shown in FIG.
After growing the film 13, the first heat treatment is performed in a nitrogen atmosphere at a temperature
A heat treatment is performed at 700 ° C. for 2 hours, and then a second heat treatment is performed in a nitrogen atmosphere at a temperature of 850 ° C. for 35 minutes to precipitate BPO 4 crystals 14 in the BPSG film.

【0014】次に、図2(c)に示したように、リソグラ
フィーおよびドライエッチング技術を用いてBPSG膜
13を所望の形状に加工してBPSG膜15を形成する。さ
らに所望の形状に加工したBPSG膜15に対して第一の
等方性エッチング条件としてHF:H2O=1:600の希
フッ酸溶液で5分間エッチングを行うと、露出している
BPO4結晶がBPSG膜より速くエッチングされ、そ
の結果、BPSG膜15の表面に凹凸16が形成される。
Next, as shown in FIG. 2C, a BPSG film is formed by using lithography and dry etching techniques.
13 is processed into a desired shape to form a BPSG film 15. Further, when the BPSG film 15 processed into a desired shape is etched with a diluted hydrofluoric acid solution of HF: H 2 O = 1: 600 for 5 minutes as a first isotropic etching condition, the exposed BPO 4 The crystal is etched faster than the BPSG film, and as a result, irregularities 16 are formed on the surface of the BPSG film 15.

【0015】次に、基板全面に第二のポリシリコン膜を
形成した後、異方性のドライエッチングを行い、図2
(d)に示したように、BPSG膜15の側壁のみに第二の
ポリシリコン膜17が残存するようにする。
Next, after a second polysilicon film is formed on the entire surface of the substrate, anisotropic dry etching is performed to obtain a structure shown in FIG.
As shown in (d), the second polysilicon film 17 is left only on the side wall of the BPSG film 15.

【0016】その後、図2(e)に示したように、第二の
等方性エッチング条件としてHFベーパーによるエッチ
ングを行ってBPSG膜15を除去し、凹凸16を転写した
ポリシリコン膜17表面を露出させ、凹凸12を有する電荷
蓄積電極11を形成する。
Thereafter, as shown in FIG. 2E, the BPSG film 15 is removed by etching with HF vapor as a second isotropic etching condition, and the surface of the polysilicon film 17 on which the irregularities 16 have been transferred is removed. The charge storage electrode 11 having the projections and depressions 12 is formed.

【0017】その後、図2(f)に示したように、容量絶
縁膜としていわゆるONO膜(図示せず)を介して対向電
極10を形成し、メモリセルの容量部分を形成する。
Thereafter, as shown in FIG. 2F, a counter electrode 10 is formed via a so-called ONO film (not shown) as a capacitance insulating film, thereby forming a capacitance portion of the memory cell.

【0018】なお、本実施の形態では、BPSG濃度を
BおよびPがそれぞれ5.3重量%、5.5重量%を用いた
が、それぞれ濃度範囲はプラスマイナス0.5重量%の範
囲内であれば同様の効果が得られる。
In this embodiment, the BPSG concentrations of B and P are 5.3% by weight and 5.5% by weight, respectively, but the same effect can be obtained if the respective concentration ranges are within ± 0.5% by weight. can get.

【0019】また、特許請求の範囲に示された発明は、
上記実施の形態で説明された態様に限られるものではな
い。
The invention described in the claims is
The present invention is not limited to the mode described in the above embodiment.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
BPSGの結晶析出を利用して電荷蓄積電極の表面積を
増加させる工程を設けたことによって、必要な蓄積容量
を確保するための電荷蓄積電極自体の高さを低減するこ
とができる。
As described above, according to the present invention,
By providing the step of increasing the surface area of the charge storage electrode by utilizing the crystal deposition of BPSG, the height of the charge storage electrode itself for securing a necessary storage capacity can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における半導体記憶装置
の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor memory device according to an embodiment of the present invention.

【図2】本発明の一実施の形態における半導体記憶装置
の製造方法を示す工程順断面図である。
FIG. 2 is a cross-sectional view illustrating a method of manufacturing a semiconductor memory device according to an embodiment of the present invention in the order of steps;

【図3】従来例における半導体記憶装置の断面図であ
る。
FIG. 3 is a sectional view of a conventional semiconductor memory device.

【符号の説明】[Explanation of symbols]

1…P型シリコン基板、 2…素子分離用酸化膜、 3
…ゲート電極、 4…n~拡散層、 5…ビット線、
6,13…BPSG膜、 7…TEOS膜、 8,17…ポリ
シリコン膜、 10…対向電極、 11…電荷蓄積電極、
12,16…凹凸、14…BPO4結晶。
DESCRIPTION OF SYMBOLS 1 ... P type silicon substrate, 2 ... Oxide film for element isolation, 3
... gate electrode, 4 ... n ~ diffusion layer, 5 ... bit line,
6, 13: BPSG film, 7: TEOS film, 8, 17: polysilicon film, 10: counter electrode, 11: charge storage electrode,
12,16 ... irregularities, 14 ... BPO 4 crystal.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所謂円筒型の電荷蓄積電極を持つ半導体
記憶装置において、前記電荷蓄積電極が、その円筒側壁
部に凹凸を備えていることを特徴とする半導体記憶装
置。
1. A semiconductor memory device having a so-called cylindrical charge storage electrode, wherein the charge storage electrode has irregularities on a cylindrical side wall portion.
【請求項2】 半導体基板に形成されたメモリセル上の
所定の濃度に制御されたBPSG膜を熱処理してBPS
G膜中に結晶を析出させる工程と、前記BPSG膜を異
方性エッチングして所望の形状に形成する工程と、前記
所望の形状に形成されたBPSG膜表面を第一の等方性
エッチング条件でエッチングしてBPSG膜と結晶との
エッチング速度差によりBPSG膜表面に凹凸を形成す
る工程と、凹凸が形成された前記BPSG膜表面を含む
基板全面に導電性膜を形成する工程と、前記導電性膜を
異方性エッチングして前記BPSG膜の側壁部のみに残
存させる工程と、第二の等方性エッチング条件で前記B
PSG膜を除去し凹凸が転写された前記導電性膜表面を
露出させて凹凸を備えた電荷蓄積電極を形成する工程と
を有することを特徴とする半導体記憶装置の製造方法。
2. A heat treatment is performed on a BPSG film controlled at a predetermined concentration on a memory cell formed on a semiconductor substrate to form a BPSG film.
Depositing crystals in the G film, anisotropically etching the BPSG film to form a desired shape, and subjecting the BPSG film surface formed to the desired shape to first isotropic etching conditions. Forming irregularities on the surface of the BPSG film by etching at a difference in etching rate between the BPSG film and the crystal, forming a conductive film on the entire surface of the substrate including the surface of the BPSG film on which the irregularities are formed, Anisotropically etching the anisotropic film to remain only on the side wall of the BPSG film; and forming the B film under the second isotropic etching condition.
Removing the PSG film and exposing the surface of the conductive film on which the unevenness has been transferred to form a charge storage electrode having the unevenness.
【請求項3】 BPSG膜のB及びPの濃度をそれぞれ
5.3重量%、5.5重量%とすることを特徴とする請求項2
記載の半導体記憶装置の製造方法。
3. The concentration of B and P in the BPSG film, respectively.
3. The composition according to claim 2, wherein the content is 5.3% by weight or 5.5% by weight.
The manufacturing method of the semiconductor memory device described in the above.
【請求項4】 BPSG膜の熱処理が、650℃〜800℃の
範囲で行う第一の熱処理と、800℃〜900℃の範囲で行う
第二の熱処理とからなることを特徴とする請求項2記載
の半導体記憶装置の製造方法。
4. The heat treatment of the BPSG film includes a first heat treatment performed in a temperature range of 650 ° C. to 800 ° C. and a second heat treatment performed in a temperature range of 800 ° C. to 900 ° C. The manufacturing method of the semiconductor memory device described in the above.
JP9271210A 1997-10-03 1997-10-03 Semiconductor memory and manufacture thereof Pending JPH11111945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9271210A JPH11111945A (en) 1997-10-03 1997-10-03 Semiconductor memory and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9271210A JPH11111945A (en) 1997-10-03 1997-10-03 Semiconductor memory and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11111945A true JPH11111945A (en) 1999-04-23

Family

ID=17496890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9271210A Pending JPH11111945A (en) 1997-10-03 1997-10-03 Semiconductor memory and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11111945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596582B2 (en) 2001-03-05 2003-07-22 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596582B2 (en) 2001-03-05 2003-07-22 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
JP2605594B2 (en) Method for manufacturing semiconductor device
US5164337A (en) Method of fabricating a semiconductor device having a capacitor in a stacked memory cell
JP2761685B2 (en) Method for manufacturing semiconductor device
JPH0586072B2 (en)
JP2839076B2 (en) Semiconductor device and manufacturing method thereof
JP2674963B2 (en) DRAM cell capacitor manufacturing method
JP2000216356A (en) Semiconductor device and its manufacture
JP3607444B2 (en) Capacitor manufacturing method for semiconductor device
JP2000058652A (en) Manufacture of contact hole for semiconductor device
JPH08204145A (en) Method of manufacturing semiconductor device
JP2751906B2 (en) Method of forming capacitive element
JPH06232365A (en) Manufacture of capacitor for semiconductor storage device
JPH10326874A (en) Semiconductor device and manufacture thereof
JP2001053251A (en) Manufacture of semiconductor device
JPH11111945A (en) Semiconductor memory and manufacture thereof
JPH05251658A (en) Manufacture of semiconductor device
JP2917894B2 (en) Method for manufacturing semiconductor device
JPH06196650A (en) Semiconductor device and its manufacture
JP2750159B2 (en) Method for manufacturing semiconductor device
JPH0456265A (en) Manufacture of semiconductor device
JPH05175450A (en) Manufacture of semiconductor device
JP3085831B2 (en) Method for manufacturing semiconductor device
JP3432644B2 (en) Memory capacitor and method of forming memory capacitor
JPH02119135A (en) Semiconductor device and its manufacture
JP3027743B2 (en) Manufacturing method of stacked capacitor for DRAM