JPH11108475A - Freezer and method for proportionally controlling freezer - Google Patents

Freezer and method for proportionally controlling freezer

Info

Publication number
JPH11108475A
JPH11108475A JP29041097A JP29041097A JPH11108475A JP H11108475 A JPH11108475 A JP H11108475A JP 29041097 A JP29041097 A JP 29041097A JP 29041097 A JP29041097 A JP 29041097A JP H11108475 A JPH11108475 A JP H11108475A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
evaporator
refrigerant gas
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29041097A
Other languages
Japanese (ja)
Other versions
JP3434683B2 (en
Inventor
Yoshio Ito
義夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabai Espec Co Ltd
Original Assignee
Tabai Espec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP29041097A priority Critical patent/JP3434683B2/en
Publication of JPH11108475A publication Critical patent/JPH11108475A/en
Application granted granted Critical
Publication of JP3434683B2 publication Critical patent/JP3434683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a proportional precise cooling control to be attained over the entire range of 0 to 100% of a motor output by a method wherein there is provided a compressor control means for operating the compressor when a pressure within a refrigerant gas tank is out of a range of predetermined pressure. SOLUTION: A refrigerant liquid sent to a first evaporator 15 and a second evaporator 16 is evaporated and gasified to cool a cooling coil with a gasification heat at this time and then the refrigerant is stored in a refrigerant gas tank 18. As a pressure within the refrigerant gas tank 18 is increased up to a predetermined pressure (for example, 3 kg/cm<2> ), a pressure sensor 21 constituting a compressor control means may detect this increased state, a compressor 11 is operated to feed refrigerant gas from the refrigerant gas tank 18 to the compressor 11, the refrigerant is compressed, thereafter the refrigerant is fed into a condenser 12. In addition, as a pressure in the refrigerant gas tank 18 is decreased to a predetermined value (for example, 1 kg/cm<2> ), its feeding is stopped. With such an arrangement as above, it becomes possible to perform a stepless proportional control within a range of 0 to 100% of a motor output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍機及びその比
例制御方法に関する。更に詳しくは、直接膨張方式の冷
凍機において、冷却制御をモーター出力の0〜100%
までの全範囲において比例制御によって精密に行うこと
ができる、冷凍機及びその比例制御方法に関する。
The present invention relates to a refrigerator and a proportional control method thereof. More specifically, in a direct expansion type refrigerator, the cooling control is performed at 0 to 100% of the motor output.
The present invention relates to a refrigerator and a proportional control method thereof, which can be precisely performed by proportional control in the entire range up to.

【0002】[0002]

【従来の技術】近年、例えば半導体の製造工場、印刷工
場、製麺工場、各種の試験室等では、より精密な冷却制
御が要求されてきている。特に、精密な試験機を使用す
る試験室では±0.1℃という精密な冷却制御が要求さ
れている。これら試験室等の空調は、空気調和機(以
下、空調機と表記)によって行われている。空調機は冷
凍機を備えており、冷凍機には直接膨張方式(以下、直
膨方式と表記)とチラー方式のものがある。直膨方式
は、蒸発器に冷媒液を送り、コイルの中で膨張気化させ
てコイルを冷却し、通過する空気と熱交換をして冷却を
行う方式である。チラー方式は、蒸発器によって水と熱
交換をして冷却水を作り、この冷却水を冷却コイル等に
循環させ、空気との間で熱交換をして冷却を行う方式で
ある。
2. Description of the Related Art In recent years, more precise cooling control has been required in, for example, semiconductor manufacturing factories, printing factories, noodle making factories, various test rooms, and the like. In particular, in a test room using a precise testing machine, a precise cooling control of ± 0.1 ° C. is required. Air conditioning of these test rooms and the like is performed by an air conditioner (hereinafter, referred to as an air conditioner). The air conditioner is provided with a refrigerator, and the refrigerator includes a direct expansion type (hereinafter, referred to as a direct expansion type) and a chiller type. The direct expansion method is a method in which a refrigerant liquid is sent to an evaporator, expanded and vaporized in a coil, cools the coil, and exchanges heat with passing air to perform cooling. The chiller method is a method in which heat is exchanged with water by an evaporator to produce cooling water, the cooling water is circulated through a cooling coil or the like, and heat is exchanged with air to perform cooling.

【0003】[0003]

【発明が解決しようとする課題】上記方式には次のよう
な課題があった。すなわち、直膨方式は空気と直接熱交
換を行う構造であるために構造が簡単で熱交換効率にも
優れるが、連続運転をしながら冷却の制御を行うために
は、冷却コイルに常時冷媒を送り込む必要がある。しか
し、冷凍機の圧縮機(コンプレッサー)を駆動するには
一定のトルクを必要とするため、モーター出力が圧縮機
を駆動できない範囲(通常、0〜30%程度)において
は制御が不可能であり、比例制御が可能なのは出力約3
0〜100%の範囲に制限されていた。従って、直膨方
式においては、モーター出力の比例制御だけでは精密な
冷却制御が困難であった。
The above system has the following problems. In other words, the direct expansion method is a structure that directly exchanges heat with air, and therefore has a simple structure and excellent heat exchange efficiency.However, in order to control cooling while operating continuously, refrigerant is always supplied to the cooling coil. I need to send in. However, since a certain torque is required to drive the compressor of the refrigerator (compressor), control is impossible in a range where the motor output cannot drive the compressor (normally, about 0 to 30%). , Proportional control is possible for about 3 outputs
It was limited to the range of 0-100%. Therefore, in the direct expansion system, precise cooling control is difficult only by proportional control of the motor output.

【0004】これに対してチラー方式は、水を一旦冷却
し、この冷却水を使用して冷却除湿を行うので、圧縮機
を常時作動させなくても冷却能力を維持することができ
る。また、冷却水はポンプで循環させるようになってお
り、ポンプの出力の0〜100%の全範囲にわたる比例
制御が可能である。しかし、反面、水を冷却して貯溜し
ておくための設備や、冷却水を常時循環させておくため
の上記ポンプが必要になる等、装置全体として設置コス
ト及びランニングコストが高くなる課題があった。
[0004] On the other hand, in the chiller system, water is once cooled, and the cooling water is used to perform cooling and dehumidification. Therefore, the cooling capacity can be maintained without constantly operating the compressor. Further, the cooling water is circulated by a pump, and proportional control over the entire range of 0 to 100% of the output of the pump is possible. However, on the other hand, there is a problem that the installation cost and the running cost become high as a whole device, for example, equipment for cooling and storing water and the above-mentioned pump for constantly circulating cooling water are required. Was.

【0005】本発明者は、直膨方式の冷凍機の上記特徴
を生かし、しかもその欠点を解決すべく研究を重ね、凝
縮器で凝縮した冷媒液をタンクで貯溜しておき、そのタ
ンク内の冷媒液の圧力を利用して冷媒液を比例制御によ
って蒸発器に送給することによって精密な冷却制御がで
きるのはないかということに着目し、本発明を完成する
に至った。
The inventor of the present invention has made various studies to make use of the above-mentioned features of the direct expansion type refrigerator and to solve the drawbacks thereof. The refrigerant liquid condensed in the condenser is stored in a tank, and the refrigerant in the tank is stored in the tank. By paying attention to whether precise cooling control can be performed by feeding the refrigerant liquid to the evaporator by proportional control using the pressure of the refrigerant liquid, the present invention has been completed.

【0006】本発明は上記課題を解決するもので、直膨
方式の冷凍機において、従来は困難であったモーター出
力の0〜100%までの全範囲で比例式による冷却制御
を可能にして、精密な冷却制御を行うことができる冷凍
機及びその比例制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. In a direct expansion type refrigerator, it is possible to perform cooling control by a proportional type in a whole range from 0 to 100% of a motor output which has been difficult in the past. An object of the present invention is to provide a refrigerator capable of performing precise cooling control and a proportional control method thereof.

【0007】[0007]

【課題を解決する為の手段】上記課題を解決するために
講じた発明の構成は次の通りである。第1の発明にあっ
ては、圧縮機と凝縮器と蒸発器とを備えた直接膨張方式
の冷凍機であって、上記凝縮器と上記蒸発器の冷媒液導
入側との間に設けられており、冷媒液を貯溜する冷媒液
タンクと、上記冷媒液タンク内から上記蒸発器に送られ
る冷媒液の比例制御を行う冷媒液比例制御手段と、上記
蒸発器の冷媒ガス導出側と上記圧縮機との間に設けられ
ており、冷媒ガスを貯溜する冷媒ガスタンクと、上記冷
媒ガスタンク内の圧力が所定の圧力範囲内にあるときに
上記圧縮機を作動させる圧縮機制御手段と、を備えてい
ることを特徴とする、冷凍機である。
Means for Solving the Problems The constitution of the invention taken to solve the above problems is as follows. According to a first aspect, there is provided a direct expansion type refrigerator including a compressor, a condenser, and an evaporator, wherein the refrigerator is provided between the condenser and a refrigerant liquid introduction side of the evaporator. A refrigerant liquid tank for storing refrigerant liquid; refrigerant liquid proportional control means for performing proportional control of the refrigerant liquid sent from the refrigerant liquid tank to the evaporator; a refrigerant gas outlet side of the evaporator; and the compressor. A refrigerant gas tank that stores refrigerant gas, and compressor control means that operates the compressor when the pressure in the refrigerant gas tank is within a predetermined pressure range. It is a refrigerator characterized by the above-mentioned.

【0008】第2の発明にあっては、圧縮機と凝縮器と
蒸発器とを備えた直接膨張方式の冷凍機の比例制御方法
であって、上記凝縮器で液化させた冷媒液を冷媒液貯溜
手段に貯溜するステップ、貯溜した冷媒液を比例制御に
より上記蒸発器に送給するステップ、上記蒸発器で冷媒
液を蒸発させて熱媒体を冷却するステップ、上記蒸発器
で蒸発した冷媒ガスを冷媒ガス貯溜手段に貯溜するステ
ップ、上記貯溜された冷媒ガスの圧力が所定の圧力範囲
内にあるときに上記圧縮機を作動させて上記貯溜された
冷媒ガスを圧縮し、上記凝縮器で液化するステップ、を
含むことを特徴とする、冷凍機の比例制御方法である。
According to a second aspect of the present invention, there is provided a proportional control method for a direct expansion type refrigerator including a compressor, a condenser, and an evaporator, wherein the refrigerant liquid liquefied by the condenser is a refrigerant liquid. Storing in the storage means, feeding the stored refrigerant liquid to the evaporator by proportional control, cooling the heat medium by evaporating the refrigerant liquid in the evaporator, and cooling the refrigerant gas evaporated in the evaporator. Storing the refrigerant gas in the refrigerant gas storage means, compressing the stored refrigerant gas by operating the compressor when the pressure of the stored refrigerant gas is within a predetermined pressure range, and liquefying the refrigerant gas in the condenser; A proportional control method for the refrigerator.

【0009】(作用)上記したように、従来の直膨方式
の冷凍機においては、冷却の制御が、モーターで圧縮機
を作動させ、冷媒液を冷却コイル等の蒸発器に送ること
によって行われていたために、圧縮機を作動できる最低
限度のモーター出力に満たない出力範囲の比例制御はで
きなかった。本発明によれば、冷却の制御は、タンクに
貯溜されている冷媒液を、電磁弁等の冷媒液比例制御手
段により蒸発器へ送給することにより行うようになって
いるので、モーターによる圧縮機の作動には直接的には
影響を受けない。また、圧縮機は、タンクに貯溜されて
いる冷媒ガスの圧力を感知する圧縮機制御手段によって
作動の制御が行われ、順次冷媒液タンクへの冷媒液の補
充が行われる。従って、圧縮機が作動中でも或いは停止
状態でも、冷媒液比例制御手段によって、圧縮機を作動
できる最低限度のモーター出力に満たない出力範囲の制
御を含めた、モーター出力の0〜100%の範囲におけ
る無段階の比例制御が可能になる。また、時間的な制約
はあるが、圧縮機用モーターの出力を超えた冷媒量も供
給可能とできるので、従来の回路より幅広い利用が可能
となる。
(Operation) As described above, in a conventional direct expansion type refrigerator, cooling is controlled by operating a compressor by a motor and sending refrigerant liquid to an evaporator such as a cooling coil. Therefore, the proportional control of the output range less than the minimum motor output that can operate the compressor could not be performed. According to the present invention, the cooling control is performed by feeding the refrigerant liquid stored in the tank to the evaporator by the refrigerant liquid proportional control means such as an electromagnetic valve. It is not directly affected by the operation of the machine. The operation of the compressor is controlled by compressor control means for sensing the pressure of the refrigerant gas stored in the tank, and the refrigerant liquid tank is sequentially replenished with the refrigerant liquid. Therefore, even when the compressor is operating or stopped, the refrigerant liquid proportional control means controls the output range below the minimum motor output at which the compressor can operate, in the range of 0 to 100% of the motor output. Stepless proportional control becomes possible. In addition, although there is a time restriction, it is possible to supply a refrigerant amount exceeding the output of the compressor motor, so that it can be used more widely than conventional circuits.

【0010】[0010]

【発明の実施の形態】本発明を図面に示した実施の形態
に基づき更に詳細に説明する。図1は本発明に係る冷凍
機を使用した空気調和装置の概略説明図である。空気調
和装置Cは冷凍機10を有している。冷凍機10は、圧
縮機11、凝縮器12、熱交換器である第1の蒸発器1
5及び第2の蒸発器16を備えている直膨方式の冷凍機
である。圧縮機11としては、ロータリー型やスクロー
ル型、レシプロ型等、様々な方式のものが使用可能であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the embodiments shown in the drawings. FIG. 1 is a schematic explanatory view of an air conditioner using a refrigerator according to the present invention. The air conditioner C has a refrigerator 10. The refrigerator 10 includes a compressor 11, a condenser 12, and a first evaporator 1 that is a heat exchanger.
5 is a direct expansion type refrigerator including a fifth evaporator 16 and a second evaporator 16. As the compressor 11, various types such as a rotary type, a scroll type, and a reciprocating type can be used.

【0011】凝縮器12と第1の蒸発器15及び第2の
蒸発器16の間には、凝縮器12で液化された冷媒液を
一時貯溜する冷媒液タンク17が設けられている。冷媒
液タンク17は内部圧力が高圧になる。また、冷媒液タ
ンク17と第1の蒸発器15及び第2の蒸発器16の間
には、冷媒液比例制御手段を構成するキャピラリチュー
ブ13、14と電磁弁19、20が設けてある。電磁弁
19、20は、同じく冷媒液比例制御手段を構成する比
例制御装置により開閉制御が行われる。なお、比例制御
装置としては、例えば、設定温度と吹出口温度の差を検
出し、その温度差に応じて電磁弁19、20の開閉制御
を行う方式が代表的である。
A refrigerant liquid tank 17 is provided between the condenser 12 and the first and second evaporators 15 and 16 for temporarily storing the refrigerant liquid liquefied by the condenser 12. The internal pressure of the refrigerant liquid tank 17 becomes high. Further, between the refrigerant liquid tank 17 and the first and second evaporators 15 and 16, there are provided capillary tubes 13 and 14 and electromagnetic valves 19 and 20 which constitute refrigerant liquid proportional control means. The solenoid valves 19 and 20 are controlled to be opened and closed by a proportional control device which also constitutes a refrigerant liquid proportional control means. A typical example of the proportional control device is a system that detects a difference between a set temperature and an outlet temperature and controls the opening and closing of the solenoid valves 19 and 20 according to the temperature difference.

【0012】第1の蒸発器15及び第2の蒸発器16と
圧縮機11の間には第1の蒸発器15及び第2の蒸発器
16で蒸発した冷媒ガスを一時貯溜する冷媒ガスタンク
18が設けられている。冷媒ガスタンク18の内部圧力
は比較的低圧である。第1の蒸発器15及び第2の蒸発
器16は、空調制御室30に設置されている。空調制御
室30は、主として除湿制御空気を作る除湿制御室31
と、主として冷却制御空気を作る冷却制御室32に区画
されている。除湿制御室31には第1の蒸発器15が、
冷却制御室32には第2の蒸発器16がそれぞれ配置さ
れている。
Between the first evaporator 15 and the second evaporator 16 and the compressor 11, a refrigerant gas tank 18 for temporarily storing the refrigerant gas evaporated in the first evaporator 15 and the second evaporator 16 is provided. Is provided. The internal pressure of the refrigerant gas tank 18 is relatively low. The first evaporator 15 and the second evaporator 16 are installed in the air conditioning control room 30. The air-conditioning control room 30 mainly includes a dehumidification control room 31 for producing dehumidification control air.
And a cooling control chamber 32 for mainly producing cooling control air. The first evaporator 15 is provided in the dehumidification control chamber 31.
The second evaporators 16 are arranged in the cooling control chamber 32, respectively.

【0013】空調制御室30には送風機33が設けられ
ており、除湿制御室31及び冷却制御室32に空気を送
るようになっている。除湿制御室31には、流入する空
気の風量を制御する風量制御シャッター34が設けられ
ている。除湿制御室31及び冷却制御室32から排出さ
れた空気は空調室40に送られるようになっており、空
調室40内から排出された空気は空調制御室30に戻る
ようになっている。なお、上記とは逆に送風機33の吹
き出しと吸い込みの方向を逆転させ、吸込み側に第1の
蒸発器15及び第2の蒸発器16等を配置すると、個別
に温度調整と湿度調整が行われた空気を送風機33で攪
拌することができ、吹出す空気の均一化を図ることがで
きる。また、符号36は湿度が低下しすぎたときに作動
させる加湿器、符号35は温度が低下しすぎたときに作
動させる加熱器である。
A blower 33 is provided in the air-conditioning control room 30 to send air to a dehumidification control room 31 and a cooling control room 32. The dehumidification control chamber 31 is provided with an air volume control shutter 34 for controlling the air volume of the inflowing air. The air discharged from the dehumidification control room 31 and the cooling control room 32 is sent to the air conditioning room 40, and the air discharged from the air conditioning room 40 returns to the air conditioning control room 30. It should be noted that when the blowout and suction directions of the blower 33 are reversed, and the first evaporator 15 and the second evaporator 16 and the like are arranged on the suction side, temperature adjustment and humidity adjustment are individually performed. The blown air can be stirred by the blower 33, and the blown air can be made uniform. Reference numeral 36 denotes a humidifier that operates when the humidity is too low, and reference numeral 35 denotes a heater that operates when the temperature is too low.

【0014】(作 用)図1を参照して、本発明に係る
空気調和装置Cの作用を説明する。圧縮機11は、冷媒
ガスタンク18に貯溜されていた冷媒ガスを吸い込んで
圧縮した後、凝縮器12に送り込む。凝縮器12では高
温・高圧になった冷媒ガスは液化し、この際放出される
潜熱はファン(図示省略)により冷却される。液化され
た冷媒液は冷媒液タンク17に貯溜される。空調室40
の冷却除湿条件に合わせて電磁弁19、20が時間比例
方式で開閉されると、冷媒液タンク17から冷媒液が所
要時間だけ第1の蒸発器15または第2の蒸発器16の
いずれか一方または双方に送られ、空調制御室30内に
おいて制御空気が作られる。
(Operation) The operation of the air conditioner C according to the present invention will be described with reference to FIG. The compressor 11 sucks and compresses the refrigerant gas stored in the refrigerant gas tank 18 and then sends it to the condenser 12. In the condenser 12, the high-temperature and high-pressure refrigerant gas is liquefied, and the latent heat released at this time is cooled by a fan (not shown). The liquefied refrigerant liquid is stored in the refrigerant liquid tank 17. Air conditioning room 40
When the solenoid valves 19 and 20 are opened and closed in a time proportional manner in accordance with the cooling and dehumidifying conditions, the refrigerant liquid is discharged from the refrigerant liquid tank 17 for one of the first evaporator 15 and the second evaporator 16 for a required time. Or, it is sent to both, and control air is created in the air conditioning control room 30.

【0015】第1の蒸発器15、第2の蒸発器16に送
られた冷媒液は蒸発して気化し、この際の気化熱で冷却
コイル(蒸発器に含まれる)を冷却して冷媒ガスタンク
18に貯溜される。冷媒ガスタンク18内の圧力が所定
の圧力(例えば、3kg/cm2 )まで上昇すると、圧
縮機制御手段を構成する圧力センサー21がこれを感知
して、圧縮機11の作動スイッチ22に信号を送り、圧
縮機11を作動させて冷媒ガスタンク18から冷媒ガス
を圧縮機11に送り、これを圧縮した後、凝縮器12に
送り込む。また、冷媒ガスタンク18内の圧力が所定の
圧力(例えば、1kg/cm2 )に低下すると送給を停
止する。なお、圧縮機11を作動させる基準となる冷媒
ガスの圧力値は、冷媒ガスタンク18内の圧力値に限定
するものではなく、冷凍機の回路構成によっては、低圧
回路内(例えば、冷媒ガスタンク18の前後の送給管
内)の圧力値を代用することも可能である。このよう
に、空気調和装置Cと冷凍機10は、上記サイクルを繰
り返すことにより運転が行われる。
The refrigerant liquid sent to the first evaporator 15 and the second evaporator 16 evaporates and evaporates, and the cooling coil (included in the evaporator) is cooled by the heat of vaporization at this time, and the refrigerant gas tank is cooled. 18 is stored. When the pressure in the refrigerant gas tank 18 rises to a predetermined pressure (for example, 3 kg / cm2), the pressure sensor 21 constituting the compressor control means senses this and sends a signal to the operation switch 22 of the compressor 11, The compressor 11 is operated to send the refrigerant gas from the refrigerant gas tank 18 to the compressor 11, compresses the refrigerant gas, and then sends it to the condenser 12. When the pressure in the refrigerant gas tank 18 decreases to a predetermined pressure (for example, 1 kg / cm 2), the supply is stopped. The pressure value of the refrigerant gas serving as a reference for operating the compressor 11 is not limited to the pressure value in the refrigerant gas tank 18, but may be in a low-pressure circuit (for example, in the refrigerant gas tank 18) depending on the circuit configuration of the refrigerator. It is also possible to substitute the pressure values in the front and rear feed pipes). Thus, the air conditioner C and the refrigerator 10 are operated by repeating the above cycle.

【0016】上記したように、空調室40の冷却除湿の
制御は、冷媒液タンク17に貯溜されている冷媒液を、
電磁弁19、20により第1の蒸発器15、第2の蒸発
器16へ時間比例制御により送給することで行うように
なっているので、モーターによる圧縮機11の作動に
は、直接的には影響を受けない。また、圧縮機11は、
冷媒ガスタンク18に貯溜されている冷媒ガスの圧力を
感知する圧力センサー21と作動スイッチ22によって
作動の制御が行われ、順次冷媒液タンク17への冷媒液
の補充が行われる。従って、圧縮機11が作動中でも或
いは停止状態であっても、圧縮機11を作動できる最低
限度のモーター出力に満たない出力範囲の制御を含め
た、モーター出力の0〜100%の範囲における無段階
の比例制御が可能になる。更に、短時間であれば通常の
モーター出力100%では得られない冷媒量を供給でき
るので、外乱による温度の急変にも対応できる効果も期
待できる。
As described above, the control of the cooling and dehumidification of the air-conditioning chamber 40 is performed by controlling the refrigerant liquid stored in the refrigerant liquid tank 17 by
Since the solenoid valves 19 and 20 are used to feed the first evaporator 15 and the second evaporator 16 by time proportional control, the operation of the compressor 11 by the motor is directly performed. Is not affected. Also, the compressor 11
The operation of the refrigerant gas tank 18 is controlled by a pressure sensor 21 for sensing the pressure of the refrigerant gas stored in the refrigerant gas tank 18 and the operation switch 22, and the refrigerant liquid tank 17 is sequentially replenished with the refrigerant liquid. Therefore, even when the compressor 11 is operating or stopped, the stepless operation in the range of 0 to 100% of the motor output including the control of the output range below the minimum motor output that can operate the compressor 11 is performed. Can be proportionally controlled. Furthermore, since the amount of refrigerant that cannot be obtained with a normal motor output of 100% can be supplied in a short time, an effect that can cope with a sudden change in temperature due to disturbance can be expected.

【0017】また、本発明の空気調和装置では、それぞ
れ第1の蒸発器15、第2の蒸発器16が設けてある除
湿制御室31と冷却制御室32に空気を流通させて冷却
除湿を行うようにしている。すなわち、冷却制御室32
では、空気を流通させて第2の蒸発器16と熱交換を行
って冷却し、除湿制御室31では、風量制御シャッター
34によって、空気の流れる風速を遅くし風量を低下さ
せて第1の蒸発器15と熱交換を行い、これによって空
気の冷却と除湿を行う。除湿制御室31を流れる空気は
風量が少なくなっているが、冷却制御室32と除湿制御
室31のトータルの風量は同じであるので、空調室40
における空気の循環が効率よく行われる。
Further, in the air conditioner of the present invention, air is circulated through the dehumidification control chamber 31 and the cooling control chamber 32 provided with the first evaporator 15 and the second evaporator 16, respectively, to perform cooling and dehumidification. Like that. That is, the cooling control chamber 32
Then, the air is circulated to exchange heat with the second evaporator 16 for cooling. In the dehumidification control chamber 31, the air flow rate control shutter 34 lowers the air flow speed and lowers the air flow to perform the first evaporation. The heat exchange with the vessel 15 is performed, thereby cooling and dehumidifying the air. Although the air volume of the air flowing through the dehumidification control chamber 31 is small, the total air volume of the cooling control chamber 32 and the dehumidification control chamber 31 is the same.
Air is efficiently circulated in the device.

【0018】このように、空調室40の空気の循環を効
率よく行い、温度、湿度の分布を均一に安定させるため
の十分な風量を確保しながら、除湿制御室31で除湿も
行うことができる。また、冷却除湿の制御は、風量制御
シャッター34によって冷却制御用と除湿制御用の空気
を適宜割り振って調整することにより、精密な制御が可
能である。また、除湿するときに、例えば冷凍機1を運
転しながらヒーターも作動させて温度を調整するという
ようなエネルギーの無駄な消費を防止できる。
As described above, the dehumidification can be performed in the dehumidification control chamber 31 while efficiently circulating the air in the air-conditioning chamber 40 and securing a sufficient air volume for stabilizing the distribution of temperature and humidity uniformly. . Further, the control of the cooling and dehumidification can be precisely controlled by appropriately allocating and adjusting the air for the cooling control and the air for the dehumidification control by the air volume control shutter 34. Further, when dehumidifying, it is possible to prevent wasteful consumption of energy such as adjusting the temperature by operating the heater while operating the refrigerator 1.

【0019】なお、本明細書で使用している用語と表現
は、あくまで説明上のものであって何等限度的なもので
はなく、本明細書に記述された特徴及びその一部と等価
の用語や表現を除外する意図はない。また、本発明は図
示の実施の形態に限定されるものではなく、本発明の技
術思想の範囲内で種々の変更態様が可能であることは言
うまでもない。
It should be noted that the terms and expressions used in the present specification are merely illustrative and not restrictive, and the terms described in the present specification and terms equivalent to a part thereof are used. There is no intention to exclude words or expressions. Further, the present invention is not limited to the illustrated embodiment, and it goes without saying that various modifications can be made within the scope of the technical idea of the present invention.

【0020】[0020]

【発明の効果】本発明は以上のような構成を有し次の効
果を備えている。すなわち、本発明によれば、冷却の制
御は、タンクに貯溜されている冷媒液を電磁弁等の冷媒
液比例制御手段により蒸発器へ送給することにより行う
ようになっているので、モーターによる圧縮機の作動に
は直接的には影響を受けない。また、圧縮機は、タンク
に貯溜されている冷媒ガスの圧力を感知する圧縮機制御
手段によって作動の制御が行われ、順次冷媒液タンクへ
の冷媒液の補充が行われる。従って、圧縮機が作動中で
も或いは停止状態でも、冷媒液比例制御手段によって、
圧縮機を作動できる最低限度のモーター出力に満たない
出力範囲の制御を含めた、モーター出力の0〜100%
の範囲における無段階の比例制御が可能になる。また、
時間的な制約はあるが、圧縮機用モーターの出力を超え
た冷媒量も供給可能とできるので、従来の回路より幅広
い利用が可能となる。
The present invention has the above configuration and has the following effects. That is, according to the present invention, the control of the cooling is performed by feeding the refrigerant liquid stored in the tank to the evaporator by the refrigerant liquid proportional control means such as an electromagnetic valve. It is not directly affected by the operation of the compressor. The operation of the compressor is controlled by compressor control means for sensing the pressure of the refrigerant gas stored in the tank, and the refrigerant liquid tank is sequentially replenished with the refrigerant liquid. Therefore, whether the compressor is operating or stopped, the refrigerant liquid proportional control means
0-100% of motor output, including control of output range below the minimum motor output that can operate the compressor
Stepless proportional control in the range of Also,
Although there is a time constraint, it is possible to supply a refrigerant amount exceeding the output of the compressor motor, so that it can be used more widely than conventional circuits.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷凍機を使用した空気調和装置の
概略説明図。
FIG. 1 is a schematic explanatory view of an air conditioner using a refrigerator according to the present invention.

【符号の説明】[Explanation of symbols]

C 空気調和装置 10 冷凍機 11 圧縮機 12 凝縮器 13、14 キャピラリチューブ 15 第1の蒸発器 16 第2の蒸発器 17 冷媒液タンク 18 冷媒ガスタンク 19、20 電磁弁 21 圧力センサー 22 作動スイッチ 30 空調制御室 31 除湿制御室 32 冷却制御室 33 循環ファン 34 流量制御シャッター 35 加熱器 36 加湿器 40 空調室 C Air conditioner 10 Refrigerator 11 Compressor 12 Condenser 13, 14 Capillary tube 15 First evaporator 16 Second evaporator 17 Refrigerant liquid tank 18 Refrigerant gas tank 19, 20 Solenoid valve 21 Pressure sensor 22 Operation switch 30 Air conditioning Control room 31 Dehumidification control room 32 Cooling control room 33 Circulation fan 34 Flow control shutter 35 Heater 36 Humidifier 40 Air conditioning room

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と凝縮器と蒸発器とを備えた直接
膨張方式の冷凍機であって、 上記凝縮器(12)と上記蒸発器(15,16) の冷媒液導入側と
の間に設けられており、冷媒液を貯溜する冷媒液タンク
(17)と、 上記冷媒液タンク内(17)から上記蒸発器(15,16) に送ら
れる冷媒液の比例制御を行う冷媒液比例制御手段と、 上記蒸発器(15,16) の冷媒ガス導出側と上記圧縮機(11)
との間に設けられており、冷媒ガスを貯溜する冷媒ガス
タンク(18)と、 上記冷媒ガスタンク(18)内の圧力が所定の圧力範囲内に
あるときに上記圧縮機(11)を作動させる圧縮機制御手段
と、を備えていることを特徴とする、 冷凍機。
1. A direct expansion type refrigerator comprising a compressor, a condenser and an evaporator, wherein a refrigerator is provided between the condenser (12) and a refrigerant liquid introduction side of the evaporator (15, 16). And a refrigerant liquid tank for storing the refrigerant liquid
(17), refrigerant liquid proportional control means for performing proportional control of the refrigerant liquid sent from the inside of the refrigerant liquid tank (17) to the evaporator (15, 16), and refrigerant gas of the evaporator (15, 16) Discharge side and the above compressor (11)
A refrigerant gas tank (18) that stores refrigerant gas, and a compressor that operates the compressor (11) when the pressure in the refrigerant gas tank (18) is within a predetermined pressure range. A refrigerator control means.
【請求項2】 圧縮機(11)と凝縮器(12)と蒸発器(15,1
6) とを備えた直接膨張方式の冷凍機の比例制御方法で
あって、 上記凝縮器(12)で液化させた冷媒液を冷媒液貯溜手段に
貯溜するステップ、 貯溜した冷媒液を比例制御により上記蒸発器(15,16) に
送給するステップ、 上記蒸発器(15,16) で冷媒液を蒸発させて熱媒体を冷却
するステップ、 上記蒸発器(15,16) で蒸発した冷媒ガスを冷媒ガス貯溜
手段に貯溜するステップ、 上記貯溜された冷媒ガスの圧力が所定の圧力範囲内にあ
るときに上記圧縮機(11)を作動させて上記貯溜された冷
媒ガスを圧縮し、上記凝縮器(12)で液化するステップ、
を含むことを特徴とする、 冷凍機の比例制御方法。
2. A compressor (11), a condenser (12) and an evaporator (15, 1).
6) A proportional control method for a direct expansion type refrigerator comprising: a step of storing the refrigerant liquid liquefied by the condenser (12) in refrigerant liquid storage means, wherein the stored refrigerant liquid is proportionally controlled. Sending the refrigerant gas to the evaporator (15, 16), evaporating the refrigerant liquid in the evaporator (15, 16) to cool the heat medium, and cooling the refrigerant gas evaporated in the evaporator (15, 16). Storing the refrigerant gas in the refrigerant gas storage means, compressing the stored refrigerant gas by operating the compressor (11) when the pressure of the stored refrigerant gas is within a predetermined pressure range, Liquefying in (12),
A proportional control method for a refrigerator.
JP29041097A 1997-10-06 1997-10-06 Refrigerator and its proportional control method Expired - Lifetime JP3434683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29041097A JP3434683B2 (en) 1997-10-06 1997-10-06 Refrigerator and its proportional control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29041097A JP3434683B2 (en) 1997-10-06 1997-10-06 Refrigerator and its proportional control method

Publications (2)

Publication Number Publication Date
JPH11108475A true JPH11108475A (en) 1999-04-23
JP3434683B2 JP3434683B2 (en) 2003-08-11

Family

ID=17755668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29041097A Expired - Lifetime JP3434683B2 (en) 1997-10-06 1997-10-06 Refrigerator and its proportional control method

Country Status (1)

Country Link
JP (1) JP3434683B2 (en)

Also Published As

Publication number Publication date
JP3434683B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
CN104515335B (en) Vehicle heat pump
JP2020168950A (en) On-vehicle temperature control device
JP2002168532A (en) Supercritical steam compression system, and device for regulating pressure in high-pressure components of refrigerant circulating therein
JP3816872B2 (en) Operation control method of refrigeration system with two evaporators
US7353664B2 (en) Heat pump and compressor discharge pressure controlling apparatus for the same
US5722248A (en) Operating control circuit for a refrigerator having high efficiency multi-evaporator cycle (h.m. cycle)
JP6486847B2 (en) Environmental test equipment
JP2013073502A (en) Environment testing device
JP2000146328A (en) Refrigerating and air-conditioning device
JP4211912B2 (en) Constant temperature and humidity device
JP2000266368A (en) Air-conditioner system
JP2004060956A (en) Heat transfer system and method of operating the same
CN217685941U (en) Double-working-condition water chilling unit
JP2000205672A (en) Refrigerating system
JP2001108319A (en) Refrigerator
JP2000230897A (en) Thermostatic apparatus and thermostatic humidifying apparatus
US11953242B2 (en) Air conditioner
US20210239377A1 (en) Air conditioner
CN115143658A (en) Double-working-condition water chilling unit and control method thereof
KR100901726B1 (en) Heat pump type thermo - hygrostat have a cooling and heating apparatus
JP3434683B2 (en) Refrigerator and its proportional control method
JP3402440B2 (en) Air conditioner and air conditioner method
JP2000283626A (en) Refrigerator
JP2001304652A (en) Air conditioner and its control method
JP6650062B2 (en) Environmental test equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term