JPH0456265A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0456265A
JPH0456265A JP2167176A JP16717690A JPH0456265A JP H0456265 A JPH0456265 A JP H0456265A JP 2167176 A JP2167176 A JP 2167176A JP 16717690 A JP16717690 A JP 16717690A JP H0456265 A JPH0456265 A JP H0456265A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
protective film
base protective
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2167176A
Other languages
Japanese (ja)
Other versions
JP2644908B2 (en
Inventor
Nobuyuki Takenaka
竹中 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2167176A priority Critical patent/JP2644908B2/en
Publication of JPH0456265A publication Critical patent/JPH0456265A/en
Application granted granted Critical
Publication of JP2644908B2 publication Critical patent/JP2644908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the capacitor of a DRAM to be enlarged in capacitance by a method wherein irregularities are provided to the surface of the charge storage part of a stacked type memory cell in a self-aligned manner. CONSTITUTION:An interlaminar insulating film provided with an opening, a polysilicon film 3, and a first oxide film 4 are formed on a silicon substrate 1, the first oxide film 4 is removed through etching excluding a required region, a first silicon nitride film 6 is formed, and the first silicon nitride film 6 is left unremoved only on the side wall of the first oxide film 4 through etching. Then, the same process is repeated to form a second oxide film 7 and a second silicon nitride film 8. In succession, the polysilicon film 3 is etched using these films as a mask, the first oxide film 4 and the second oxide film 7 are selectively removed, the polysilicon film 3 is etched using the first silicon nitride film 6 and the second silicon nitride film 7 left unremoved as a mask, the outside polysilicon film 3 is completely removed from the second silicon nitride film 8, and the first silicon nitride film 6 and the second silicon nitride film 8 are removed by etching solution.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ダイナミック・ランダム・アクセス・メモリ
ー(以下DRAMと称する)のスタック型セルの電荷蓄
積部を対象とする半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device for a charge storage section of a stacked cell of a dynamic random access memory (hereinafter referred to as DRAM).

従来の技術 大容量のDRAMを実現するために種々のメモリーセル
構造が提案されている。電荷蓄積部を読み出し、トラン
ジスタの上部に積み上げた構造のスタック型メモリーセ
ルもそれらの一つである。
BACKGROUND OF THE INVENTION Various memory cell structures have been proposed to realize large capacity DRAMs. One such example is a stacked memory cell in which a charge storage section is read out and stacked on top of a transistor.

スタック型のメモリーセルでは電荷蓄積部の表面積を増
やすために色々な工夫がなされている。
In stacked memory cells, various efforts have been made to increase the surface area of the charge storage portion.

第3図は64メガビツト用として発表(ダブル。Figure 3 is announced for 64 megabits (double).

ワカミャ 他、ヴイ・エル・ニス・アイ シンポジュウ
ム テクニカルダイジェスト(W、 Wakamiya
et al、VLSI Symp、Tech、Dig、
 ) 、 ])69 (1989) )された電荷蓄積
部の製造方法を示したものである。
Wakamiya et al., V.L.N.I. Symposium Technical Digest (W, Wakamiya
et al, VLSI Symp, Tech, Dig,
), ])69 (1989)) shows a method of manufacturing a charge storage section.

この従来の製造方法を簡単に説明すると、まず第3図+
a+に示すように、シリコン基板31上に形成された層
間絶縁膜32の上に第1のポリシリコン膜33を形成す
る。この第1のポリシリコン膜33は層間絶縁膜32に
形成された開口を通してシリコン基板31と接続されて
いる。
To briefly explain this conventional manufacturing method, first, Figure 3 +
As shown at a+, a first polysilicon film 33 is formed on an interlayer insulating film 32 formed on a silicon substrate 31. This first polysilicon film 33 is connected to the silicon substrate 31 through an opening formed in the interlayer insulating film 32.

次に第1のポリシリコン膜33上にCVD膜34を形成
し、さらに第3図(blに示すように、CVD膜34に
開口35を形成し、続いて第2のポリシリコン膜36を
形成する。
Next, a CVD film 34 is formed on the first polysilicon film 33, and as shown in FIG. do.

次に、フォトレジスト膜37を第2のポリシリコン膜3
6上に塗布し、周知のエッチバック法にて、CVD膜3
膜上4上2のポリシリコン膜36を除去する。第3図(
C1はこの状態を示している。
Next, the photoresist film 37 is transferred to the second polysilicon film 3.
CVD film 3 is coated on top of CVD film 3 using a well-known etch-back method.
The polysilicon film 36 on the film top 4 and the top 2 is removed. Figure 3 (
C1 indicates this state.

最後に、開口35内に残存するフォトレジスト膜37と
、CVD膜34を除去することによって第3図(dlに
示したスタック型メモリーセルの電荷蓄積部が完成する
Finally, the photoresist film 37 remaining in the opening 35 and the CVD film 34 are removed to complete the charge storage portion of the stacked memory cell shown in FIG. 3(dl).

発明が解決しようとする課題 しかしながら、第3図で示した従来の製造方法では、同
図(blに示したように、開口35を形成する際に第1
のポリシリコン膜33に対して合わせマージン(j!m
)が必要となる。このため、従来の製造方法では、メモ
リーセルのさらなる微細化に対処できないという課題を
有していた。
Problems to be Solved by the Invention However, in the conventional manufacturing method shown in FIG. 3, as shown in FIG.
The alignment margin (j!m
)Is required. For this reason, conventional manufacturing methods have had the problem of not being able to cope with further miniaturization of memory cells.

課題を解決するための手段 本発明は上記課題を解決するためになされたものであり
、ポリシリコン膜からなる導電体上の所望領域にシリコ
ン酸化膜からなる第1の下地保護膜を形成する工程と、
同第1の下地保護膜の側壁部と導電体の表面に接して窒
化シリコン膜からなる第2の下地保護膜を形成する工程
と、同工程を少なくとも1回以上繰り返して導電体の表
面に第1の下地保護膜と第2の下地保護膜を交互に形成
する工程と、第1の下地保護膜と第2の下地保護膜をマ
スクにして導電体をエツチングする工程と、第1の下地
保護膜または第2の下地保護膜のいずれか一方を除去し
て導電体の表面の一部分を露出させる工程と、この後残
存する第1または第2の下地保護膜をマスクにして露出
した導電体の一部分をエーツチングする工程から構成さ
れている。
Means for Solving the Problems The present invention has been made to solve the above problems, and includes a step of forming a first base protective film made of a silicon oxide film in a desired region on a conductor made of a polysilicon film. and,
A step of forming a second base protective film made of a silicon nitride film in contact with the side wall portion of the first base protective film and the surface of the conductor, and repeating the same process at least once to form a second base protective film on the surface of the conductor. a step of alternately forming a first base protective film and a second base protective film; a step of etching the conductor using the first base protective film and the second base protective film as masks; and a step of etching the conductor using the first base protective film and the second base protective film as masks. A step of removing either the film or the second base protective film to expose a part of the surface of the conductor, and then removing the exposed conductor using the remaining first or second base protective film as a mask. It consists of a process of etching a portion.

作用 この構成によって、スタック型メモリーセルの電荷蓄積
部の表面にセルファラインで凹凸を形成できるので、D
RAMのキャパシタの容量を拡大することが可能となる
Effect: With this configuration, unevenness can be formed on the surface of the charge storage part of the stacked memory cell by the self-alignment line, so that D
It becomes possible to expand the capacity of the RAM capacitor.

実施例 以下本発明の一実施例における半導体装置の製造方法を
スタック型メモリーセルの電荷蓄積部の下部電極の形成
方法を用いた例について、第1図(al〜((イ)の工
程順断面図とともに説明する。
Embodiment Below, an example of a method for manufacturing a semiconductor device according to an embodiment of the present invention using a method for forming a lower electrode of a charge storage portion of a stacked memory cell is shown in FIGS. This will be explained with figures.

まず、第1図(a)に示すように9、シリコン基板1上
に形成声れた開口を有する層間絶縁膜2上に膜厚的1.
2μmのポリシリコン膜3を周知の減圧CVD法で形成
し、次に膜厚的400nmの第1の酸化膜(SiO=膜
)4を周知のCVD法で形成する。さらに、第1の酸化
膜4上の所望領域に幅約0.6μm程度のフォトレジス
ト膜5を通常のフォトリソグラフィー法によって形成す
る。次にフォトレジスト膜5をマスクにして、周知の反
応性イオンエツチング法にて第1の酸化膜4を除去する
First, as shown in FIG. 1(a), a film 9 is formed on an interlayer insulating film 2 having an opening formed on a silicon substrate 1.
A polysilicon film 3 having a thickness of 2 μm is formed by a well-known low pressure CVD method, and then a first oxide film (SiO=film) 4 having a film thickness of 400 nm is formed by a well-known CVD method. Furthermore, a photoresist film 5 having a width of about 0.6 μm is formed in a desired region on the first oxide film 4 by a normal photolithography method. Next, using the photoresist film 5 as a mask, the first oxide film 4 is removed by a well-known reactive ion etching method.

次に第1図(blに示すように、フォトレジスト膜5を
周知の方法で除去し、ポリシリコン膜3および第1の酸
化膜4上に、膜厚的250nmの第1の窒化シリコン膜
6を周知の減圧CVD法で形成する。
Next, as shown in FIG. is formed by a well-known low pressure CVD method.

次に第1の窒化シリコン膜6に反応性イオンエツチング
を施して第1図(C)に示すように、第1の酸化膜4の
側壁部にのみ第1の窒化シリコン膜6を残存させる。次
に同様の工程を繰り返して膜厚的250nmの第2の酸
化膜(SiO2膜)7、および膜厚的250nmの第2
の窒化シリコン膜8を、第1図(C)に示す形状に形成
する。この時第1の酸化膜4の側壁に形成されるそれぞ
れの膜の幅は形成直後の膜厚とほぼ等しくなり、第1図
fclにおいて第1の酸化膜4.第1の窒化シリコン膜
6 第2の酸化膜7および第2の窒化シリコン膜8を合
わせた全幅は、第1の酸化膜4の幅が06μmであるた
め、はぼ0.6+2x (0,25+0、25 + 0
825)=2.1μm程度となる。
Next, the first silicon nitride film 6 is subjected to reactive ion etching to leave the first silicon nitride film 6 only on the side wall portions of the first oxide film 4, as shown in FIG. 1(C). Next, the same process is repeated to form a second oxide film (SiO2 film) 7 with a thickness of 250 nm, and a second oxide film (SiO2 film) with a thickness of 250 nm.
A silicon nitride film 8 is formed in the shape shown in FIG. 1(C). At this time, the width of each film formed on the side wall of the first oxide film 4 becomes approximately equal to the film thickness immediately after formation, and as shown in FIG. The total width of the first silicon nitride film 6, the second oxide film 7, and the second silicon nitride film 8 is approximately 0.6+2x (0,25+0 , 25 + 0
825)=about 2.1 μm.

次に、第1図(d)に示すように、第1の酸化膜4、第
1の窒化シリコン膜6.第2の酸化膜7および第2の窒
化シリコン膜8全てをマスクにして、ポリシリコン膜3
を反応性イオンエ・ソチング法にて約0.6μm程度の
深さまでエツチングする。
Next, as shown in FIG. 1(d), a first oxide film 4, a first silicon nitride film 6. Using both the second oxide film 7 and the second silicon nitride film 8 as a mask, the polysilicon film 3 is
is etched to a depth of approximately 0.6 μm using a reactive ion etching method.

次に、第1図(e)に示すように、第1の酸化膜4と第
2の酸化膜7をフッ酸とフッ化アンモンの混液(NH4
F :HF=5 : 1)で選択的に除去する。
Next, as shown in FIG. 1(e), the first oxide film 4 and the second oxide film 7 are coated with a mixed solution of hydrofluoric acid and ammonium fluoride (NH4
Selectively remove with F:HF=5:1).

次に、残存する第1の窒化シリコン膜6と第2の窒化シ
リコン膜をマスクにして、第1図げ)に示すようにポリ
シリコン膜3を反応性イオンエ・ソチング法にてエツチ
ング深さがほぼ069μm程度になるようにエツチング
する。このようにすることによって、最初に約0.6μ
m程度エツチングされた第2の窒化シリコン膜8から外
側のポリシリコン膜3は完全に除去される。一方策1の
酸化膜4と第2の酸化膜7で覆われていた部分のポリシ
リコン膜3は約0.9μm程度エツチングされるので、
底部には約1.2−0.9 = 0.3μm程度のポリ
シリコン膜が残ることになる。
Next, using the remaining first silicon nitride film 6 and second silicon nitride film as masks, the polysilicon film 3 is etched to a depth by reactive ion etching as shown in Figure 1). Etching is performed to approximately 0.69 μm. By doing this, initially about 0.6μ
The outer polysilicon film 3 is completely removed from the second silicon nitride film 8 which has been etched by about m. On the other hand, the portion of the polysilicon film 3 that was covered by the oxide film 4 and the second oxide film 7 in solution 1 is etched by about 0.9 μm.
A polysilicon film with a thickness of approximately 1.2-0.9 = 0.3 μm remains at the bottom.

最後に、第1の窒化シリコン膜6と第2の窒化シリコン
膜8を周知のりん酸エツチング液で除去することによっ
て第1図+g+に示した構造が得られる。なお以上説明
した方法を用いれば、環状1列状、その他複雑な形状の
構造を製作することができる。
Finally, the structure shown in FIG. 1+g+ is obtained by removing the first silicon nitride film 6 and the second silicon nitride film 8 using a well-known phosphoric acid etching solution. Note that by using the method described above, it is possible to manufacture a structure having a ring, a single row, or other complex shapes.

次に、本発明を応用しnチャンネル型のスタック型のメ
モリーセルを形成した場合の一実施例を第2図に示す。
Next, FIG. 2 shows an embodiment in which an n-channel stacked memory cell is formed by applying the present invention.

第2図に示したメモリーセルの製造方法を説明すると、
p型シリコン基板11に周知の選択酸化法でフィールド
酸化膜12を形成し、次いで選択トランジスタを構成す
るゲート酸化膜13.ゲート電極(ワード線)14およ
びn°拡散層15を形成する。次に、ゲート電極14を
第1の層間絶縁膜16で被覆した後、第1図で説明した
製造方法によって、電荷蓄積部の下部電極17を形成す
る。
To explain the manufacturing method of the memory cell shown in Fig. 2,
A field oxide film 12 is formed on a p-type silicon substrate 11 by a well-known selective oxidation method, and then a gate oxide film 13 constituting a selection transistor is formed. A gate electrode (word line) 14 and an n° diffusion layer 15 are formed. Next, after covering the gate electrode 14 with the first interlayer insulating film 16, the lower electrode 17 of the charge storage section is formed by the manufacturing method explained in FIG.

次に、下部電極17の表面にキャパシタ絶縁膜18を形
成後、キャパシタプレート電極19を形成する。次に、
第2の層間絶縁膜20を形成し、コンタクト窓の開口を
経てビット線21を一方のn+拡散層15に接続するこ
とによってスタック型のメモリーセルができる。
Next, after forming a capacitor insulating film 18 on the surface of the lower electrode 17, a capacitor plate electrode 19 is formed. next,
A stacked memory cell is formed by forming a second interlayer insulating film 20 and connecting the bit line 21 to one n+ diffusion layer 15 through the contact window opening.

なお、第1図に示す本実施例では、電荷蓄積部の下部電
極を二重構造としたが、三重、四重にすることも可能で
ある。また本実施例では、第1図(C)に示すように、
下地保護膜を第1の酸化膜4を中心として外側に向かっ
て順次形成したが、これとは逆に、まず外周部に下地保
護膜を形成し、次いで中心に向かって下地保護膜を順次
形成してゆくことも当然のことながら可能である。
In the present embodiment shown in FIG. 1, the lower electrode of the charge storage section has a double structure, but it is also possible to have a triple or quadruple structure. Further, in this embodiment, as shown in FIG. 1(C),
The base protective film was formed sequentially from the first oxide film 4 toward the outside, but in contrast, the base protective film was first formed on the outer periphery, and then the base protective film was formed sequentially toward the center. Of course, it is also possible to do so.

発明の効果 以上のように本発明によれば、電荷蓄積部の表面積を自
己整合的に増大することが可能となり、微小領域に大き
な容量を形成することができるので、DRAMのメモリ
ーセルを大幅に小さくできる効果を有する。
Effects of the Invention As described above, according to the present invention, it is possible to increase the surface area of the charge storage part in a self-aligned manner, and a large capacitance can be formed in a small area, so that the memory cell of a DRAM can be greatly expanded. It has the effect of being able to be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(glは本発明の製造方法を説明するた
めの工程順断面図、第2図は本発明を応用したDRAM
のスタック型メモリーセルの断面図、第3図(al〜(
d)は従来の製造方法を説明するための工程順断面図で
ある。 1・・・・・・シリコン基板1.3・・・・・・ポリシ
リコン膜(導電体)、4・・・・・・第1の酸化膜(第
1の下地保護膜)、6・・・・・・第1の窒化シリコン
膜(第2の下地保護膜)、7・・・・・・第2の酸化膜
、8・・・・・・第2の窒化シリコン膜。 代理人の氏名 弁理士 粟野重孝 ほか1名N〜 弔 くト ts(h 弔 図 第3図 (b〕 (C) (d、)
Figures 1(a) to (gl are step-by-step sectional views for explaining the manufacturing method of the present invention, Figure 2 is a DRAM to which the present invention is applied)
A cross-sectional view of a stacked memory cell in Figure 3 (al~(
d) is a step-by-step sectional view for explaining a conventional manufacturing method. 1...Silicon substrate 1.3...Polysilicon film (conductor), 4...First oxide film (first base protective film), 6... . . . first silicon nitride film (second underlying protective film), 7 . . . second oxide film, 8 . . . second silicon nitride film. Name of agent Patent attorney Shigetaka Awano and 1 other person N~ Condolences (h Funeral map Figure 3 (b) (C) (d,)

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板上に形成された導電体上の所望領域
に第1の下地保護膜を形成する工程と、前記第1の下地
保護膜の側壁部と前記導電体の表面に第2の下地保護膜
を形成する工程と、同工程の少なくとも1回以上繰り返
して前記導電体の表面に前記第1の下地保護膜と前記第
2の下地保護膜を交互に形成する工程と、前記第1の下
地保護膜と前記第2の下地保護膜とをマスクにして前記
導電体をエッチングする工程と、前記第1の下地保護膜
または前記第2の下地保護膜のいずれか一方を除去して
前記導電体の表面の一部分を露出させる工程と、この後
残存する下地保護膜をマスクにして露出した導電体の一
部分をエッチングする工程を備えた半導体装置の製造方
法。
(1) Forming a first base protective film in a desired area on a conductor formed on a silicon substrate, and forming a second base protective film on the side wall portion of the first base protective film and the surface of the conductor. a step of forming a protective film; a step of repeating the same step at least once to alternately form the first base protective film and the second base protective film on the surface of the conductor; etching the conductor using the base protective film and the second base protective film as masks; and removing either the first base protective film or the second base protective film to remove the conductive material. A method for manufacturing a semiconductor device, comprising the steps of exposing a part of the surface of the body, and etching the exposed part of the conductor using the remaining underlying protective film as a mask.
(2)導電体、第1の下地保護膜、第2の下地保護膜が
それぞれポリシリコン膜、シリコン酸化膜、窒化シリコ
ン膜である請求項1記載の半導体装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the conductor, the first base protective film, and the second base protective film are a polysilicon film, a silicon oxide film, and a silicon nitride film, respectively.
JP2167176A 1990-06-25 1990-06-25 Method for manufacturing semiconductor device Expired - Lifetime JP2644908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2167176A JP2644908B2 (en) 1990-06-25 1990-06-25 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2167176A JP2644908B2 (en) 1990-06-25 1990-06-25 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0456265A true JPH0456265A (en) 1992-02-24
JP2644908B2 JP2644908B2 (en) 1997-08-25

Family

ID=15844831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2167176A Expired - Lifetime JP2644908B2 (en) 1990-06-25 1990-06-25 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2644908B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249363A (en) * 1991-01-30 1992-09-04 Samsung Electron Co Ltd High integrated semiconductor memory device and manufacture thereof
JPH05218333A (en) * 1991-08-31 1993-08-27 Samsung Electron Co Ltd Semiconductor memory device and its manufacture
JPH0799292A (en) * 1993-05-21 1995-04-11 Hyundai Electron Ind Co Ltd Capacitor formation of semiconductor element
US6593186B1 (en) * 1998-04-30 2003-07-15 Nec Electronics Corporation Method for manufacturing non-volatile semiconductor memory device
DE4328510C2 (en) * 1992-08-26 2003-08-21 Samsung Electronics Co Ltd Method for producing a semiconductor memory component with a capacitor
DE4323363B4 (en) * 1992-07-15 2006-11-23 Samsung Electronics Co., Ltd., Suwon A method of manufacturing a capacitor for a semiconductor memory device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322559A (en) * 1989-06-20 1991-01-30 Sharp Corp Semiconductor memory element and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322559A (en) * 1989-06-20 1991-01-30 Sharp Corp Semiconductor memory element and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249363A (en) * 1991-01-30 1992-09-04 Samsung Electron Co Ltd High integrated semiconductor memory device and manufacture thereof
JPH05218333A (en) * 1991-08-31 1993-08-27 Samsung Electron Co Ltd Semiconductor memory device and its manufacture
DE4323363B4 (en) * 1992-07-15 2006-11-23 Samsung Electronics Co., Ltd., Suwon A method of manufacturing a capacitor for a semiconductor memory device
DE4328510C2 (en) * 1992-08-26 2003-08-21 Samsung Electronics Co Ltd Method for producing a semiconductor memory component with a capacitor
JPH0799292A (en) * 1993-05-21 1995-04-11 Hyundai Electron Ind Co Ltd Capacitor formation of semiconductor element
US6593186B1 (en) * 1998-04-30 2003-07-15 Nec Electronics Corporation Method for manufacturing non-volatile semiconductor memory device

Also Published As

Publication number Publication date
JP2644908B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JP3501297B2 (en) Method for manufacturing semiconductor memory device
US5196365A (en) Method of making semiconductor memory device having stacked capacitor
US5072269A (en) Dynamic ram and method of manufacturing the same
US5384276A (en) Method of fabricating a memory device with a multilayer insulating film
US5491103A (en) Method for manufacturing a capacitor structure of a semiconductor memory device
US5223729A (en) Semiconductor device and a method of producing the same
JP3183817B2 (en) Method of manufacturing trench DRAM cell
JPH03228370A (en) Stack-structured dram cell having cup- shaped polysilicon storage electrode and manufacture thereof
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
JPH06204427A (en) Semiconductor memory device and formation method thereof
JPS6366963A (en) Groove-buried semiconductor device and manufacture thereof
JP2690434B2 (en) Capacitor for semiconductor memory device and method of manufacturing the same
JPH0456265A (en) Manufacture of semiconductor device
US5441908A (en) Capacitor of a semiconductor device having increased effective area
JPH0321062A (en) Semiconductor storage device
JP2772375B2 (en) Semiconductor storage device
JPH08167700A (en) Manufacture of semiconductor device
JPH0736423B2 (en) Method for manufacturing semiconductor device
JP2750159B2 (en) Method for manufacturing semiconductor device
JPH0316258A (en) Manufacture of semiconductor device
JP2744457B2 (en) Semiconductor device and manufacturing method thereof
JP2944990B2 (en) Manufacturing method of crown type capacitor
JP3085831B2 (en) Method for manufacturing semiconductor device
JPH1197529A (en) Manufacture of semiconductor device
KR960003774B1 (en) Semiconductor device having storage node micro-cylinder and multi micro-tranch