JP2004060956A - Heat transfer system and method of operating the same - Google Patents

Heat transfer system and method of operating the same Download PDF

Info

Publication number
JP2004060956A
JP2004060956A JP2002218029A JP2002218029A JP2004060956A JP 2004060956 A JP2004060956 A JP 2004060956A JP 2002218029 A JP2002218029 A JP 2002218029A JP 2002218029 A JP2002218029 A JP 2002218029A JP 2004060956 A JP2004060956 A JP 2004060956A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
control valve
heat transfer
evaporators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002218029A
Other languages
Japanese (ja)
Other versions
JP4086575B2 (en
Inventor
Koji Nagae
永江 公二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002218029A priority Critical patent/JP4086575B2/en
Publication of JP2004060956A publication Critical patent/JP2004060956A/en
Application granted granted Critical
Publication of JP4086575B2 publication Critical patent/JP4086575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer system and a method of operating the same, capable of distributing a refrigerant almost evenly to each evaporator without generating the gas deficiency in the operated evaporators. <P>SOLUTION: In the heat transfer system which includes a condenser and two or more evaporators 9, forms a natural circulation cycle by connecting the condenser to the evaporator 9 through a refrigerant liquid pipe and a refrigerant gas pipe, and encloses the refrigerant in this natural circulation cycle, control valves 11 are provided on the upstream of two or more evaporators respectively and a control means 31 controlling each control valve at the time of startup is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒自然循環式の熱移動装置及び運転方法に関する。
【0002】
【従来の技術】
一般に、冷媒をサイクル内で気液相変化させることにより自然循環させるヒートパイプ方式を用いた熱移動装置が知られている。この種のものは、例えば1台の凝縮器を備えると共に、この凝縮器よりも低位置に1台の蒸発器を備え、これらの間が液相冷媒の流下する冷媒液管と気相冷媒の上昇する冷媒ガス管とにより連結されて自然循環サイクルが形成される。この自然循環サイクル内には冷媒が封入されている。上記蒸発器は室内機に収納され、この室内機は室内を冷房する。上記構成では、近年、凝縮器と、複数の蒸発器とを備え、これら蒸発器を別々に複数の室内機に設置したものが提案されている。
【0003】
【発明が解決しようとする課題】
しかし、複数の室内機に別々に蒸発器を設置した場合、運転を停止した蒸発器に冷媒が寝込んで、運転中の蒸発器にいわゆるガス欠が発生するという問題がある。また、冷媒液管側の冷媒量が不足すると、各蒸発器に冷媒をほぼ均等に分流させることができなくなるという問題がある。
【0004】
そこで、本発明の目的は、上述した従来技術が有する課題を解消し、運転中の蒸発器にガス欠が発生することがなく、各蒸発器に冷媒をほぼ均等に分流させることができる熱移動装置及び運転方法を提供することにある。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、凝縮器と複数の蒸発器とを備え、これらの間を冷媒液管及び冷媒ガス管で接続して自然循環サイクルを形成し、この自然循環サイクル内に冷媒を封入した熱移動装置において、複数の蒸発器の上流に夫々制御弁を備え、運転開始時に各制御弁を制御する制御手段を備えたことを特徴とする。
【0006】
請求項2記載の発明は、請求項1記載のものにおいて、前記制御手段は、運転開始する蒸発器の制御弁を全閉し、送風機を駆動することを特徴とする。
【0007】
請求項3記載の発明は、請求項2記載のものにおいて、前記制御手段は、運転開始する蒸発器の制御弁を全閉し、送風機を駆動し、吸込み空気温度と、冷媒入口温度と、冷媒出口温度とを用いた比較温度差が所定温度以内に達した場合、当該制御弁を徐々に開放することを特徴とする。
【0008】
請求項4記載の発明は、請求項1乃至3のいずれか一項記載のものにおいて、前記制御手段は、運転停止中の蒸発器が存在した場合、いずれかの蒸発器が運転開始した後、所定時間の間、運転停止中の蒸発器の制御弁を全閉して、運転停止中の送風機を駆動することを特徴とする。
【0009】
請求項5記載の発明は、請求項1乃至4のいずれか一項記載のものにおいて、建屋の天井、或いは床部分に設置され、建屋の空調を行うことを特徴とする。
【0010】
請求項6記載の発明は、凝縮器と複数の蒸発器とを備え、これらの間を冷媒液管及び冷媒ガス管で接続して自然循環サイクルを形成し、この自然循環サイクル内に冷媒を封入した熱移動装置の運転方法において、複数の蒸発器の上流に夫々制御弁を備え、運転開始時に各制御弁を制御することを特徴とする。
【0011】
請求項7記載の発明は、請求項6記載のものにおいて、運転開始する蒸発器の制御弁を全閉し、送風機を駆動することを特徴とする。
【0012】
請求項8記載の発明は、請求項7記載のものにおいて、運転開始する蒸発器の制御弁を全閉し、送風機を駆動し、吸込み空気温度と、冷媒入口温度と、冷媒出口温度とを用いた比較温度差が所定温度以内に達した場合、当該制御弁を徐々に開放することを特徴とする。
【0013】
請求項9記載の発明は、請求項6乃至8のいずれか一項記載のものにおいて、運転停止中の蒸発器が存在した場合、いずれかの蒸発器が運転開始した後、所定時間の間、運転停止中の蒸発器の制御弁を全閉して、運転停止中の送風機を駆動することを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の一実施の形態を図面に基づいて説明する。
【0015】
図1において、1は熱移動装置を示している。この熱移動装置1は、水を冷却する冷凍機3と、凝縮器として機能する冷媒対水熱交換器5と、複数の室内機7とを有して構成される。この室内機7には蒸発器9、冷媒調整弁(制御弁)11及び室内へ送風する送風機13が収納されている。冷媒対水熱交換器5は、例えばビルの屋上などの高所に設置される。室内機7は、蒸発器9の吸込口が略同一の高さになるように、冷媒対水熱交換器5よりも低所であるビル室内の天井板8の天井裏10に設置される。この天井板8には各室内機7に対応した吐出口12を有してなる。冷凍機3は例えば吸収式の冷凍機であり、この冷凍機3と冷媒対水熱交換器5とは水配管15によってループ状に接続される。
【0016】
この冷媒対水熱交換器5には冷媒液管17及び冷媒ガス管19によって室内機7が接続され、自然循環サイクルが形成されている。そして、この自然循環サイクルの内部には、冷媒が封入されている。
【0017】
上記冷媒液管17は、冷媒液本管17Aと、この冷媒液本管17Aに接続される複数の冷媒液支管17Bとで構成される。また、上記冷媒ガス管19は、冷媒ガス本管19Aと、この冷媒ガス本管19Aに接続される複数の冷媒ガス管19Bとで構成される。冷媒液本管17A及び冷媒ガス本管19Aは冷媒対水熱交換器5に接続され、各冷媒液支管17B及び各冷媒ガス支管19Bは、各室内機7の蒸発器9に接続される。これら接続関係によって蒸発器9は互いに並列となる。冷媒調整弁11は冷媒液支管17Bに接続される。また、冷媒を強制循環させるブースタポンプ21が冷媒液本管17Aに接続される。
【0018】
ここで、冷媒液本管17Aと冷媒液支管17Bとの冷媒液管接続点R、および冷媒ガス本管19Aと冷媒ガス管19Bとの冷媒ガス管接続点Sは蒸発器18よりも高所に位置する。なお、少なくとも冷媒ガス管接続点Sが、蒸発器18よりも高所に位置すればよい。
【0019】
次に、熱移動装置1の動作を説明する。
【0020】
冷凍機3が運転することにより、冷媒対水熱交換器5には例えば5℃の冷水が与えられる。すると冷媒対水熱交換器5では冷媒が凝縮し、比重の大きい液冷媒となって、冷媒液管17の冷媒液本管17Aを流れる。この冷媒液本管17Aの各冷媒液管接続点Rに至った液冷媒は、自重により高所から低所に各冷媒液支管17Bを流れて各室内機7に流れる。
【0021】
室内機7の冷媒調整弁11で冷媒量を適正に調整された液冷媒は、蒸発器9に流入し、この蒸発器9では液冷媒が例えば蒸発温度12℃で蒸発する。この過程では、液冷媒は比重の極めて小さなガス冷媒となり、このガス冷媒は自重の軽さゆえに、低所から高所に各冷媒ガス支管19Bを流れ、各冷媒ガス管接続点Sを通過して冷媒ガス本管19Aに流れて冷媒対水熱交換器5に戻される。すなわちこのシステムでは、冷媒が自然循環サイクル内で気液相変化することにより、自然循環することになる。
【0022】
室内の空気は、天井板8に設けられた通風口23を通過し、各室内機7に吸い込まれ、蒸発器9により冷却されて、送風機13により吐出口12から室内に送風され、室内が冷房される。
【0023】
このような自然循環システムでは、液冷媒とガス冷媒との比重の差に従ってサイクル内における冷媒を自然循環させる。従って、本来であれば循環用ポンプなどは不要である。しかし、この自然循環システムを施工するに当たり、冷媒対水熱交換器5と蒸発器9との間に落差をとりにくい場合に、一例として、ブースタポンプ21が用いられる。
【0024】
本実施形態では、上述したように複数の蒸発器9の上流に夫々冷媒調整弁(制御弁)11が設けられ、システムの運転開始時に、各冷媒調整弁11を制御するコントローラ(制御手段)31が設けられる。
【0025】
図2は、コントローラ31による制御フローを示す。
【0026】
この制御フローは、一つの蒸発器9に着目したフローである。システムの運転開始に際し、まず、運転開始する蒸発器9の冷媒調整弁11を全閉にし、対応した送風機13を駆動する(S1)。ここでの処理は、蒸発器9に寝込んだ液冷媒を気化し、この蒸発器9から冷媒ガス支管19B側にガス冷媒を追い出す処理である。この処理が一定時間継続して行われたか否かが判定され(S2)、一定時間経過した場合、S3に移行する。
【0027】
このS3では、運転開始する蒸発器9に寝込んだ冷媒が、冷媒ガス支管19B側に追い出されたか否かが判定される。
【0028】
冷媒調整弁11を全閉にして、冷媒を流さずに、送風機13を駆動した場合、蒸発器9に寝込んだ冷媒は、送風機13の放熱作用によりガス化して、冷媒ガス支管19B側に完全に追い出される。この場合、最終的には、吸込み空気温度Taと、冷媒入口温度E1と、冷媒出口温度E3とがすべて等しくなる。吸込み空気温度TaはセンサT1で検出され、冷媒入口温度E1はセンサT3で検出され、冷媒出口温度E3はセンサT4で検出される。
【0029】
このS3では、S1、S2の過程で、吸込み空気温度Ta、冷媒入口温度E1、冷媒出口温度E3を常時検出し、この検出された吸込み空気温度Ta、冷媒入口温度E1、冷媒出口温度E3の内のいずれかの最大値Max(Ta、E1、E3)と、いずれかの最小値Min(Ta、E1、E3)とを比較し、その温度差が、一定値α以内となった場合、すなわち、吸込み空気温度Taと、冷媒入口温度E1と、冷媒出口温度E3とを用いた比較温度差が所定温度α以内に達して、つぎの(1)式が成立した場合、
Max(Ta、E1、E3)−Min(Ta、E1、E3)≦α…(1)
蒸発器9に寝込んだ冷媒が追い出されたと推定し(S3)、冷媒調整弁11を徐々に開放する(S5)。(1)式が成立しない場合、冷媒調整弁11は全閉に維持される(S4)。冷媒調整弁11が開放されると(S5)、この冷媒調整弁11の弁開度は、E3−E1≧3℃を保つように制御される(S6)。
【0030】
この冷媒調整弁11は、吹出し空気温度Tbと、予め設定された吹出し目標空気温度との温度差によって開閉される。具体的には、吹出し空気温度Tbが予め設定された吹出し目標空気温度を下回った後、一定時間が経過したか否かが判定され(S7)、一定時間が経過した場合、冷媒調整弁11が全閉にされる(S8)。吹出し空気温度TbはセンサT2によって検出される。
【0031】
冷媒調整弁11が全閉にされた後(S8)、蒸発器9を再起動させる場合には、図2の各ステップが繰り返される。
【0032】
いずれかの蒸発器9の運転が開始される場合、運転を停止中の蒸発器9が存在すれば、この停止中の蒸発器9に対しても冷媒追い出し制御が実行される。この場合、冷媒調整弁11を全閉にした状態で、対応した送風機13を一定時間の間、駆動することにより行われる。
【0033】
本実施形態では、いずれかの蒸発器9の運転が開始される場合、停止中の蒸発器9を含めて、すべての蒸発器9内に滞留する冷媒が冷媒ガス本管19A内に追い出されるため、いわゆるガス欠状態が解消される。
【0034】
また、冷媒液管の冷媒量が充足し、各蒸発器9に冷媒をほぼ均等に分流させることができる等の効果が得られる。
【0035】
上記の構成によれば、大型の冷媒対水熱交換器5が必要な場合であっても、この1台の冷媒対水熱交換器5に対して複数の室内機7を備えたことから、室内機7を小型化でき、狭い天井裏10にも設置可能となる。さらに、室内機7が小型化されたことで、エレベータでの搬入が可能となり、ビルの室内への室内機7の搬入が容易になる。
【0036】
また、夫々の室内機7は、室内機7内の蒸発器9の吸込口が略同一の高さになるように設置されたことから、夫々の室内機7に流れ込む液冷媒の量が略均等になり、いずれの室内機7においても熱交換(冷房)能力が均等になるので、室内を均等に冷房できる。
【0037】
以上、一実施形態に基づいて本発明を説明したが、本発明はこれに限定されるものではない。
【0038】
上記実施形態において、夫々の室内機7は、天井裏10に略同一の高さに設置された場合を説明したが、図示しないが例えば図1において、左側の室内機7が同一室内の熱負荷の大きい側に設置される室内機であり、他の室内機7が熱負荷の小さい側に設置される室内機であって、熱負荷の大きい側に設置される室内機は、熱負荷の小さい側に設置される室内機よりも低い位置で且つ凝縮器として機能する冷媒対水熱交換器5寄りに据え付けるようにすれば、熱負荷の大きい側の室内機に多量の液冷媒が流れ、冷房能力が上昇するため、理想的な冷房状態を得ることができる。
【0039】
上記実施形態では、室内機7を、建屋の天井裏10に設置しているが、これに限定されず、例えば、「フリーアクセスフロア」タイプの建屋にあっては、床下の空間内に室内機7を設置し、この室内機7の吹出口を、床面に形成された吹出口に接続し、この床面の吹出口を通じて、調温空気を被調和室内に吹き出すように構成してもよい。
【0040】
【発明の効果】
本発明では、蒸発器の運転が開始される場合、蒸発器内に滞留する冷媒が冷媒ガス管内に追い出されるため、いわゆるガス欠状態が解消されると共に、冷媒液管の冷媒量が充足するため、各蒸発器に冷媒をほぼ均等に分流させることができる、等の効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る熱移動装置の一実施の形態を示す回路図である。
【図2】本発明に係る熱移動装置の一実施の形態を示す制御フロー図である。
【符号の説明】
1 熱移動装置
5 冷媒対水熱交換器(凝縮器)
7 室内機
9 蒸発器
11 冷媒調整弁(制御弁)
17 冷媒液管
19 冷媒ガス管
31 コントローラ(制御手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerant natural circulation type heat transfer device and an operation method.
[0002]
[Prior art]
In general, a heat transfer device using a heat pipe system in which a refrigerant is naturally circulated by changing a gas-liquid phase in a cycle is known. This type includes, for example, one condenser and one evaporator at a lower position than the condenser, and a refrigerant liquid pipe between which a liquid-phase refrigerant flows and a gas-phase refrigerant. Connected by the rising refrigerant gas pipes to form a natural circulation cycle. A refrigerant is sealed in the natural circulation cycle. The evaporator is housed in an indoor unit, and the indoor unit cools the room. In recent years, the above configuration has been proposed in which a condenser and a plurality of evaporators are provided, and these evaporators are separately installed in a plurality of indoor units.
[0003]
[Problems to be solved by the invention]
However, when evaporators are separately installed in a plurality of indoor units, there is a problem in that the refrigerant stagnates in the evaporator whose operation has been stopped, and a so-called gas shortage occurs in the evaporator in operation. Further, when the amount of the refrigerant on the refrigerant liquid tube side is insufficient, there is a problem that the refrigerant cannot be almost equally distributed to each evaporator.
[0004]
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to eliminate the lack of gas in the evaporator during operation, and to transfer the refrigerant to each evaporator almost uniformly. An object of the present invention is to provide an apparatus and an operation method.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 includes a condenser and a plurality of evaporators, which are connected by a refrigerant liquid pipe and a refrigerant gas pipe to form a natural circulation cycle, and a refrigerant is sealed in the natural circulation cycle. In the heat transfer device described above, a control valve is provided upstream of each of the plurality of evaporators, and control means for controlling each control valve at the start of operation is provided.
[0006]
According to a second aspect of the present invention, in the first aspect, the control means fully closes a control valve of the evaporator to start operation and drives the blower.
[0007]
According to a third aspect of the present invention, in the second aspect, the control means fully closes a control valve of the evaporator to start operation, drives a blower, and operates a suction air temperature, a refrigerant inlet temperature, and a refrigerant. When the comparison temperature difference using the outlet temperature reaches within a predetermined temperature, the control valve is gradually opened.
[0008]
According to a fourth aspect of the present invention, in any one of the first to third aspects, when there is an evaporator whose operation has been stopped, the evaporator starts operating any of the evaporators. During a predetermined period of time, the control valve of the evaporator during operation stop is fully closed to drive the blower during operation stop.
[0009]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the air conditioner is installed on a ceiling or a floor portion of a building to perform air conditioning of the building.
[0010]
The invention according to claim 6 includes a condenser and a plurality of evaporators, which are connected by a refrigerant liquid pipe and a refrigerant gas pipe to form a natural circulation cycle, and a refrigerant is sealed in the natural circulation cycle. In the method of operating the heat transfer device described above, a control valve is provided upstream of each of the plurality of evaporators, and each control valve is controlled at the start of the operation.
[0011]
According to a seventh aspect of the present invention, in the sixth aspect, the control valve of the evaporator to be started to operate is fully closed to drive the blower.
[0012]
According to an eighth aspect of the present invention, in accordance with the seventh aspect, the control valve of the evaporator to be started to operate is fully closed, the blower is driven, and the suction air temperature, the refrigerant inlet temperature, and the refrigerant outlet temperature are used. When the compared temperature difference reaches within a predetermined temperature, the control valve is gradually opened.
[0013]
According to a ninth aspect of the present invention, in the device according to any one of the sixth to eighth aspects, in the case where an evaporator that is not operating is present, after any one of the evaporators starts operating, for a predetermined time, The control valve of the evaporator during operation stop is fully closed, and the blower during operation stop is driven.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[0015]
In FIG. 1, reference numeral 1 denotes a heat transfer device. The heat transfer device 1 includes a refrigerator 3 that cools water, a refrigerant-to-water heat exchanger 5 that functions as a condenser, and a plurality of indoor units 7. The indoor unit 7 houses an evaporator 9, a refrigerant regulating valve (control valve) 11, and a blower 13 for blowing air into the room. The refrigerant-to-water heat exchanger 5 is installed at a high place such as the roof of a building, for example. The indoor unit 7 is installed on the ceiling back 10 of a ceiling plate 8 in a building room, which is lower than the refrigerant-to-water heat exchanger 5, so that the suction port of the evaporator 9 is substantially at the same height. The ceiling plate 8 has a discharge port 12 corresponding to each indoor unit 7. The refrigerator 3 is, for example, an absorption refrigerator, and the refrigerator 3 and the refrigerant-to-water heat exchanger 5 are connected in a loop by a water pipe 15.
[0016]
The indoor unit 7 is connected to the refrigerant-to-water heat exchanger 5 by a refrigerant liquid pipe 17 and a refrigerant gas pipe 19 to form a natural circulation cycle. A refrigerant is sealed inside the natural circulation cycle.
[0017]
The refrigerant liquid pipe 17 includes a refrigerant liquid main pipe 17A and a plurality of refrigerant liquid branch pipes 17B connected to the refrigerant liquid main pipe 17A. The refrigerant gas pipe 19 includes a refrigerant gas main pipe 19A and a plurality of refrigerant gas pipes 19B connected to the refrigerant gas main pipe 19A. The refrigerant liquid main pipe 17A and the refrigerant gas main pipe 19A are connected to the refrigerant / water heat exchanger 5, and each refrigerant liquid branch pipe 17B and each refrigerant gas branch pipe 19B are connected to the evaporator 9 of each indoor unit 7. Due to these connection relationships, the evaporators 9 are in parallel with each other. The refrigerant adjustment valve 11 is connected to the refrigerant liquid branch pipe 17B. Further, a booster pump 21 for forcibly circulating the refrigerant is connected to the refrigerant liquid main pipe 17A.
[0018]
Here, the refrigerant liquid pipe connection point R between the refrigerant liquid main pipe 17A and the refrigerant liquid branch pipe 17B and the refrigerant gas pipe connection point S between the refrigerant gas main pipe 19A and the refrigerant gas pipe 19B are located higher than the evaporator 18. To position. Note that at least the refrigerant gas pipe connection point S may be located higher than the evaporator 18.
[0019]
Next, the operation of the heat transfer device 1 will be described.
[0020]
When the refrigerator 3 operates, cold water of, for example, 5 ° C. is supplied to the refrigerant-to-water heat exchanger 5. Then, in the refrigerant-to-water heat exchanger 5, the refrigerant is condensed, becomes a liquid refrigerant having a large specific gravity, and flows through the refrigerant liquid main pipe 17A of the refrigerant liquid pipe 17. The liquid refrigerant that has reached each refrigerant liquid pipe connection point R of the main refrigerant liquid pipe 17A flows from a high place to a low place through each refrigerant liquid branch pipe 17B by its own weight, and flows to each indoor unit 7.
[0021]
The liquid refrigerant whose refrigerant amount has been properly adjusted by the refrigerant adjustment valve 11 of the indoor unit 7 flows into the evaporator 9, where the liquid refrigerant evaporates at, for example, an evaporation temperature of 12 ° C. In this process, the liquid refrigerant becomes a gas refrigerant having a very small specific gravity, and this gas refrigerant flows through each refrigerant gas branch pipe 19B from a low place to a high place and passes through each refrigerant gas pipe connection point S because of its light weight. The refrigerant flows into the refrigerant gas main pipe 19A and is returned to the refrigerant-to-water heat exchanger 5. That is, in this system, the refrigerant naturally circulates due to the gas-liquid phase change in the natural circulation cycle.
[0022]
The air in the room passes through a ventilation port 23 provided in the ceiling plate 8, is sucked into each indoor unit 7, is cooled by the evaporator 9, is blown into the room from the discharge port 12 by the blower 13, and cools the room. Is done.
[0023]
In such a natural circulation system, the refrigerant in the cycle is naturally circulated according to the difference in specific gravity between the liquid refrigerant and the gas refrigerant. Therefore, a circulating pump or the like is not required. However, the booster pump 21 is used as an example when the natural circulation system is constructed, when it is difficult to make a drop between the refrigerant-water heat exchanger 5 and the evaporator 9.
[0024]
In the present embodiment, the refrigerant regulating valves (control valves) 11 are provided upstream of the plurality of evaporators 9 as described above, and the controller (control means) 31 controls each refrigerant regulating valve 11 when the system starts operating. Is provided.
[0025]
FIG. 2 shows a control flow by the controller 31.
[0026]
This control flow focuses on one evaporator 9. When the operation of the system is started, first, the refrigerant adjustment valve 11 of the evaporator 9 to be started is fully closed, and the corresponding blower 13 is driven (S1). This process is a process in which the liquid refrigerant stored in the evaporator 9 is vaporized, and the gas refrigerant is expelled from the evaporator 9 to the refrigerant gas branch pipe 19B side. It is determined whether or not this processing has been continuously performed for a predetermined time (S2). If the predetermined time has elapsed, the process proceeds to S3.
[0027]
In S3, it is determined whether or not the refrigerant that has fallen into the evaporator 9 to be driven has been expelled toward the refrigerant gas branch pipe 19B.
[0028]
When the blower 13 is driven with the refrigerant adjustment valve 11 fully closed and the refrigerant is not allowed to flow, the refrigerant that has fallen into the evaporator 9 is gasified by the heat dissipating action of the blower 13 and is completely moved toward the refrigerant gas branch pipe 19B. Get kicked out. In this case, finally, the suction air temperature Ta, the refrigerant inlet temperature E1, and the refrigerant outlet temperature E3 all become equal. The intake air temperature Ta is detected by a sensor T1, the refrigerant inlet temperature E1 is detected by a sensor T3, and the refrigerant outlet temperature E3 is detected by a sensor T4.
[0029]
In S3, in the process of S1 and S2, the suction air temperature Ta, the refrigerant inlet temperature E1, and the refrigerant outlet temperature E3 are always detected, and among the detected suction air temperature Ta, the refrigerant inlet temperature E1, and the refrigerant outlet temperature E3. Is compared with any one of the minimum values Min (Ta, E1, E3), and when the temperature difference falls within a certain value α, that is, When the comparison temperature difference using the suction air temperature Ta, the refrigerant inlet temperature E1, and the refrigerant outlet temperature E3 falls within the predetermined temperature α, and the following equation (1) holds,
Max (Ta, E1, E3) −Min (Ta, E1, E3) ≦ α (1)
It is estimated that the refrigerant that has fallen into the evaporator 9 has been expelled (S3), and the refrigerant regulating valve 11 is gradually opened (S5). If the expression (1) is not satisfied, the refrigerant regulating valve 11 is kept fully closed (S4). When the refrigerant regulating valve 11 is opened (S5), the valve opening of the refrigerant regulating valve 11 is controlled so as to maintain E3−E1 ≧ 3 ° C. (S6).
[0030]
The refrigerant regulating valve 11 is opened and closed by a temperature difference between the blown air temperature Tb and a preset blow target air temperature. Specifically, it is determined whether or not a predetermined time has elapsed after the blown air temperature Tb has fallen below a preset blow target air temperature (S7). It is fully closed (S8). The blowout air temperature Tb is detected by the sensor T2.
[0031]
When the evaporator 9 is restarted after the refrigerant regulating valve 11 is fully closed (S8), each step in FIG. 2 is repeated.
[0032]
When the operation of any one of the evaporators 9 is started, if there is any evaporator 9 whose operation is stopped, the refrigerant purge control is also performed on the stopped evaporator 9. In this case, the operation is performed by driving the corresponding blower 13 for a predetermined time while the refrigerant adjustment valve 11 is fully closed.
[0033]
In this embodiment, when the operation of any one of the evaporators 9 is started, the refrigerant staying in all the evaporators 9 including the stopped evaporator 9 is expelled into the refrigerant gas main pipe 19A. That is, the so-called gas shortage state is eliminated.
[0034]
In addition, the amount of the refrigerant in the refrigerant liquid pipe is sufficient, and an effect is obtained such that the refrigerant can be diverted almost equally to each evaporator 9.
[0035]
According to the above configuration, even when a large refrigerant-to-water heat exchanger 5 is required, a plurality of indoor units 7 are provided for this one refrigerant-to-water heat exchanger 5. The indoor unit 7 can be reduced in size and can be installed even in a narrow ceiling 10. Furthermore, since the indoor unit 7 is reduced in size, it is possible to carry it in by an elevator, and it becomes easy to carry the indoor unit 7 into a room of a building.
[0036]
In addition, since each indoor unit 7 is installed such that the suction ports of the evaporators 9 in the indoor units 7 are at substantially the same height, the amount of liquid refrigerant flowing into each indoor unit 7 is substantially equal. Therefore, the heat exchange (cooling) ability is equalized in any of the indoor units 7, so that the room can be uniformly cooled.
[0037]
As described above, the present invention has been described based on one embodiment, but the present invention is not limited to this.
[0038]
In the above embodiment, the case where each indoor unit 7 is installed at substantially the same height on the ceiling 10 has been described. However, although not shown, for example, in FIG. The indoor unit installed on the side where the heat load is large, and the other indoor unit 7 is the indoor unit installed on the side where the heat load is small, and the indoor unit installed on the side where the heat load is large is small. If it is installed at a position lower than the indoor unit installed on the side and closer to the refrigerant-to-water heat exchanger 5 functioning as a condenser, a large amount of liquid refrigerant flows into the indoor unit on the side with a large heat load, and cooling is performed. Since the capacity increases, an ideal cooling state can be obtained.
[0039]
In the above-described embodiment, the indoor unit 7 is installed in the back of the ceiling 10 of the building. However, the present invention is not limited to this. For example, in a “free access floor” type building, the indoor unit 7 7, the outlet of the indoor unit 7 may be connected to an outlet formed on the floor, and the conditioned air may be blown into the conditioned room through the outlet on the floor. .
[0040]
【The invention's effect】
In the present invention, when the operation of the evaporator is started, the refrigerant remaining in the evaporator is expelled into the refrigerant gas pipe, so that the so-called lack of gas state is eliminated, and the refrigerant amount in the refrigerant liquid pipe is satisfied. Thus, it is possible to obtain an effect such that the refrigerant can be almost equally distributed to each evaporator.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing one embodiment of a heat transfer device according to the present invention.
FIG. 2 is a control flow chart showing one embodiment of a heat transfer device according to the present invention.
[Explanation of symbols]
1 Heat transfer device 5 Refrigerant to water heat exchanger (condenser)
7 indoor unit 9 evaporator 11 refrigerant adjustment valve (control valve)
17 Refrigerant liquid pipe 19 Refrigerant gas pipe 31 Controller (control means)

Claims (9)

凝縮器と複数の蒸発器とを備え、これらの間を冷媒液管及び冷媒ガス管で接続して自然循環サイクルを形成し、この自然循環サイクル内に冷媒を封入した熱移動装置において、
複数の蒸発器の上流に夫々制御弁を備え、運転開始時に各制御弁を制御する制御手段を備えたことを特徴とする熱移動装置。
A heat transfer device comprising a condenser and a plurality of evaporators, forming a natural circulation cycle by connecting them with a refrigerant liquid pipe and a refrigerant gas pipe, and enclosing a refrigerant in the natural circulation cycle.
A heat transfer device comprising: a control valve provided upstream of each of a plurality of evaporators; and control means for controlling each control valve at the start of operation.
前記制御手段は、運転開始する蒸発器の制御弁を全閉し、送風機を駆動することを特徴とする請求項1記載の熱移動装置。The heat transfer device according to claim 1, wherein the control unit fully closes a control valve of the evaporator to start operation and drives the blower. 前記制御手段は、運転開始する蒸発器の制御弁を全閉し、送風機を駆動し、吸込み空気温度と、冷媒入口温度と、冷媒出口温度とを用いた比較温度差が所定温度以内に達した場合、当該制御弁を徐々に開放することを特徴とする請求項2記載の熱移動装置。The control means fully closes the control valve of the evaporator to start operation, drives the blower, and the comparison temperature difference using the suction air temperature, the refrigerant inlet temperature, and the refrigerant outlet temperature has reached a predetermined temperature or less. 3. The heat transfer device according to claim 2, wherein the control valve is gradually opened in the case. 前記制御手段は、運転停止中の蒸発器が存在した場合、いずれかの蒸発器が運転開始した後、所定時間の間、運転停止中の蒸発器の制御弁を全閉して、運転停止中の送風機を駆動することを特徴とする請求項1乃至3のいずれか一項記載の熱移動装置。When there is an evaporator that is not operating, the control unit completely closes the control valve of the evaporator that has been stopped for a predetermined period of time after starting operation of one of the evaporators, and then stops the operation. The heat transfer device according to any one of claims 1 to 3, wherein the blower is driven. 建屋の天井、或いは床部分に設置され、建屋の空調を行うことを特徴とする請求項1乃至4のいずれか一項記載の熱移動装置。The heat transfer device according to any one of claims 1 to 4, wherein the heat transfer device is installed on a ceiling or a floor of the building to perform air conditioning of the building. 凝縮器と複数の蒸発器とを備え、これらの間を冷媒液管及び冷媒ガス管で接続して自然循環サイクルを形成し、この自然循環サイクル内に冷媒を封入した熱移動装置の運転方法において、
複数の蒸発器の上流に夫々制御弁を備え、運転開始時に各制御弁を制御することを特徴とする運転方法。
A method for operating a heat transfer device comprising a condenser and a plurality of evaporators, forming a natural circulation cycle by connecting a refrigerant liquid pipe and a refrigerant gas pipe therebetween, and enclosing a refrigerant in the natural circulation cycle. ,
An operation method comprising providing control valves upstream of a plurality of evaporators, respectively, and controlling each control valve at the start of operation.
運転開始する蒸発器の制御弁を全閉し、送風機を駆動することを特徴とする請求項6記載の運転方法。The operation method according to claim 6, wherein the control valve of the evaporator to be started to operate is fully closed, and the blower is driven. 運転開始する蒸発器の制御弁を全閉し、送風機を駆動し、吸込み空気温度と、冷媒入口温度と、冷媒出口温度とを用いた比較温度差が所定温度以内に達した場合、当該制御弁を徐々に開放することを特徴とする請求項7記載の運転方法。When the control valve of the evaporator to start operation is fully closed, the blower is driven, and when the comparison temperature difference using the suction air temperature, the refrigerant inlet temperature, and the refrigerant outlet temperature has reached a predetermined temperature or less, the control valve concerned 8. The operating method according to claim 7, wherein is gradually released. 運転停止中の蒸発器が存在した場合、いずれかの蒸発器が運転開始した後、所定時間の間、運転停止中の蒸発器の制御弁を全閉して、運転停止中の送風機を駆動することを特徴とする請求項6乃至8のいずれか一項記載の運転方法。If there is an evaporator that has been shut down, after any one of the evaporators has started operation, the control valve of the evaporator that has been shut down is fully closed for a predetermined time to drive the blower that is shut down. The driving method according to any one of claims 6 to 8, wherein:
JP2002218029A 2002-07-26 2002-07-26 Heat transfer device and operation method thereof Expired - Fee Related JP4086575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218029A JP4086575B2 (en) 2002-07-26 2002-07-26 Heat transfer device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218029A JP4086575B2 (en) 2002-07-26 2002-07-26 Heat transfer device and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004060956A true JP2004060956A (en) 2004-02-26
JP4086575B2 JP4086575B2 (en) 2008-05-14

Family

ID=31939336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218029A Expired - Fee Related JP4086575B2 (en) 2002-07-26 2002-07-26 Heat transfer device and operation method thereof

Country Status (1)

Country Link
JP (1) JP4086575B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078218A1 (en) 2007-12-19 2009-06-25 Hoshizaki Denki Kabushiki Kaisha Cooling device
JP2009222331A (en) * 2008-03-18 2009-10-01 Hitachi Plant Technologies Ltd Air conditioning system and its operating method
WO2009133640A1 (en) * 2008-04-30 2009-11-05 三菱電機株式会社 Air conditioner
WO2009133643A1 (en) * 2008-04-30 2009-11-05 三菱電機株式会社 Air-conditioning apparatus
WO2009133644A1 (en) * 2008-04-30 2009-11-05 三菱電機株式会社 Air conditioner
WO2012160605A1 (en) * 2011-05-26 2012-11-29 三菱電機株式会社 Air conditioning device
WO2013027233A1 (en) * 2011-08-19 2013-02-28 三菱電機株式会社 Air conditioner
JP2014102019A (en) * 2012-11-19 2014-06-05 Hitachi Appliances Inc Air conditioner
US8881548B2 (en) 2009-05-08 2014-11-11 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2016071999A1 (en) * 2014-11-06 2016-05-12 日立アプライアンス株式会社 Air conditioning apparatus
WO2017026025A1 (en) * 2015-08-10 2017-02-16 三菱電機株式会社 Multiple-type air conditioner

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078218A1 (en) 2007-12-19 2009-06-25 Hoshizaki Denki Kabushiki Kaisha Cooling device
JP2009222331A (en) * 2008-03-18 2009-10-01 Hitachi Plant Technologies Ltd Air conditioning system and its operating method
JP5188571B2 (en) * 2008-04-30 2013-04-24 三菱電機株式会社 Air conditioner
US8820106B2 (en) 2008-04-30 2014-09-02 Mitsubishi Electric Corporation Air conditioning apparatus
WO2009133644A1 (en) * 2008-04-30 2009-11-05 三菱電機株式会社 Air conditioner
CN102016442A (en) * 2008-04-30 2011-04-13 三菱电机株式会社 Air conditioner
JPWO2009133643A1 (en) * 2008-04-30 2011-08-25 三菱電機株式会社 Air conditioner
WO2009133643A1 (en) * 2008-04-30 2009-11-05 三菱電機株式会社 Air-conditioning apparatus
US9212825B2 (en) 2008-04-30 2015-12-15 Mitsubishi Electric Corporation Air conditioner
JP5188572B2 (en) * 2008-04-30 2013-04-24 三菱電機株式会社 Air conditioner
WO2009133640A1 (en) * 2008-04-30 2009-11-05 三菱電機株式会社 Air conditioner
US8881548B2 (en) 2009-05-08 2014-11-11 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012160605A1 (en) * 2011-05-26 2012-11-29 三菱電機株式会社 Air conditioning device
CN103733002A (en) * 2011-08-19 2014-04-16 三菱电机株式会社 Air conditioner
WO2013027233A1 (en) * 2011-08-19 2013-02-28 三菱電機株式会社 Air conditioner
US10006678B2 (en) 2011-08-19 2018-06-26 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2014102019A (en) * 2012-11-19 2014-06-05 Hitachi Appliances Inc Air conditioner
WO2016071999A1 (en) * 2014-11-06 2016-05-12 日立アプライアンス株式会社 Air conditioning apparatus
WO2017026025A1 (en) * 2015-08-10 2017-02-16 三菱電機株式会社 Multiple-type air conditioner
WO2017026369A1 (en) * 2015-08-10 2017-02-16 三菱電機株式会社 Multiple-type air conditioner
JPWO2017026369A1 (en) * 2015-08-10 2018-03-01 三菱電機株式会社 Multi-type air conditioner

Also Published As

Publication number Publication date
JP4086575B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP4885481B2 (en) Cooling device operation method
US10480837B2 (en) Refrigeration apparatus
JP4086575B2 (en) Heat transfer device and operation method thereof
JP2007132582A (en) Cooling system
KR101596671B1 (en) Method for controlling air conditioner
JP2000266368A (en) Air-conditioner system
JP2009264718A (en) Heat pump hot water system
JP2001124374A (en) Air conditioner
JP2007309536A (en) Refrigerating device
JP4074422B2 (en) Air conditioner and its control method
JP2000329415A (en) Method of controlling degree of superheat of refrigerator unit, refrigerator unit and air conditioner
JP2005257164A (en) Cooler
WO2019159621A1 (en) Air-conditioning apparatus
JP3318505B2 (en) Control device for absorption air conditioner
JP6666803B2 (en) Hot water heating system
JP2002122334A (en) Heat-pump type floor-heating equipment
JP2921632B2 (en) Cold water supply method and equipment for cooling air conditioning of nuclear power plants
JP2002286309A (en) Refrigerator
KR100748112B1 (en) Flash gas reducing type air-conditioner
JP4194286B2 (en) Air conditioner
JPH07151359A (en) Refrigerant circulation type air conditioning system
JP3402440B2 (en) Air conditioner and air conditioner method
KR20100025356A (en) Air conditioner
JPH11148694A (en) Method for controlling operation of air conditioner
JP2002195676A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees