JP2001304652A - Air conditioner and its control method - Google Patents

Air conditioner and its control method

Info

Publication number
JP2001304652A
JP2001304652A JP2000124366A JP2000124366A JP2001304652A JP 2001304652 A JP2001304652 A JP 2001304652A JP 2000124366 A JP2000124366 A JP 2000124366A JP 2000124366 A JP2000124366 A JP 2000124366A JP 2001304652 A JP2001304652 A JP 2001304652A
Authority
JP
Japan
Prior art keywords
cooling
temperature
water circulation
cooling water
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000124366A
Other languages
Japanese (ja)
Other versions
JP4074422B2 (en
Inventor
Tsuneo Uekusa
常雄 植草
Shisei Waratani
至誠 藁谷
Minoru Okada
實 岡田
Takahiro Ezaki
孝弘 江崎
Toshihiro Nanbu
俊弘 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Power and Building Facilities Inc
NTT Data Group Corp
Original Assignee
NTT Data Corp
NTT Power and Building Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Data Corp, NTT Power and Building Facilities Inc filed Critical NTT Data Corp
Priority to JP2000124366A priority Critical patent/JP4074422B2/en
Publication of JP2001304652A publication Critical patent/JP2001304652A/en
Application granted granted Critical
Publication of JP4074422B2 publication Critical patent/JP4074422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner with improved energy-saving properties and its control method that can reduce operation power, while securing sufficient cooling capacity, and hence can improve operation efficiency drastically. SOLUTION: The operation of a refrigeration cycle and that of a cooling water circulation cycle are controlled to a state for obtaining the maximum cooling capacity, when an indoor temperature is equal to or more than a specific value. The operation of the refrigeration cycle and that of the cooling water circulation cycle are controlled to a state for obtaining a required cooling capacity with a very small operation power, when the indoor temperature is less than the specific value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冬期など外気温
度が低い場合にも冷房が必要な高発熱機器用の空調機と
その制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for high heat generation equipment which needs cooling even when the outside air temperature is low such as in winter, and a control method therefor.

【0002】[0002]

【従来の技術】一般に、コンピュータ等の高発熱機器が
設置された室内空間を年間にわたって冷房する装置とし
て、年間冷房型空調機が知られている。この空調機は、
圧縮機、水冷凝縮器、膨張弁、および室内熱交換器を通
して冷媒を循環させる冷凍サイクルと、冷却水循環ポン
プ、冷却塔、および上記水冷凝縮器を通して冷却水を循
環させる冷却水循環サイクルとを備えている。
2. Description of the Related Art In general, an annual cooling type air conditioner is known as a device for cooling an indoor space in which a high heat generating device such as a computer is installed over a year. This air conditioner
A refrigeration cycle for circulating a refrigerant through a compressor, a water-cooled condenser, an expansion valve, and an indoor heat exchanger, and a cooling-water circulation pump, a cooling tower, and a cooling-water circulation cycle for circulating cooling water through the water-cooled condenser are provided. .

【0003】圧縮機から吐出される高温高圧のガス冷媒
が水冷凝縮器へと導かれ、水冷凝縮器に流入したガス冷
媒は同水冷凝縮器に流入する冷却水に熱を奪われて液化
する。水冷凝縮器から流出する液冷媒は膨張弁で減圧さ
れた後、低温低圧の液・ガス混合冷媒となり、蒸発器
(室内熱交換器)へと導かれる。蒸発器ではこの液・ガ
ス冷媒が室内空気から熱を奪って気化する。このガス冷
媒が圧縮機に吸い込まれ、以下、同様のサイクルが繰り
返される。
A high-temperature and high-pressure gas refrigerant discharged from a compressor is guided to a water-cooled condenser, and the gas refrigerant flowing into the water-cooled condenser is deprived of heat by cooling water flowing into the water-cooled condenser and liquefied. After the liquid refrigerant flowing out of the water-cooled condenser is decompressed by the expansion valve, it becomes a low-temperature and low-pressure liquid / gas mixed refrigerant, and is guided to an evaporator (indoor heat exchanger). In the evaporator, the liquid / gas refrigerant takes heat from indoor air and evaporates. This gas refrigerant is sucked into the compressor, and the same cycle is repeated thereafter.

【0004】水冷凝縮器を経た冷却水は冷却塔に導か
れ、その冷却塔において冷却水の熱(ガス冷媒から奪っ
た熱)が大気に放出される。この放熱によって温度低下
した冷却水が冷却水循環ポンプによって再び水冷凝縮器
に供給される。
[0004] The cooling water that has passed through the water-cooled condenser is led to a cooling tower, where the heat of the cooling water (heat taken from the gas refrigerant) is released to the atmosphere. The cooling water whose temperature has decreased due to the heat radiation is supplied again to the water-cooled condenser by the cooling water circulation pump.

【0005】[0005]

【発明が解決しようとする課題】年間冷房型空調機のよ
うに、年間にわたり冷房運転が継続されるものでは、運
転電力の低減、ひいては運転効率の向上が強く望まれる
状況にある。
In an air conditioner in which the cooling operation is continued for a year, such as an annual cooling type air conditioner, there is a strong demand for a reduction in operating power and an improvement in operating efficiency.

【0006】この発明は上記の事情を考慮したもので、
その目的とするところは、十分な冷房能力を確保しなが
ら運転電力の低減を図ることができ、これにより運転効
率の大幅な向上が図れる省エネルギ性にすぐれた空調機
とその制御方法を提供することにある。
[0006] The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide an air conditioner with excellent energy saving and a control method thereof, which can reduce the operating power while securing a sufficient cooling capacity, thereby greatly improving the operating efficiency. It is in.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明の空
調機は、圧縮機、水冷凝縮器、減圧器、および室内熱交
換器を通して冷媒を循環させる冷凍サイクルと、冷却水
循環ポンプ、冷却塔、および上記水冷凝縮器を通して冷
却水を循環させる冷却水循環サイクルと、室内温度を検
知する室内温度検知手段と、この室内温度検知手段の検
知温度が所定値以上のとき、最大の冷房能力が得られる
状態に上記冷凍サイクルの運転および上記冷却水循環サ
イクルの運転を制御する第1制御手段と、上記室内温度
検知手段の検知温度が所定値未満のとき、極力小さい運
転電力で、必要とされる冷房能力が得られる状態に上記
冷凍サイクルの運転および上記冷却水循環サイクルの運
転を制御する第2制御手段と、を備える。
An air conditioner according to a first aspect of the present invention includes a refrigeration cycle for circulating a refrigerant through a compressor, a water-cooled condenser, a decompressor, and an indoor heat exchanger, a cooling water circulation pump, and a cooling tower. A cooling water circulation cycle for circulating cooling water through the water-cooled condenser, an indoor temperature detecting means for detecting an indoor temperature, and a maximum cooling capacity is obtained when the detected temperature of the indoor temperature detecting means is equal to or higher than a predetermined value. First control means for controlling the operation of the refrigeration cycle and the operation of the cooling water circulation cycle in a state, and a required cooling capacity with a minimum operating power when the detected temperature of the indoor temperature detecting means is less than a predetermined value. And a second control means for controlling the operation of the refrigeration cycle and the operation of the cooling water circulation cycle in a state in which is obtained.

【0008】請求項2に係る発明の空調機は、請求項1
に係る発明において、室内温度検知手段について限定し
ている。すなわち、室内温度検知手段は、室内温度とし
て、室内の所定個所の温度、または室内からの吸い込み
空気温度、または室内への吹き出し空気の温度を検知す
る。
[0008] The air conditioner of the invention according to claim 2 is claim 1.
In the invention according to the first aspect, the indoor temperature detecting means is limited. That is, the indoor temperature detecting means detects, as the indoor temperature, the temperature of a predetermined location in the room, the temperature of the air taken in from the room, or the temperature of the air blown into the room.

【0009】請求項3に係る発明の空調機は、請求項1
に係る発明において、各制御手段について限定してい
る。すなわち、第1制御手段は、室内温度が予め定めら
れた設定値を含む所定温度域より高い場合、最大の冷房
能力が得られる状態に冷凍サイクルの運転および冷却水
循環サイクルの運転を制御する。第2制御手段は、室内
温度が上記所定温度域内に存する場合、極力小さい運転
電力で、必要とされる冷房能力が得られる状態に冷凍サ
イクルの運転および冷却水循環サイクルの運転を制御す
る。
An air conditioner according to a third aspect of the present invention is the air conditioner according to the first aspect.
In the invention according to the first aspect, each control means is limited. That is, when the room temperature is higher than a predetermined temperature range including a predetermined set value, the first control means controls the operation of the refrigeration cycle and the operation of the cooling water circulation cycle so that the maximum cooling capacity is obtained. When the room temperature is within the predetermined temperature range, the second control means controls the operation of the refrigeration cycle and the operation of the cooling water circulation cycle so that the required cooling capacity can be obtained with as little operating power as possible.

【0010】請求項4に係る発明の空調機は、請求項1
ないし請求項3のいずれかに係る発明において、各制御
手段について限定している。すなわち、各制御手段は、
制御対象が、圧縮機の回転数、水冷凝縮器における冷媒
の凝縮圧力、冷却水循環ポンプの送水量、および冷却塔
の冷却量である。
An air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect.
In the invention according to any one of claims 3 to 5, each control means is limited. That is, each control means
The control targets are the number of rotations of the compressor, the condensation pressure of the refrigerant in the water-cooled condenser, the amount of water sent by the cooling water circulation pump, and the amount of cooling of the cooling tower.

【0011】請求項5に係る発明の空調機の制御方法
は、圧縮機、水冷凝縮器、減圧器、および室内熱交換器
を通して冷媒を循環させる冷凍サイクルと、冷却水循環
ポンプ、冷却塔、および前記水冷凝縮器を通して冷却水
を循環させる冷却水循環サイクルとを備えた空調機にお
いて、室内温度が所定値以上のとき最大の冷房能力が得
られる状態に上記冷凍サイクルの運転および上記冷却水
循環サイクルの運転を制御し、室内温度が所定値未満の
とき極力小さい運転電力で、必要とされる冷房能力が得
られる状態に上記冷凍サイクルの運転および上記冷却水
循環サイクルの運転を制御する。
According to a fifth aspect of the invention, there is provided a method for controlling an air conditioner, comprising: a refrigeration cycle for circulating a refrigerant through a compressor, a water-cooled condenser, a decompressor, and an indoor heat exchanger; a cooling water circulation pump; In an air conditioner having a cooling water circulation cycle for circulating cooling water through a water-cooled condenser, the operation of the refrigeration cycle and the operation of the cooling water circulation cycle are performed so that the maximum cooling capacity is obtained when the room temperature is equal to or higher than a predetermined value. When the room temperature is less than a predetermined value, the operation of the refrigeration cycle and the operation of the cooling water circulation cycle are controlled so that the required cooling capacity can be obtained with the operation power as small as possible.

【0012】[0012]

【発明の実施の形態】[1]以下、この発明の第1の実
施形態について図面を参照して説明する。図1に示すよ
うに、圧縮機1の冷媒吐出口にガス側冷媒配管2を介し
て水冷凝縮器3の熱交換器3aが接続されている。この
熱交換器3aに凝縮圧力調節弁4、液側冷媒配管5、お
よび減圧器たとえば開度可変の膨張弁6を介して室内熱
交換器(蒸発器)7が接続され、その室内熱交換器7に
圧縮機1の冷媒吸込口が接続されている。すなわち、圧
縮機1、水冷凝縮器3、凝縮圧力調節弁4、液側冷媒配
管5、膨張弁6、および室内熱交換器7に通して冷媒を
循環させる冷凍サイクルが構成されている。
[1] Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a heat exchanger 3 a of a water-cooled condenser 3 is connected to a refrigerant discharge port of the compressor 1 via a gas-side refrigerant pipe 2. An indoor heat exchanger (evaporator) 7 is connected to the heat exchanger 3a via a condensing pressure control valve 4, a liquid-side refrigerant pipe 5, and a decompressor, for example, an expansion valve 6 with a variable opening. The refrigerant suction port of the compressor 1 is connected to 7. That is, a refrigeration cycle is formed in which the refrigerant is circulated through the compressor 1, the water-cooled condenser 3, the condensation pressure control valve 4, the liquid-side refrigerant pipe 5, the expansion valve 6, and the indoor heat exchanger 7.

【0013】凝縮圧力調節弁4はいわゆる三方弁であ
り、この凝縮圧力調節弁4と上記熱交換器3aの冷媒流
入側との間にバイパス配管2aが設けられている。凝縮
圧力調節弁4は、熱交換器3aを通る冷媒の量と、バイ
パス配管2aを通る冷媒の量とを、開度変化によって相
対的に増減し、これにより熱交換器3aにおける冷媒の
凝縮圧力を調節する。
The condensing pressure control valve 4 is a so-called three-way valve, and a bypass pipe 2a is provided between the condensing pressure control valve 4 and the refrigerant inflow side of the heat exchanger 3a. The condensing pressure control valve 4 relatively increases or decreases the amount of the refrigerant passing through the heat exchanger 3a and the amount of the refrigerant passing through the bypass pipe 2a by changing the opening degree, whereby the condensing pressure of the refrigerant in the heat exchanger 3a is increased. Adjust

【0014】室内熱交換器7の近傍に室内送風機8が配
設されている。室内送風機8は、室内の空気を吸い込ん
で室内熱交換器7に通し、その室内熱交換器7を経た空
気(冷気)を室内に吹き出す働きをする。
An indoor blower 8 is provided near the indoor heat exchanger 7. The indoor blower 8 has a function of sucking indoor air, passing it through the indoor heat exchanger 7, and blowing out the air (cool air) passing through the indoor heat exchanger 7 into the room.

【0015】一方、冷却水循環ポンプ11の水吐出口に
水管12を介して冷却塔13の熱交換器14が接続され
ている。冷却塔13は、熱交換器14のほかに、この熱
交換器14に冷却用水をかける散水器15、塔内の底部
に溜まる冷却用水を散水器15に供給する散水ポンプ1
6、冷却用水を冷やすために外気を導入する冷却塔送風
機17などを備える。
On the other hand, a heat exchanger 14 of a cooling tower 13 is connected to a water discharge port of the cooling water circulation pump 11 via a water pipe 12. The cooling tower 13 includes, in addition to the heat exchanger 14, a sprinkler 15 that applies cooling water to the heat exchanger 14, and a sprinkler pump 1 that supplies cooling water accumulated in the bottom of the tower to the sprinkler 15.
6. A cooling tower blower 17 for introducing outside air to cool the cooling water is provided.

【0016】この冷却塔13の熱交換器14に水管18
を介して上記水冷凝縮器3の熱交換器3bが接続され、
その熱交換器3bに冷却水循環ポンプ11の水吸込口が
接続されている。すなわち、冷却水循環ポンプ11、冷
却塔13、水冷凝縮器3を通して冷却水を循環させる冷
却水循環サイクルが構成されている。
A water pipe 18 is connected to the heat exchanger 14 of the cooling tower 13.
Is connected to the heat exchanger 3b of the water-cooled condenser 3 through
The water inlet of the cooling water circulation pump 11 is connected to the heat exchanger 3b. That is, a cooling water circulation cycle for circulating the cooling water through the cooling water circulation pump 11, the cooling tower 13, and the water-cooled condenser 3 is configured.

【0017】上記圧縮機1は、回転数可変のモータを有
している。この圧縮機1の駆動用として圧縮機駆動部2
1が設けられている。圧縮機駆動部21は、圧縮機1の
モータに対する駆動電圧を出力するとともに、その駆動
電圧の周波数を変化させる機能を有する。この周波数変
化により圧縮機1のモータの回転数が変化し、それに伴
い、圧縮機1の能力(容量とも称す)が変化する。
The compressor 1 has a motor whose rotation speed is variable. The compressor drive unit 2 is used to drive the compressor 1.
1 is provided. The compressor drive unit 21 has a function of outputting a drive voltage for the motor of the compressor 1 and changing the frequency of the drive voltage. Due to this frequency change, the rotation speed of the motor of the compressor 1 changes, and accordingly, the capacity (also called capacity) of the compressor 1 changes.

【0018】上記室内送風機8に送風機駆動部22が接
続されている。送風機駆動部22は、室内送風機8のモ
ータに対する駆動電圧を出力するとともに、その駆動電
圧の周波数を変化させる機能を有する。この周波数変化
により、室内送風機8の送風量が変化する。
A blower driving unit 22 is connected to the indoor blower 8. The blower drive unit 22 has a function of outputting a drive voltage for the motor of the indoor blower 8 and changing the frequency of the drive voltage. Due to this frequency change, the amount of air blown by the indoor blower 8 changes.

【0019】上記冷却水循環ポンプ11にポンプ駆動部
23が接続されている。ポンプ駆動部23は、冷却水循
環ポンプ11のモータに対する駆動電圧を出力するとと
もに、その駆動電圧の周波数を変化させる機能を有す
る。この周波数変化により、冷却水循環ポンプ11の送
水量が変化する。
A pump driving unit 23 is connected to the cooling water circulation pump 11. The pump drive unit 23 has a function of outputting a drive voltage to the motor of the cooling water circulation pump 11 and changing a frequency of the drive voltage. Due to this frequency change, the water supply amount of the cooling water circulation pump 11 changes.

【0020】被空調室内の所定個所に、室内空気の温度
Trを検知する室内温度センサ(室内温度検知手段)3
1が設けられている。室内送風機8の運転に基づく室内
空気の吸い込み風路に、吸い込み空気の温度Tiを検知
する吸い込み温度センサ(室内温度検知手段)32が設
けられている。室内送風機8の運転に基づく空調用空気
(冷風)の吹き出し風路に、吹き出し空気の温度Toを
検知する吹き出し温度センサ(室内温度検知手段)33
が設けられている。
An indoor temperature sensor (indoor temperature detecting means) 3 for detecting the temperature Tr of the indoor air at a predetermined location in the room to be air-conditioned.
1 is provided. An intake air temperature sensor (indoor temperature detection means) 32 for detecting the intake air temperature Ti is provided in the intake air passage of the indoor air based on the operation of the indoor blower 8. A blow-out temperature sensor (indoor temperature detecting means) 33 for detecting the temperature To of the blow-out air in a blow-out air path for air-conditioning air (cool air) based on the operation of the indoor blower 8.
Is provided.

【0021】冷却塔13が設置されている室外に、外気
温度Txを検知する外気温度センサ(外気温度検知手
段)34が設けられている。
Outside the room where the cooling tower 13 is installed, an outside air temperature sensor (outside air temperature detecting means) 34 for detecting an outside air temperature Tx is provided.

【0022】40は当該空調機の全体を制御する制御部
である。この制御部40に、上記凝縮圧力調節弁4、膨
張弁6、散水ポンプ16、冷却塔送風機17、圧縮機駆
動部21、送風機駆動部22、ポンプ駆動部23、室内
温度センサ31、吸い込み温度センサ32、吹き出し温
度センサ33、外気温度センサ34、および操作部41
が接続されている。
A control unit 40 controls the entire air conditioner. The control unit 40 includes the condensing pressure control valve 4, the expansion valve 6, the water spray pump 16, the cooling tower blower 17, the compressor drive unit 21, the blower drive unit 22, the pump drive unit 23, the indoor temperature sensor 31, and the suction temperature sensor. 32, blowout temperature sensor 33, outside air temperature sensor 34, and operation unit 41
Is connected.

【0023】制御部40は、主要な機能として次の
(1)(2)の手段を備える。 (1)室内温度(室内温度センサ31,32,33の検
知温度のいずれか)が操作部41で予め定められた設定
値Tsを含む所定温度域[(Ts−α)以上、(Ts+
β)以下]より高い場合、最大の冷房能力が得られる状
態に冷凍サイクルの運転および冷却水循環サイクルの運
転を制御する制御手段。
The control unit 40 has the following means (1) and (2) as main functions. (1) The indoor temperature (any of the detected temperatures of the indoor temperature sensors 31, 32, and 33) is equal to or more than a predetermined temperature range [(Ts−α) including a set value Ts predetermined by the operation unit 41, and (Ts +
β) or less], control means for controlling the operation of the refrigeration cycle and the operation of the cooling water circulation cycle so that the maximum cooling capacity is obtained.

【0024】(2)室内温度が上記所定温度域[(Ts
−α)以上、(Ts+β)以下]内に存する場合、極力
小さい運転電力で、必要とされる冷房能力が得られる状
態、要するに運転効率{=冷房能力(kW)/運転電力
(kW)}が最大となる状態に、冷凍サイクルの運転お
よび冷却水循環サイクルの運転を制御する制御手段。
(2) When the room temperature is within the predetermined temperature range [(Ts
-Α) or more and (Ts + β) or less], a state in which the required cooling capacity can be obtained with the smallest possible operating power, that is, the operating efficiency {= cooling capacity (kW) / operating power (kW)}. Control means for controlling the operation of the refrigeration cycle and the operation of the cooling water circulation cycle to a maximum state.

【0025】つぎに、上記の構成の作用を図2および図
3を参照しながら説明する。操作部41で運転の開始操
作が行われると(ステップ101のYES)、室内温度
センサ31の検知温度Tr、吸い込み温度センサ32の
検知温度Ti、および吹き出し温度センサ33の検知温
度Toのうち、いずれか1つが室内温度として取り込ま
れる(ステップ102)。
Next, the operation of the above configuration will be described with reference to FIGS. When a start operation of the operation is performed by the operation unit 41 (YES in step 101), any one of the detected temperature Tr of the indoor temperature sensor 31, the detected temperature Ti of the suction temperature sensor 32, and the detected temperature To of the outlet temperature sensor 33 is selected. One of them is taken as the room temperature (step 102).

【0026】この室内温度が操作部41で予め定められ
た設定値Tsを含む所定温度域[(Ts−α)以上、
(Ts+β)以下]より高い状態にあれば、サーモオン
要求ありとの判断の下に(ステップ103のYES)、
冷房運転が実行される(ステップ104)。
The room temperature is equal to or higher than a predetermined temperature range [(Ts-α) including a set value Ts predetermined by the operation unit 41,
(Ts + β) or less], it is determined that there is a thermo-on request (YES in step 103),
A cooling operation is performed (step 104).

【0027】すなわち、圧縮機1は、圧縮機駆動部21
の出力により動作し、高温高圧のガス冷媒を吐出する。
このガス冷媒は、ガス側冷媒配管2により水冷凝縮器3
の熱交換器3aに導かれ、熱交換器3bを通る冷却水と
熱交換して凝縮し、液冷媒となる。この液冷媒は、液側
冷媒配管5により膨張弁6に導かれ、そこで減圧され、
低温低圧の液ガス混合冷媒となる。さらに、この液ガス
混合冷媒は、室内熱交換器(蒸発器)7に導かれ、室内
送風機8の運転により吸い込まれた室内空気と熱交換す
ることで蒸発し、低圧ガスとなって再び圧縮機1に吸入
される。室内熱交換器7を経た空気は冷房用空気として
室内に吹き出される。
That is, the compressor 1 includes a compressor driving unit 21
, And discharges a high-temperature and high-pressure gas refrigerant.
This gas refrigerant is supplied to the water-cooled condenser 3 by the gas side refrigerant pipe 2.
, And exchanges heat with the cooling water passing through the heat exchanger 3b to condense to become a liquid refrigerant. This liquid refrigerant is guided to the expansion valve 6 by the liquid-side refrigerant pipe 5, where the pressure is reduced.
It becomes a low-temperature, low-pressure liquid-gas mixed refrigerant. Further, the liquid-gas mixed refrigerant is guided to the indoor heat exchanger (evaporator) 7, evaporates by exchanging heat with the indoor air sucked by the operation of the indoor blower 8, evaporates to a low-pressure gas, and becomes a compressor again. Inhaled into 1. The air that has passed through the indoor heat exchanger 7 is blown into the room as cooling air.

【0028】水冷凝縮器3の熱交換器3bを経た冷却水
は、冷却水循環ポンプ11により冷却塔13に導かれ、
外気と熱交換した後、再び水冷凝縮器3に至る。
The cooling water passing through the heat exchanger 3b of the water-cooled condenser 3 is guided to a cooling tower 13 by a cooling water circulation pump 11,
After heat exchange with the outside air, it reaches the water-cooled condenser 3 again.

【0029】この冷房運転時、室内温度が上記所定温度
域より高い場合、現状の冷房能力が必要冷房能力を満足
していないとの判断の下に(ステップ105のNO)、
能力最大制御モードの運転が実行される(ステップ10
6)。能力最大制御モードでは、発揮し得る最大の冷房
能力が得られる状態に、圧縮機1の回転数(圧縮機駆動
部21の出力周波数)、冷却水循環ポンプ11の送水量
(ポンプ駆動部23の出力周波数)、および冷却塔13
の冷却量(散水ポンプ16の運転/停止、冷却塔送風機
17の風量)が制御される。すなわち、冷却塔13の冷
却塔送風機17が最大風量で運転され、冷却塔13の冷
却量が最大限に増大され、さらに、冷却水循環ポンプ1
1が最大回転数で運転されて送水量が増大されることに
より水冷凝縮器3における熱伝達作用が促進される。こ
れに合わせ、圧縮機1の回転数が増大されるとともに、
室内側送風機8の風量が増大され、かつ膨張弁6の開度
が制御される。こうして、能力最大制御モードの運転が
実行されることにより、室内温度が設定値Tsに向け速
やかに変化する。
During the cooling operation, if the room temperature is higher than the predetermined temperature range, it is determined that the current cooling capacity does not satisfy the required cooling capacity (NO in step 105).
The operation in the maximum capacity control mode is executed (step 10).
6). In the maximum capacity control mode, the rotation speed of the compressor 1 (the output frequency of the compressor drive unit 21), the water supply amount of the cooling water circulation pump 11 (the output of the pump drive unit 23) are set so that the maximum cooling capacity that can be exhibited is obtained. Frequency) and cooling tower 13
(The operation / stop of the watering pump 16 and the air volume of the cooling tower blower 17) are controlled. That is, the cooling tower blower 17 of the cooling tower 13 is operated at the maximum air volume, the cooling volume of the cooling tower 13 is maximized, and the cooling water circulation pump 1
The heat transfer effect in the water-cooled condenser 3 is promoted by increasing the amount of water supply by operating 1 at the maximum rotation speed. In accordance with this, while the rotation speed of the compressor 1 is increased,
The air volume of the indoor blower 8 is increased, and the opening of the expansion valve 6 is controlled. In this manner, by performing the operation in the maximum capacity control mode, the room temperature quickly changes toward the set value Ts.

【0030】室内温度が上記所定温度域内に存する場
合、現状の冷房能力が必要冷房能力を満足しているとの
判断の下に(ステップ105のYES)、あるいは冷房
能力の微少な増減で設定値Tsの環境を維持できるとの
判断の下に、最大COP制御モードの運転が実行される
(ステップ107)。最大COP制御モードでは、極力
小さい運転電力(消費電力)で、必要とされる冷房能力
が得られる状態、要するに運転効率{=冷房能力(k
W)/運転電力(kW)}が最大となる状態に、圧縮機
1の回転数(圧縮機駆動部21の出力周波数)、凝縮圧
力調節弁4の開度(水冷凝縮器3における冷媒の凝縮圧
力)、冷却水循環ポンプ11の送水量(ポンプ駆動部2
3の出力周波数)、および冷却塔13の冷却量(散水ポ
ンプ16の運転/停止、冷却塔送風機17の風量)が制
御される。
If the room temperature is within the predetermined temperature range, the set value is determined by judging that the current cooling capacity satisfies the required cooling capacity (YES in step 105) or by a small increase or decrease in the cooling capacity. The operation in the maximum COP control mode is executed based on the determination that the environment of Ts can be maintained (step 107). In the maximum COP control mode, a state in which a required cooling capacity is obtained with as small an operation power (power consumption) as possible, that is, an operation efficiency {= cooling capacity (k
W) / operating power (kW)}, the rotation speed of the compressor 1 (output frequency of the compressor drive unit 21), the opening degree of the condensing pressure control valve 4 (condensation of refrigerant in the water-cooled condenser 3) Pressure), the amount of water supplied by the cooling water circulation pump 11 (pump driving unit 2)
3), and the amount of cooling of the cooling tower 13 (the operation / stop of the watering pump 16 and the amount of air of the cooling tower blower 17) are controlled.

【0031】この最大COP制御モードの運転には、例
えば、次のような方法がある。冷却塔13の散水ポンプ
16を運転オンし、かつ冷却塔送風機17を定格電力で
運転し、冷却水循環ポンプ11の回転数を上げて送水量
を多くすることで、水冷凝縮器3における冷媒の凝縮圧
力を低くすることができる。冷媒の凝縮圧力が低くなる
と、圧縮機1にかかる負荷が小さくなり、必要とされる
冷房能力を維持したまま圧縮機1での消費電力を抑える
ことができる。すなわち、これは、冷凍サイクルの機器
を低負荷で運転し、その代わりに冷却水循環サイクルの
機器を高負荷で運転しながら、必要な冷房能力を維持す
る制御である。
The operation in the maximum COP control mode includes, for example, the following method. The water sprinkling pump 16 of the cooling tower 13 is turned on, the cooling tower blower 17 is operated at the rated power, and the number of rotations of the cooling water circulating pump 11 is increased to increase the amount of water supply, thereby condensing the refrigerant in the water-cooled condenser 3. The pressure can be reduced. When the condensing pressure of the refrigerant decreases, the load on the compressor 1 decreases, and power consumption in the compressor 1 can be suppressed while maintaining the required cooling capacity. That is, this is a control for maintaining the required cooling capacity while operating the equipment of the refrigeration cycle at a low load, and instead operating the equipment of the cooling water circulation cycle at a high load.

【0032】このように、冷凍サイクルの構成要素であ
る圧縮機1を低負荷で運転し、その代わりに冷却水循環
サイクルの構成要素である冷却水循環ポンプ11、散水
ポンプ16、冷却塔送風機17を高負荷で運転しなが
ら、必要な冷房能力を維持する制御について、第1の運
転電力決定条件が定められている。この第1の運転電力
決定条件は、各機器の個々の運転電力(消費電力)を現
時点の室内温度および外気温度をパラメータとして決定
するためのもので、制御部41のメモリに記憶されてい
る。
As described above, the compressor 1 which is a component of the refrigeration cycle is operated at a low load, and the cooling water circulating pump 11, the water sprinkling pump 16 and the cooling tower blower 17 which are the components of the cooling water circulating cycle are instead operated at a high load. A first operation power determination condition is defined for control for maintaining a required cooling capacity while operating with a load. The first operating power determination condition is for determining the individual operating power (power consumption) of each device using the current room temperature and the outside air temperature as parameters, and is stored in the memory of the control unit 41.

【0033】一方で、冷却塔13の散水ポンプ16と冷
却塔送風機17の両方、またはどちらかの運転を停止、
もしくは定格電力以下で運転した場合には、冷却塔13
の冷却能力が低下し、水冷凝縮器3を通過する冷却水の
温度が高くなる。この場合、水冷凝縮器3における冷媒
の凝縮圧力の上昇につながるが、圧縮機1の運転状態
(回転数)に余裕があれば、圧縮機1の回転数を上げ、
圧縮比を高くすれば、必要とされる冷房能力を維持する
ことができる。すなわち、これは、冷却水循環サイクル
の機器を低負荷で運転し、その代わりに冷凍サイクルの
機器を高負荷で運転しながら、必要な冷房能力を維持す
る制御である。
On the other hand, the operation of both or one of the water spray pump 16 and the cooling tower blower 17 of the cooling tower 13 is stopped.
Alternatively, when the operation is performed at the rated power or less, the cooling tower 13
Of the cooling water passing through the water-cooled condenser 3 increases. In this case, the condensing pressure of the refrigerant in the water-cooled condenser 3 is increased. However, if there is a margin in the operating state (the number of revolutions) of the compressor 1, the number of revolutions of the compressor 1 is increased.
If the compression ratio is increased, the required cooling capacity can be maintained. That is, this is a control for maintaining the required cooling capacity while operating the equipment of the cooling water circulation cycle at a low load, and instead operating the equipment of the refrigeration cycle at a high load.

【0034】このように、冷却水循環サイクルの構成要
素である冷却水循環ポンプ11、散水ポンプ16、冷却
塔送風機17を低負荷で運転し、その代わりに冷凍サイ
クルの構成要素である圧縮機1を高負荷で運転しなが
ら、必要な冷房能力を維持する制御について、第2の運
転電力決定条件が定められている。この第2の運転電力
決定条件も、各機器の個々の運転電力を現時点の室内温
度および外気温度をパラメータとして決定するためのも
ので、制御部41のメモリに記憶されている。
As described above, the cooling water circulation pump 11, the water sprinkling pump 16, and the cooling tower blower 17 which are components of the cooling water circulation cycle are operated at a low load, and the compressor 1 which is a component of the refrigeration cycle is instead operated at a high load. A second operating power determination condition is defined for control for maintaining required cooling capacity while operating with a load. The second operating power determination condition is also for determining the individual operating power of each device using the current room temperature and the outside air temperature as parameters, and is stored in the memory of the control unit 41.

【0035】なお、冷却水循環サイクルの一部の機器を
低負荷で運転し、その代わりに同冷却水循環サイクルの
残りの機器および冷凍サイクルの機器を高負荷で運転し
ながら、必要な冷房能力を維持する制御もある。たとえ
ば、冷却水循環サイクルの冷却塔送風機17を低負荷で
運転し、その代わりに同冷却水循環サイクルの冷却水循
環ポンプ11、散水ポンプ16および冷凍サイクルの圧
縮機1を高負荷で運転しながら、必要な冷房能力を維持
する制御である。この制御について、第3の運転電力決
定条件が定められている。
It is to be noted that a part of the cooling water circulation cycle is operated at a low load, and instead, the remaining equipment of the cooling water circulation cycle and the equipment of the refrigeration cycle are operated at a high load while maintaining the required cooling capacity. Some controls do. For example, the cooling tower blower 17 of the cooling water circulation cycle is operated at a low load, and the cooling water circulation pump 11, the sprinkling pump 16 and the compressor 1 of the refrigeration cycle of the cooling water circulation cycle are operated at a high load. This is control for maintaining the cooling capacity. For this control, a third operating power determination condition is defined.

【0036】冷却水循環サイクルの一部の機器および冷
凍サイクルの機器を低負荷で運転し、その代わりに冷却
水循環サイクルの残りの機器を低負荷で運転しながら、
必要な冷房能力を維持する制御もある。たとえば、冷却
水循環サイクルの冷却塔送風機17および冷凍サイクル
の圧縮機1を低負荷で運転し、その代わりに冷却水循環
サイクルの冷却水循環ポンプ11、散水ポンプ16を高
負荷で運転しながら、必要な冷房能力を維持する制御で
ある。この制御について、第4の運転電力決定条件が定
められている。
While operating some equipment of the cooling water circulation cycle and equipment of the refrigeration cycle at low load, and instead operating the remaining equipment of the cooling water circulation cycle at low load,
Some controls maintain the required cooling capacity. For example, the cooling tower blower 17 of the cooling water circulation cycle and the compressor 1 of the refrigeration cycle are operated at a low load, and the cooling water circulation pump 11 and the water sprinkling pump 16 of the cooling water circulation cycle are operated at a high load. This is a control that maintains the ability. For this control, a fourth operating power determination condition is defined.

【0037】これら第3および第4の運転電力決定条件
についても、各機器の個々の運転電力を現時点の室内温
度および外気温度をパラメータとして決定するためのも
ので、制御部41のメモリに記憶されている。
The third and fourth operating power determination conditions are also used to determine the individual operating power of each device using the current indoor temperature and outside air temperature as parameters, and are stored in the memory of the control unit 41. ing.

【0038】その他、任意の機器を低負荷で運転し、そ
の代わりに他の機器を高負荷で運転しながら、必要な冷
房負荷を維持する制御が複数種用意されている。そし
て、これら制御ごとに第5、第6…の運転電力決定条件
が定められ、これら運転電力決定条件が制御部41のメ
モリに記憶されている。
In addition, a plurality of types of control for maintaining a required cooling load while operating an arbitrary device at a low load and operating another device at a high load instead are provided. The fifth, sixth,... Operating power determination conditions are determined for each of these controls, and these operating power determination conditions are stored in the memory of the control unit 41.

【0039】運転中、室内温度(室内温度センサ31,
32,33の検知温度のいずれか)および外気温度Tx
(外気温度センサ34の検知温度)に基づいて、制御部
41のメモリ内の第1の運転電力決定条件が参照され、
各機器の決定すべき運転電力が求められるとともに、そ
の運転電力の合計値が求められる。同様に、残りの全て
の運転電力決定条件が参照され、各機器の決定すべき運
転電力が求められるとともに、その運転電力の合計値が
求められる。そして、求められた各合計値が互いに比較
される。
During operation, the indoor temperature (the indoor temperature sensor 31,
32, 33) and the outside air temperature Tx
Based on the (temperature detected by the outside air temperature sensor 34), the first operating power determination condition in the memory of the control unit 41 is referred to,
The operating power to be determined for each device is determined, and the total value of the operating power is determined. Similarly, referring to all the remaining operating power determination conditions, the operating power to be determined for each device is determined, and the total value of the operating power is determined. Then, the obtained total values are compared with each other.

【0040】各合計値のうち、たとえば、第1の運転電
力決定条件の参照により求められた運転電力の合計値が
最も小さければ、その第1の運転電力決定条件の参照に
より求められた運転電力となるよう、各機器の運転が制
御される。第2の運転電力決定条件の参照により求めら
れた運転電力の合計値が最も小さければ、その第2の運
転電力決定条件の参照により求められた運転電力となる
よう、各機器の運転が制御される。
For example, if the sum of the operating powers determined by referring to the first operating power determination condition is the smallest, the operating power determined by referring to the first operating power determining condition is determined. The operation of each device is controlled so that If the total value of the operating power obtained by referring to the second operating power determining condition is the smallest, the operation of each device is controlled so that the operating power becomes the operating power obtained by referring to the second operating power determining condition. You.

【0041】こうして、運転効率が最大となる運転を実
行することができる。
In this way, it is possible to execute the operation in which the operation efficiency is maximized.

【0042】また、最大COP制御モードの運転では、
上記所定温度域の高温側において圧縮機1の回転数を増
大方向に微増する運転が実行され、設定値Tsおよびそ
の付近において圧縮機1の回転数を維持する運転が実行
され、低温側において圧縮機1の回転数を減少方向に微
減する運転が実行される。
In the operation in the maximum COP control mode,
On the high temperature side of the predetermined temperature range, an operation of slightly increasing the rotation speed of the compressor 1 in the increasing direction is performed, an operation of maintaining the rotation speed of the compressor 1 at or near the set value Ts is performed, and the compression is performed on the low temperature side. An operation for slightly reducing the rotation speed of the machine 1 in the decreasing direction is executed.

【0043】室内温度が上記所定温度域より低くなる
と、サーモオフ要求ありとの判断の下に(ステップ10
3のNO)、冷房運転が中断される(ステップ10
8)。
When the room temperature becomes lower than the predetermined temperature range, it is determined that there is a thermo-off request (step 10).
No. 3), the cooling operation is interrupted (step 10).
8).

【0044】操作部41で運転の停止操作が行われた場
合(ステップ109のYES)、冷房運転が停止される
(ステップ110)。
When the operation stop operation is performed by the operation unit 41 (YES in step 109), the cooling operation is stopped (step 110).

【0045】以上のように、室内温度が所定値以上の場
合は最大の冷房能力が得られる状態に冷凍サイクルの運
転および冷却水循環サイクルの運転を制御し、室内温度
が所定値未満の場合は運転効率が最大となる状態に冷凍
サイクルの運転および冷却水循環サイクルの運転を制御
することにより、十分な冷房能力を確保しながら運転電
力の低減を図ることができて、運転効率の大幅な向上が
図れる。よって、省エネルギ性にすぐれた空調機とな
る。
As described above, the operation of the refrigeration cycle and the operation of the cooling water circulation cycle are controlled so that the maximum cooling capacity is obtained when the room temperature is equal to or higher than the predetermined value. By controlling the operation of the refrigeration cycle and the operation of the cooling water circulation cycle so that the efficiency is maximized, the operating power can be reduced while securing sufficient cooling capacity, and the operating efficiency can be significantly improved. . Therefore, the air conditioner is excellent in energy saving.

【0046】単に冷房能力を確保するためだけの冷凍サ
イクルの運転および冷却水循環サイクルの運転では、運
転電力が過剰に消費される事態が生じることがあるが、
運転効率が最大となる状態に冷凍サイクルの運転および
冷却水循環サイクルの運転を制御することにより、十分
な冷房能力を確保しながら、運転電力の消費を最小限に
抑えることができる。
In the operation of the refrigeration cycle merely for securing the cooling capacity and the operation of the cooling water circulation cycle, the operation power may be excessively consumed.
By controlling the operation of the refrigeration cycle and the operation of the cooling water circulation cycle so that the operation efficiency is maximized, it is possible to minimize the consumption of operation power while ensuring sufficient cooling capacity.

【0047】[2]第2の実施形態について説明する。
制御部40は、主要な機能として次の(1)(2)の手
段を備える。 (1)室内温度(室内温度センサ31,32,33の検
知温度のいずれか)と設定値Tsとの差に応じて圧縮機
1の回転数(圧縮機駆動部21の出力周波数)を制御す
る制御手段。
[2] The second embodiment will be described.
The control unit 40 has the following means (1) and (2) as main functions. (1) The number of revolutions of the compressor 1 (the output frequency of the compressor drive unit 21) is controlled according to the difference between the indoor temperature (any of the detected temperatures of the indoor temperature sensors 31, 32, and 33) and the set value Ts. Control means.

【0048】(2)極力小さい運転電力(消費電力)で
必要とされる冷房能力が得られる状態、要するに運転効
率{=冷房能力(kW)/運転電力(kW)}が最大とな
る状態に、冷凍サイクルの運転および冷却水循環サイク
ルの運転を制御する制御手段。他の構成は第1の実施形
態と同じであり、その説明は省略する。
(2) The state where the required cooling capacity is obtained with the smallest possible operating power (power consumption), that is, the state where the operating efficiency {= cooling capacity (kW) / operating power (kW)} is maximized. Control means for controlling the operation of the refrigeration cycle and the operation of the cooling water circulation cycle. Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

【0049】つぎに、上記の構成の作用を説明する。冷
房運転時、室内の検知温度(室内温度センサ31,3
2,33の検知温度のいずれか)と設定値Tsとの差に
応じて圧縮機1の回転数(圧縮機駆動部21の出力周波
数)が制御される。この際、設定値Tsに対してある一
定の差βを越えた温度が検出された場合、すなわち、検
知温度>Ts+βの場合、制御部40は速やかに室内を
冷却する必要があると判断し、能力最大制御モードの運
転が実行される。
Next, the operation of the above configuration will be described. During the cooling operation, the detected indoor temperature (the indoor temperature sensors 31 and 3)
The rotation speed of the compressor 1 (the output frequency of the compressor drive unit 21) is controlled according to the difference between the set temperature Ts and the detected temperature Ts. At this time, if a temperature exceeding a certain difference β with respect to the set value Ts is detected, that is, if the detected temperature> Ts + β, the control unit 40 determines that the room needs to be cooled immediately, Operation in the maximum capacity control mode is executed.

【0050】能力最大制御モードの運転の具体的な制御
については、第1の実施形態と同じなので、その説明は
省略する。
The specific control of the operation in the maximum capacity control mode is the same as that of the first embodiment, and the description thereof will be omitted.

【0051】次に、設定値Tsに対して一定の幅をもっ
た温度が検出された場合、すなわち、Ts+β≧検知温
度≧Ts−αの場合、制御部40は当該空調機が所定の
能力をほぼ満足していると判断し、最大COP制御モー
ドの運転が実行される。
Next, when a temperature having a certain width with respect to the set value Ts is detected, that is, when Ts + β ≧ detected temperature ≧ Ts−α, the control unit 40 determines that the air conditioner has a predetermined capacity. It is determined that the vehicle is almost satisfied, and the operation in the maximum COP control mode is executed.

【0052】最大COP制御モードの運転の具体的な制
御については、第1の実施形態と同じなので、その説明
は省略する。
Since the specific control of the operation in the maximum COP control mode is the same as that of the first embodiment, the description is omitted.

【0053】なお、この最大COP制御モードの運転が
実行されている場合に、室内温度が設定値Tsよりも高
ければ、すなわち、Ts+β≧検知温度≧Tsであれ
ば、圧縮機1の回転数を微減させる運転が併せて行わ
れ、室内温度が設定値Tsよりも低ければ、すなわち、
Ts≧検知温度≧Ts−αであれば、圧縮機1の回転数
を微増させる運転が併せて行われる。
When the operation in the maximum COP control mode is executed, if the room temperature is higher than the set value Ts, that is, if Ts + β ≧ detection temperature ≧ Ts, the rotation speed of the compressor 1 is reduced. When the room temperature is lower than the set value Ts, that is, when the room temperature is lower than the set value Ts,
If Ts ≧ detected temperature ≧ Ts−α, an operation of slightly increasing the rotation speed of the compressor 1 is also performed.

【0054】以上のような制御を行うことにより、空調
負荷に見合う十分な冷房能力を確保しながら運転電力の
低減を図ることができて、運転効率の大幅な向上が図れ
る。よって、省エネルギ性にすぐれた空調機となる。
By performing the above-described control, the operating power can be reduced while securing a sufficient cooling capacity corresponding to the air-conditioning load, and the operating efficiency can be greatly improved. Therefore, the air conditioner is excellent in energy saving.

【0055】なお、この発明は上記各実施形態に限定さ
れるものではなく、要旨を変えない範囲で種々変形実施
可能である。
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention.

【0056】[0056]

【発明の効果】以上述べたようにこの発明によれば、十
分な冷房能力を確保しながら運転電力の低減を図ること
ができ、これにより運転効率の大幅な向上が図れる省エ
ネルギ性にすぐれた空調機とその制御方法を提供でき
る。
As described above, according to the present invention, it is possible to reduce the operating power while securing a sufficient cooling capacity, thereby achieving a great improvement in the operating efficiency and excellent energy saving. An air conditioner and a control method thereof can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各実施形態の構成を示す図。FIG. 1 is a diagram showing a configuration of each embodiment.

【図2】第1の実施形態の作用を説明するためのフロー
チャート。
FIG. 2 is a flowchart for explaining the operation of the first embodiment.

【図3】第1の実施形態における室内温度変化と運転制
御との関係を示す図。
FIG. 3 is a diagram showing a relationship between a room temperature change and operation control in the first embodiment.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…ガス側冷媒配管、3…水冷凝縮器、3
a,3b…熱交換器、4…凝縮圧力調節弁、5…液側冷
媒配管、6…膨張弁、7…室内熱交換器(蒸発器)、8
…室内送風機、11…冷却水循環ポンプ、12…水管、
13…冷却塔、14…熱交換器、15…散水器、16…
散水ポンプ、17…冷却塔送風機、18…水管、21…
圧縮機駆動部、22…送風機駆動部、23…ポンプ駆動
部、31…室内温度センサ(室内温度検知手段)、32
…吸い込み温度センサ(室内温度検知手段)、33…吹
き出し温度センサ(室内温度検知手段)、34…外気温
度センサ(外気温度検知手段)、40…制御部、41…
操作部。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Gas side refrigerant piping, 3 ... Water-cooled condenser, 3
a, 3b: heat exchanger, 4: condensation pressure control valve, 5: liquid side refrigerant pipe, 6: expansion valve, 7: indoor heat exchanger (evaporator), 8
... indoor blower, 11 ... cooling water circulation pump, 12 ... water pipe,
13: cooling tower, 14: heat exchanger, 15: water sprinkler, 16 ...
Watering pump, 17: cooling tower blower, 18: water pipe, 21 ...
Compressor drive unit, 22 ... Blower drive unit, 23 ... Pump drive unit, 31 ... Indoor temperature sensor (indoor temperature detection means), 32
... Suction temperature sensor (indoor temperature detecting means), 33 ... Blow-out temperature sensor (indoor temperature detecting means), 34 ... Outside air temperature sensor (outside air temperature detecting means), 40 ... Control unit, 41 ...
Operation unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藁谷 至誠 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 (72)発明者 岡田 實 東京都江東区豊洲三丁目3番3号 株式会 社エヌ・ティ・ティ・データ内 (72)発明者 江崎 孝弘 東京都江東区豊洲三丁目3番3号 株式会 社エヌ・ティ・ティ・データ内 (72)発明者 南部 俊弘 東京都江東区豊洲三丁目3番3号 株式会 社エヌ・ティ・ティ・データ内 Fターム(参考) 3L060 AA03 CC02 DD02 EE02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigenori Waratani 3-4-1, Shibaura, Minato-ku, Tokyo Inside NTT Facilities Inc. (72) Minoru Okada 3-chome Toyosu, Koto-ku, Tokyo No. 3 Inside NTT Data Corporation (72) Inventor Takahiro Ezaki 3-3-Toyosu Toyosu, Koto-ku, Tokyo 3 72 Inside NTT Data Corporation (72) Inventor Toshihiro Nambu Tokyo 3-3-3 Toyosu, Koto-ku, Tokyo F-term in NTT Data Corporation (reference) 3L060 AA03 CC02 DD02 EE02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、水冷凝縮器、減圧器、および室
内熱交換器を通して冷媒を循環させる冷凍サイクルと、 冷却水循環ポンプ、冷却塔、および前記水冷凝縮器を通
して冷却水を循環させる冷却水循環サイクルと、 室内温度を検知する室内温度検知手段と、 この室内温度検知手段の検知温度が所定値以上のとき、
最大の冷房能力が得られる状態に、前記冷凍サイクルの
運転および前記冷却水循環サイクルの運転を制御する第
1制御手段と、 前記室内温度検知手段の検知温度が所定値未満のとき、
極力小さい運転電力で、必要とされる冷房能力が得られ
る状態に、前記冷凍サイクルの運転および前記冷却水循
環サイクルの運転を制御する第2制御手段と、 を具備したことを特徴とする空調機。
1. A refrigeration cycle for circulating a refrigerant through a compressor, a water-cooled condenser, a decompressor, and an indoor heat exchanger, a cooling-water circulation pump, a cooling tower, and a cooling-water circulation cycle for circulating cooling water through the water-cooled condenser. An indoor temperature detecting means for detecting an indoor temperature; and when the detected temperature of the indoor temperature detecting means is equal to or higher than a predetermined value,
In a state where the maximum cooling capacity is obtained, first control means for controlling the operation of the refrigeration cycle and the operation of the cooling water circulation cycle, and when the detected temperature of the indoor temperature detection means is less than a predetermined value,
An air conditioner comprising: a second control unit configured to control the operation of the refrigeration cycle and the operation of the cooling water circulation cycle in a state where a required cooling capacity can be obtained with a minimum operating power.
【請求項2】 請求項1に記載の空調機において、 前記室内温度検知手段は、室内温度として、室内の所定
個所の温度、または室内からの吸い込み空気温度、また
は室内への吹き出し空気の温度を検知することを特徴と
する空調機。
2. The air conditioner according to claim 1, wherein the indoor temperature detecting means detects, as the indoor temperature, a temperature at a predetermined place in the indoor room, a temperature of air taken in from the indoor room, or a temperature of air blown into the indoor room. An air conditioner characterized by detecting.
【請求項3】 請求項1に記載の空調機において、 前記第1制御手段は、室内温度が予め定められた設定値
を含む所定温度域より高い場合、最大の冷房能力が得ら
れる状態に冷凍サイクルの運転および冷却水循環サイク
ルの運転を制御する、 前記第2制御手段は、室内温度が前記所定温度域内に存
する場合、極力小さい運転電力で、必要とされる冷房能
力が得られる状態に冷凍サイクルの運転および冷却水循
環サイクルの運転を制御する、 ことを特徴とする空調機。
3. The air conditioner according to claim 1, wherein the first control unit is configured to refrigerate the air conditioner so that the maximum cooling capacity is obtained when the room temperature is higher than a predetermined temperature range including a predetermined set value. The second control means controls the operation of the cooling cycle and the operation of the cooling water circulation cycle. When the room temperature is within the predetermined temperature range, the second control means sets the refrigeration cycle to a state where the required cooling capacity can be obtained with the minimum operating power. Controlling the operation of the cooling water circulation cycle and the operation of the air conditioner.
【請求項4】 請求項1ないし請求項3のいずれかに記
載の空調機において、 前記各制御手段は、制御対象が、前記圧縮機の回転数、
前記水冷凝縮器における冷媒の凝縮圧力、前記冷却水循
環ポンプの送水量、および前記冷却塔の冷却量であるこ
とを特徴とする空調機。
4. The air conditioner according to claim 1, wherein each of the control means controls a rotation speed of the compressor,
An air conditioner comprising: a condensing pressure of a refrigerant in the water-cooled condenser, a flow rate of the cooling water circulation pump, and a cooling rate of the cooling tower.
【請求項5】 圧縮機、水冷凝縮器、減圧器、および室
内熱交換器を通して冷媒を循環させる冷凍サイクルと、
冷却水循環ポンプ、冷却塔、および前記水冷凝縮器を通
して冷却水を循環させる冷却水循環サイクルとを備えた
空調機において、 室内温度が所定値以上のとき最大の冷房能力が得られる
状態に前記冷凍サイクルの運転および前記冷却水循環サ
イクルの運転を制御し、室内温度が所定値未満のとき極
力小さい運転電力で、必要とされる冷房能力が得られる
状態に前記冷凍サイクルの運転および前記冷却水循環サ
イクルの運転を制御することを特徴とする空調機の制御
方法。
5. A refrigeration cycle for circulating refrigerant through a compressor, a water-cooled condenser, a decompressor, and an indoor heat exchanger;
A cooling water circulation pump, a cooling tower, and a cooling water circulation cycle that circulates cooling water through the water-cooled condenser, wherein the room temperature is equal to or higher than a predetermined value, and a maximum cooling capacity is obtained. Controlling the operation and the operation of the cooling water circulation cycle, the operation of the refrigeration cycle and the operation of the cooling water circulation cycle in a state in which the required cooling capacity is obtained with a minimum operating power when the room temperature is less than a predetermined value. A method for controlling an air conditioner, characterized by controlling.
JP2000124366A 2000-04-25 2000-04-25 Air conditioner and its control method Expired - Lifetime JP4074422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124366A JP4074422B2 (en) 2000-04-25 2000-04-25 Air conditioner and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124366A JP4074422B2 (en) 2000-04-25 2000-04-25 Air conditioner and its control method

Publications (2)

Publication Number Publication Date
JP2001304652A true JP2001304652A (en) 2001-10-31
JP4074422B2 JP4074422B2 (en) 2008-04-09

Family

ID=18634507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124366A Expired - Lifetime JP4074422B2 (en) 2000-04-25 2000-04-25 Air conditioner and its control method

Country Status (1)

Country Link
JP (1) JP4074422B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023446A1 (en) * 2010-08-20 2012-02-23 三菱重工業株式会社 Outdoor-air treating air conditioner and multi-air conditioning system using same
JP2013185743A (en) * 2012-03-07 2013-09-19 Sekisui House Ltd Air conditioning system
JP2014009867A (en) * 2012-06-28 2014-01-20 Hitachi Ltd Cooling system and cooling method
JP2014105888A (en) * 2012-11-26 2014-06-09 Ntt Facilities Inc Air conditioner
CN103851714A (en) * 2014-03-15 2014-06-11 天津网士通科技有限公司 Water and energy saving central air-conditioning system
CN108592331A (en) * 2018-05-10 2018-09-28 深圳达实智能股份有限公司 A kind of the cooling tower cooling mode control method and system of air-conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9810463B2 (en) 2012-02-22 2017-11-07 Fuji Electric Co., Ltd. Integrated air conditioning system and control device thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023446A1 (en) * 2010-08-20 2012-02-23 三菱重工業株式会社 Outdoor-air treating air conditioner and multi-air conditioning system using same
JP2012042153A (en) * 2010-08-20 2012-03-01 Mitsubishi Heavy Ind Ltd Outdoor-air treating air conditioner and multi-air conditioning system using the same
CN102869926A (en) * 2010-08-20 2013-01-09 三菱重工业株式会社 Outdoor-air treating air conditioner and multi-air conditioning system using same
EP2607805A1 (en) * 2010-08-20 2013-06-26 Mitsubishi Heavy Industries, Ltd. Outdoor-air treating air conditioner and multi-air conditioning system using same
EP2607805A4 (en) * 2010-08-20 2014-05-07 Mitsubishi Heavy Ind Ltd Outdoor-air treating air conditioner and multi-air conditioning system using same
CN102869926B (en) * 2010-08-20 2015-09-30 三菱重工业株式会社 Outer gas disposal air conditioner and use its multistage air-conditioning system
JP2013185743A (en) * 2012-03-07 2013-09-19 Sekisui House Ltd Air conditioning system
JP2014009867A (en) * 2012-06-28 2014-01-20 Hitachi Ltd Cooling system and cooling method
US9404679B2 (en) 2012-06-28 2016-08-02 Hitachi, Ltd. Cooling system and cooling method
JP2014105888A (en) * 2012-11-26 2014-06-09 Ntt Facilities Inc Air conditioner
CN103851714A (en) * 2014-03-15 2014-06-11 天津网士通科技有限公司 Water and energy saving central air-conditioning system
CN108592331A (en) * 2018-05-10 2018-09-28 深圳达实智能股份有限公司 A kind of the cooling tower cooling mode control method and system of air-conditioning system

Also Published As

Publication number Publication date
JP4074422B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP6017068B2 (en) Air conditioner
US11752832B2 (en) Peak demand response operation of HVAC systems
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
US11480353B2 (en) Peak demand response operation of HVAC system with face-split evaporator
US11802705B2 (en) Peak demand response operation with improved sensible capacity
KR20040045095A (en) Air-conditioner's noise reducing control method
JP2001304652A (en) Air conditioner and its control method
JP2003314854A (en) Air conditioner
JP2007046895A (en) Operation control device and method for air conditioner equipped with plural compressors
JP2006194526A (en) Air conditioner
JP3996321B2 (en) Air conditioner and its control method
JPH1096545A (en) Air conditioner and control method thereof
JP7438342B2 (en) air conditioner
JP2008175430A (en) Air conditioner
JP2000055444A (en) Air conditioner
JP3558788B2 (en) Air conditioner and control method thereof
JP3361458B2 (en) Air conditioner
JP2007327717A (en) Air conditioner
JPH06337176A (en) Air-conditioner
JP2000055437A (en) Air conditioner
WO2023190302A1 (en) Air conditioner
CN215336696U (en) Air handling unit with double working modes
JPH04236062A (en) Air conditioner
US20230137885A1 (en) Refrigeration cycle apparatus
KR100685754B1 (en) Air-conditioner System for having two compressor and method for controlling the same air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term