JPH11103527A - Higher harmonics compensating system - Google Patents

Higher harmonics compensating system

Info

Publication number
JPH11103527A
JPH11103527A JP9262974A JP26297497A JPH11103527A JP H11103527 A JPH11103527 A JP H11103527A JP 9262974 A JP9262974 A JP 9262974A JP 26297497 A JP26297497 A JP 26297497A JP H11103527 A JPH11103527 A JP H11103527A
Authority
JP
Japan
Prior art keywords
current
harmonic
phase
amplitude
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9262974A
Other languages
Japanese (ja)
Other versions
JP3798894B2 (en
Inventor
Fumitoshi Ichikawa
文俊 市川
Satoshi Miyazaki
聡 宮崎
Junichi Shimomura
潤一 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP26297497A priority Critical patent/JP3798894B2/en
Publication of JPH11103527A publication Critical patent/JPH11103527A/en
Application granted granted Critical
Publication of JP3798894B2 publication Critical patent/JP3798894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To correct and surely compensate amplitude and phase by detecting k-th higher harmonics current without delays. SOLUTION: A k-th higher harmonics constituent of a load current detected by a current transformer CT1 is converted into a DC part with a three-phase/kω coordinate transformer 22, which rotates with a value kω obtained by multiplying the k-th higher harmonics with a degree k and power source angular frequency, and the rest of the constituents into an AC part. The DC part is extracted with low-pass filters 23, 24 and converted with a kω/three-phase coordinate transformer 25, which rotates with the value kω for detecting three-phase k-th higher harmonics. Since control cycle, delays in current detection by CT and delay in current control exist, amplitude and phase are each corrected for the k-th higher harmonics current with a amplitude/ phase correcting circuit 27 after the three-phase k-th higher harmonics is converted into the k-th higher harmonics current of dq axis with a three-phase/dq coordinate transformer 26. Then, it is converted into three-phase k-th higher harmonics current, whose amplitude and phase are corrected with a dq/three-phase coordinate transformer 28. The k-th higher harmonics current of a three-phase power source is corrected by PWM control, in such a way that the deviation between the k-th higher harmonics current and the output current of an inverter 10 becomes zero.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統の高調
波を補償するアクティブフィルタ機能を有するアクティ
ブフィルタやパワーラインコンデショナにおける高次高
調波の補償に適した高調波補償方式に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active filter having an active filter function for compensating harmonics of a power system, and a harmonic compensation system suitable for high-order harmonic compensation in a power line conditioner.

【0002】[0002]

【従来の技術】図3に従来のアクティブフィルタの回路
構成を示す。図中、10は高調波補償電力を系統に出力
するインバータ、12は電流検出器CT1で検出した負
荷電流iLU〜iLWをdq座標のd,q軸電流id,iq
変換する3相/dq座標変換回路、13,14はこの
d,q軸電流の交流分(高調波電流成分)〜id,〜iq
を抽出するハイパスフィルタ、15はこのd,q軸高調
波電流成分を3相電流に変換するdq/3相座標変換回
路、31はこの高調波電流と電流検出器CT2で検出し
たインバータ10の出力電流との偏差を検出する減算
器、32はこの電流偏差をPI演算し電流指令を出力す
る電流制御器、33はこの電流指令を3角搬送波と比較
してPWM制御信号に変換し、インバータ10を制御す
るPWM制御回路である。この方式はPIコントローラ
による電流制御、三角波比較によるPWM制御の例であ
るが、他にもヒステリシスコンパレータ方式,空間ベク
トル方式の場合にも同様に適用できる。(ヒステリシス
コンパレータ方式,空間ベクトル方式は電流制御部とP
WM制御部が一緒になっている。) 電流検出器CT1によって検出された3相負荷電流iLU
〜iLWと電源周波数ωで回転する回転座標系のd,q軸
の電流id,iqとの関係は(1)式となる。
2. Description of the Related Art FIG. 3 shows a circuit configuration of a conventional active filter. In the figure, an inverter 10 for outputting a harmonic compensation power to the grid, 12 3 for converting the load current i LU through i LW detected by the current detector CT1 of dq coordinates d, q-axis current i d, the i q phase / dq coordinate transformation circuit, the d, AC component (harmonic current component) of the q-axis current 13, 14 through i d, through i q
Is a dq / 3-phase coordinate conversion circuit for converting the d- and q-axis harmonic current components into a three-phase current, and 31 is the harmonic current and the output of the inverter 10 detected by the current detector CT2. A subtractor 32 for detecting a deviation from the current; a current controller 32 for performing PI calculation of the current deviation and outputting a current command; and a comparator 33 for comparing the current command with a triangular carrier to convert the current command into a PWM control signal. Is a PWM control circuit for controlling This method is an example of current control by a PI controller and PWM control by triangular wave comparison. However, the present invention can be similarly applied to a hysteresis comparator method and a space vector method. (The hysteresis comparator method and space vector method use the current controller and P
The WM control unit is together. ) Three-phase load current i LU detected by current detector CT1
Through i LW and a rotating coordinate system that rotates at the power supply frequency omega d, current of the q-axis i d, the relationship between the i q is (1).

【0003】[0003]

【数1】 (Equation 1)

【0004】この電流idは負荷電流の無効成分に、電
流iqは有効成分となる。また、電流id,iqの直流分
は基本波電流成分に、交流分は高調波成分となる。
The current id is an invalid component of the load current, and the current iq is an effective component. The current i d, the DC component of the i q is the fundamental wave current components, AC component becomes harmonic component.

【0005】よって、図3のように電流id,iqからハ
イパスフィルタ13,14によって交流分だけを検出
し、この電流〜id,〜iqを3相に変換し、電流制御に
より電圧形インバータから高調波電流を発生させ、系統
に注入することにより、負荷電流に含まれる高調波電流
を補償できる。これは一般に電力用アクティブフィルタ
の機能に相当する。
[0005] Thus, to detect only the AC component by the high-pass filters 13 and 14 from the current i d, i q as shown in FIG. 3, and converts the current through i d, a through i q to the three-phase voltage by the current control The harmonic current contained in the load current can be compensated by generating a harmonic current from the inverter and injecting it into the system. This generally corresponds to the function of an active power filter.

【0006】座標変換した電流idの直流分(基本波無
効成分)をローパスフィルタで抽出することにより無効
電力の補償ができる。また、負荷電流を座標が逆回転す
る逆3相/dq座標変換回路で変換し、その変換した電
流id,iqの直流分(基本波逆相成分)をローパスフィ
ルタで抽出すると逆相電力の補償ができる。上記アクテ
ィブフィルタの機能に加えて無効電力補償,逆相電力補
償を行うものがパワーラインコンディショナの機能に相
当する。
[0006] can compensate the reactive power by extracting the DC component of the coordinate transformed current i d (the reactive component fundamental) a low-pass filter. Further, the load current is converted by reverse 3-phase / dq coordinate conversion circuit coordinate is reversely rotated, the converted current i d, i q DC component negative-phase power when extracting the (fundamental wave negative phase component) low-pass filter Can be compensated. The one that performs the reactive power compensation and the negative phase power compensation in addition to the function of the active filter corresponds to the function of the power line conditioner.

【0007】[0007]

【発明が解決しようとする課題】アクティブフィルタ,
パワーラインコンデショナ等における高調波補償におい
て、高次の高調波を補償する場合、制御周期、電流検出
機器による電流検出の遅れ、電流制御の遅れにより十分
な補償ができない。この対策として制御遅れ補償回路を
付加する方式が考えられるが、微分動作となるため安定
性に欠け、制御が困難となる。
SUMMARY OF THE INVENTION An active filter,
When compensating for higher harmonics in harmonic compensation in a power line conditioner or the like, sufficient compensation cannot be performed due to a control cycle, a delay in current detection by a current detection device, and a delay in current control. As a countermeasure, a method of adding a control delay compensation circuit can be considered. However, since the differential operation is performed, stability is lacking and control becomes difficult.

【0008】この発明は、このような問題点に鑑みてな
されたものであり、その目的とするところは、電力系統
の高次高調波電流を遅れなく検出し振幅位相補正をして
確実に補償することのできる高調波補償方式を提供する
ことにある。
The present invention has been made in view of such a problem, and an object thereof is to detect a high-order harmonic current of an electric power system without delay and correct the amplitude and phase to reliably compensate. It is an object of the present invention to provide a harmonic compensating method that can be performed.

【0009】[0009]

【課題を解決するための手段】この発明は、系統負荷電
流の高調波電流を検出し、検出した高調波電流と系統へ
出力するインバータの出力電流とを比較し、その電流偏
差がなくなるようにインバータを制御して高調波補償す
るものにおいて、検出負荷電流を電源角周波数の補償し
ようとする高調波の次数倍の値で回転する回転座標変換
回路で変換し負荷電流から補償しようとする次数の高調
波を得、この高調波を回転ベクトルへ変換し、その振幅
と位相を独立に補正し、この振幅,位相補正した高調波
を検出高調波として高調波補償し、高調波補償に伴う制
御周期、電流検出遅れ、電流制御の遅れによる振幅位相
誤差がなくなるようにした。
SUMMARY OF THE INVENTION The present invention detects a harmonic current of a system load current, compares the detected harmonic current with an output current of an inverter output to the system, and eliminates the current deviation. In an inverter that controls an inverter to compensate for harmonics, the detected load current is converted by a rotating coordinate conversion circuit that rotates at a value that is a multiple of the order of the harmonics to be compensated for the power supply angular frequency, and the order of the order to be compensated from the load current is Harmonics are obtained, these harmonics are converted to rotation vectors, their amplitude and phase are independently corrected, and the amplitude and phase corrected harmonics are compensated as detected harmonics. The amplitude and phase errors due to the current detection delay and the current control delay are eliminated.

【0010】または、検出負荷電流を電源角周波数の補
償しようとする高調波の各次数倍の値で回転する各回転
座標変換回路で変換し負荷電流から補償しようとする各
次数の高調波を得、この各次数の高調波をそれぞれ回転
ベクトルへ変換し、それぞれの振幅と位相を独立に補正
し、この振幅,位相補正した各次数の高調波を加算して
検出高調波として高調波補償し、高調波補償に伴う制御
周期、電流検出遅れ、電流制御の遅れによる振幅位相誤
差がなくなるようにした。
Alternatively, the detected load current is converted by each rotating coordinate conversion circuit rotating at a value of each order multiple of the harmonic to be compensated for the power supply angular frequency, and the harmonic of each order to be compensated is obtained from the load current. The harmonics of each order are converted into rotation vectors, the amplitudes and phases of the harmonics are independently corrected, and the harmonics of the orders corrected for the amplitude and phase are added to compensate for harmonics as detected harmonics. The amplitude and phase errors due to the control cycle, current detection delay, and current control delay associated with harmonic compensation are eliminated.

【0011】または、検出負荷電流から確実に補償しよ
うとする次数kの高調波電流を、その次数kと電源周波
数を掛けた値で回転する3相/kω回転座標変換回路で
k次高調波分のみを直流分に変換し、この直流分をロー
パスフィルタで抽出し、kω/3相回転座標変換回路で
3相に変換してk次高調波電流を求め、このk次高調波
電流を電源周波数で回転する3相/dq座標変換回路で
d,q軸電流に変換し、このk次高調波電流を振幅・位
相誤差がなくなるように振幅と位相に補正を加え、dq
/3相座標変換回路で3相に変換して振幅・位相補正さ
れたk次高調波電流となし、検出負荷電流から前記振幅
・位相補正されたk次高調波電流を除去し、k次高調波
が除去された負荷電流を電源周波数で回転する3相/d
q座標変換回路でd,q軸電流に変換し、ハイパスフィ
ルタで高調波成分を抽出し、dq/3相座標変換回路で
3相に変換してk次高調波を含まない高調波電流を求
め、このk次高調波を含まない高調波電流に前記振幅・
位相補正されたk次高調波電流を加えた高調波電流でイ
ンバータを制御して高調波補償するものである。
Alternatively, a harmonic current of the order k, which is to be surely compensated from the detected load current, is converted into a k-th harmonic by a three-phase / kω rotational coordinate conversion circuit that rotates at a value obtained by multiplying the order k by the power supply frequency. Is converted to a DC component, the DC component is extracted by a low-pass filter, and converted into three phases by a kω / 3-phase rotation coordinate conversion circuit to obtain a k-th harmonic current. Is converted into d- and q-axis currents by a three-phase / dq coordinate conversion circuit that rotates at k, and the k-th harmonic current is corrected in amplitude and phase so that the amplitude and phase errors are eliminated.
A k-th harmonic current whose amplitude and phase have been corrected by converting it into a three-phase signal by a three-phase coordinate conversion circuit is removed. The k-th harmonic current whose amplitude and phase has been corrected is removed from the detected load current, and the k-th harmonic current is removed. 3 phase / d rotating load current with wave removed at power supply frequency
The d- and q-axis currents are converted by a q-coordinate conversion circuit, harmonic components are extracted by a high-pass filter, and converted into three phases by a dq / 3-phase coordinate conversion circuit to obtain a harmonic current that does not include the k-th harmonic. The harmonic current not including the k-th harmonic is added to the amplitude
The inverter is controlled by a harmonic current to which the k-th harmonic current whose phase has been corrected is added to perform harmonic compensation.

【0012】[0012]

【発明の実施の形態】図1に実施の形態にかかるアクテ
ィブフィルタの回路構成を示す。
FIG. 1 shows a circuit configuration of an active filter according to an embodiment.

【0013】図1において、Sは系統3相交流電源、L
は系統負荷、10はアクティブフィルタの補償電流を出
力するインバータ、11は電流検出器CT1で検出した
負荷電流iLU〜iLWから後記するk次高調波振幅位相補
正ブロック21で検出され振幅位相補正されたk次高調
波を引く減算器、12〜15は振幅位相補正を必要とし
ない高調波を検出する高調波検出回路で、12は減算器
11からのk次高調波が除去された負荷電流を電源周波
数ωで回転するdq座標系へ変換しd,q軸電流id
qを得る3相/dq軸座標変換回路、13,14はこ
のd,q軸電流の交流分(高調波電流成分)〜id,〜
qを抽出するハイパスフィルタ、15はこのd,q軸
高調波電流成分を3相電流に変換するdq/3相座標変
換回路。
In FIG. 1, S is a system three-phase AC power source, L
Is a system load, 10 is an inverter that outputs a compensation current of the active filter, 11 is an amplitude / phase correction detected by a k-order harmonic amplitude / phase correction block 21 described later from the load currents i LU to i LW detected by the current detector CT1. A subtractor for subtracting the k-th harmonic, a harmonic detection circuit for detecting a harmonic that does not require amplitude and phase correction, and a load current from which the k-th harmonic from the subtractor 11 has been removed. Is converted to a dq coordinate system rotating at the power supply frequency ω, and d, q-axis currents id ,
i q 3-phase / dq-axis coordinate converting circuit to obtain, this d, AC component (harmonic current component) of the q-axis current 13, 14 through i d, ~
high pass filter, 15 is the d, dq / 3-phase coordinate conversion circuit for converting the q-axis higher harmonic current component in three-phase current to extract the i q.

【0014】21(22〜29)は、k次高調波振幅位
相補正ブロックで、22は上記CT1で検出した負荷電
流を高調波次数kと回転角速度ωを掛けた値kωで回転
するdq座標系でk次高調波のみを直流分に変換する3
相/kω回転座標変換回路、23,24はk次以外の高
調波分を除去し、このd,q軸電流の直流分idk,iqk
を抽出するローパスフィルタ、25はこのd,q軸の直
流分−idk,−iqkを(9)式の3相電流に変換するk
ω/3相回転座標変換回路、26はk次高調波成分の3
相電流ika,ikb,ikcを電源周波数ωで回転するdq
座標系に変換する3相/dq座標変換回路、27はこの
変換されたk次高調波電流の振幅と位相に(1)式によ
る補正を加える振幅位相補正回路、28は振幅位相補正
後のdq軸k次高調波成分〜idk,〜iqkを3相電流に
変換するdq/3相座標変換回路、29はdq/3相座
標変換回路路15からの高調波に振幅位相補正回路27
で振幅位相補正され、更にdq/3相座標変換回路28
で3相に変換されたk次高調波電流を加算する加算器。
Reference numeral 21 (22 to 29) denotes a k-th harmonic amplitude / phase correction block. Reference numeral 22 denotes a dq coordinate system for rotating the load current detected by the CT1 by a value kω obtained by multiplying the harmonic order k by the rotational angular velocity ω. To convert only the k-th harmonic into a DC component
Phase / kW rotating coordinate conversion circuit, 23 and 24 to remove the harmonics other than that of k-th order, the d, DC component i dk of the q-axis current, i qk
Low-pass filter for extracting, 25 converts this d, DC component -i dk of the q-axis, the -i qk (9) to the 3-phase current of the formula k
ω / 3-phase rotation coordinate conversion circuit, 26 is the k-th harmonic component 3
Dq rotating phase currents i ka , i kb , i kc at power frequency ω
A three-phase / dq coordinate conversion circuit for converting into a coordinate system, 27 is an amplitude-phase correction circuit for correcting the converted amplitude and phase of the k-th harmonic current according to equation (1), and 28 is dq after the amplitude-phase correction. axis k-th harmonic components through i dk, dq / 3-phase coordinate conversion circuit for converting a through i qk into three-phase current, the amplitude phase correction circuit for harmonics from dq / 3-phase coordinate conversion circuit path 15 29 27
, And the dq / 3-phase coordinate conversion circuit 28
An adder for adding the k-th harmonic current converted to three phases in the above.

【0015】31は加算器29からの高調波電流とCT
2で検出したインバータの出力電流との偏差を検出する
減算器、32はこの電流偏差をPI演算し電流指令を出
力する電流制御器、33はこの電流指令を3角搬送波と
比較してPWM制御信号に変換しインバータ10を制御
するPWM制御回路である。
Numeral 31 denotes the harmonic current from the adder 29 and CT
A subtractor for detecting a deviation from the output current of the inverter detected in step 2; a current controller 32 for performing a PI operation on the current deviation to output a current command; and 33 for comparing the current command with a triangular carrier to perform PWM control. This is a PWM control circuit that converts the signal into a signal and controls the inverter 10.

【0016】上記k次高調波振幅位相補正ブロック21
の動作を原理と共に説明する。低次高調波の検出をハイ
パスフィルタを用いずに、この高調波の次数kと電源角
周波数ωを掛けた値で回転する回転座標系に変換するこ
とによって検出する。
The k-th harmonic amplitude / phase correction block 21
Will be described together with the principle. The low-order harmonics are detected without using a high-pass filter by converting them into a rotating coordinate system that rotates by a value obtained by multiplying the harmonic order k by the power supply angular frequency ω.

【0017】負荷電流iLU,iLV,iLWを(2)式のよ
うに定義する。
The load currents i LU , i LV , i LW are defined as in equation (2).

【0018】[0018]

【数2】 (Equation 2)

【0019】(2)式中のnは整数であり、高調波の次
数kを意味する。負荷電流から第k次高調波を検出、補
償する場合を考える。
In the equation (2), n is an integer, which means the harmonic order k. Consider a case where the k-th harmonic is detected and compensated from the load current.

【0020】(2)式の負荷電流を高次高調波次数kと
回転角速度ωを掛け合わせた値kωで回転する座標系へ
d,q変換する。この場合の変換式は(3)式のように
定義できる。
The load current in equation (2) is d, q transformed into a coordinate system rotating at a value kω obtained by multiplying the higher harmonic order k by the rotational angular velocity ω. The conversion equation in this case can be defined as equation (3).

【0021】[0021]

【数3】 (Equation 3)

【0022】上式に(2)式を代入すると、By substituting equation (2) into the above equation,

【0023】[0023]

【数4】 (Equation 4)

【0024】となる。ここで、高調波電流をkωで回転
す座標系へ変換した場合、高調波電流成分n=k+i
(i=0,±1,±2,±3…)の成分は(4)式
(5)式より(6)式(7)式のようになる。
## EQU1 ## Here, when the harmonic current is converted into a coordinate system rotating by kω, the harmonic current component n = k + i
The components of (i = 0, ± 1, ± 2, ± 3...) Are expressed by equations (6) and (7) from equations (4) and (5).

【0025】[0025]

【数5】 (Equation 5)

【0026】(6)式(7)式より、負荷電流中に含ま
れているk次高調波電流が直流値に、基本調波及びその
他の次数の高調波電流は交流値になることがわかる。よ
って、3相/kω回転座標変換回路で変換した電流
d,iqの中からローパスフィルタ23,24により直
流分だけを抽出すれば、(8)式に示すように系統電流
中に含まれるk次高調波を検出することができる。高次
高調波検出に微分動作となるハイパスフィルタを使用し
ないので、高精度に検出できる。
From the equations (6) and (7), it is understood that the k-th harmonic current contained in the load current becomes a DC value, and the harmonic currents of the fundamental harmonic and other orders become AC values. . Therefore, if extract only the DC component by the low-pass filter 23, 24 from the current i d, i q converted by three-phase / kW rotating coordinate conversion circuit, included in the system current as shown in equation (8) The k-th harmonic can be detected. Since a high-pass filter that performs a differential operation is not used for high-order harmonic detection, detection can be performed with high accuracy.

【0027】[0027]

【数6】 (Equation 6)

【0028】次に、(8)式を(9)式で座標変換し、
更に(10)式で座標変換すると、
Next, the coordinates of the equation (8) are transformed by the equation (9).
Further, when the coordinates are transformed by Expression (10),

【0029】[0029]

【数7】 (Equation 7)

【0030】ここで得られた電流〜idk,〜iqkは角周
波数3mω(ただしk=3m±1,m=整数)で回転す
る回転ベクトルとなる(図2参照)。
[0030] The obtained current through i dk, through i qk is the rotation vector rotating at an angular frequency 3 milliohms (although k = 3m ± 1, m = integer) (see Fig. 2).

【0031】振幅補正係数をαm、位相補正係数をθm
すると、補正後の電流値〜idk2,〜iqk2は(11)式
で求めることができる。
[0031] When the amplitude correction coefficient alpha m, the phase correction coefficient and theta m, the current value through i dk2 corrected, through i Qk2 can be calculated by equation (11).

【0032】[0032]

【数8】 (Equation 8)

【0033】kω/3相回転座標変換回路25はローパ
スフィルタ23,24からの直流分−idk,−iqk
(9)式で3相の電流ika,ikb,ikcに変換して第k
次高調波を検出する。更に3相の電流ika,ikb,ikc
を基本周波数ωで回転するdq座標系に3相/dq座標
変換回路26で変換し、電流〜idk,〜iqkを得る。
The kW / 3-phase rotating coordinate conversion circuit 25 converts the low-pass DC component -i dk from the filter 23 and 24, the current i ka of three phases in the -i qk (9) equation, i kb, the i kc The k
Detect the second harmonic. Furthermore, three-phase currents i ka , i kb , i kc
Was converted with 3-phase / dq coordinate conversion circuit 26 to the dq coordinate system rotating at the fundamental frequency omega, obtain current through i dk, a through i qk.

【0034】振幅位相補正回路27は電流〜idk,〜i
qkを(11)式でその振幅Aと位相θを補正係数αm
θmで補正して〜idk2,〜iqk2とし、これをdq/3
相座標変換回路28で3相に変換して振幅位相補正を加
えた第k次高調波を出力する。
The amplitude and phase correction circuit 27 outputs currents ~ idk , ~ i
through i dk2 The qk (11) the amplitude A and phase theta by the formula is corrected by the correction coefficient alpha m and theta m, and through i Qk2, which dq / 3
The phase coordinate conversion circuit 28 converts the signal into three phases and outputs the k-th harmonic to which the amplitude and phase are corrected.

【0035】このように、補正係数により、制御周期、
電流検出器による電流検出の遅れ、電流制御の遅れを補
償することができる。この補償は回転ベクトル上で行う
ため、従来の遅れ補償のような微分動作は必要とせず、
位相,振幅の独立した調整が可能である。
As described above, the control cycle,
It is possible to compensate for a delay in current detection by the current detector and a delay in current control. Since this compensation is performed on the rotation vector, there is no need for a differential operation like the conventional delay compensation,
Independent adjustment of phase and amplitude is possible.

【0036】また、振幅補正係数、位相補正係数といっ
たパラメータは制御回路の仕様から決定され、外部回路
からは影響を受けない。
The parameters such as the amplitude correction coefficient and the phase correction coefficient are determined from the specifications of the control circuit and are not affected by external circuits.

【0037】図1において、k次高調波振幅位相補正ブ
ロック21を並列に複数設ければ、複数の高次高調波の
検出と振幅位相補正を同時に行うことが可能となる。
In FIG. 1, if a plurality of k-order harmonic amplitude / phase correction blocks 21 are provided in parallel, it is possible to simultaneously detect a plurality of high-order harmonics and correct the amplitude / phase.

【0038】[0038]

【発明の効果】この発明は、高調波成分を補正高調波の
kの次数と電源角周波数を掛けた値で回転するベクトル
に変換し、このベクトル振幅と位相を補正するので、従
来のハイパスフィルタによる微分動作方式よりも高精度
で安定した高次高調波の補正ができる。
The present invention converts a harmonic component into a vector rotating by a value obtained by multiplying the order of k of the corrected harmonic by the power supply angular frequency, and corrects the vector amplitude and phase. Higher-order harmonics can be corrected more accurately and more stably than the differential operation method using

【0039】また、高次高調波の次数kの値の設定によ
って任意の高調波を振幅位相補償することができる。ま
た、同時に複数の高調波の補正も可能である。
Further, by setting the value of the order k of the higher harmonic, any harmonic can be amplitude-phase compensated. It is also possible to simultaneously correct a plurality of harmonics.

【0040】したがって、任意次数の高調波を制御遅れ
なく補償することができる。
Therefore, harmonics of any order can be compensated for without any control delay.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態にかかる電力用アクティブフィルタ
の回路構成図。
FIG. 1 is a circuit configuration diagram of a power active filter according to an embodiment.

【図2】高次高調波電流の振幅位相補正を説明する回転
ベクトル図。
FIG. 2 is a rotation vector diagram illustrating amplitude / phase correction of a high-order harmonic current.

【図3】従来例にかかる電力用アクティブフィルタの回
路構成図。
FIG. 3 is a circuit configuration diagram of a power active filter according to a conventional example.

【符号の説明】[Explanation of symbols]

10…電力形インバータ 12…3相/dq座標変換回路 13,14…ハイパスフィルタ 15…dq/3相座標変換回路 21…第k次高調波振幅位相補正ブロック。 22…3相/kω回転座標変換回路 23,24…ローパスフィルタ 25…kω/3相回転座標変換回路。 27…振幅位相補正回路 32…電流制御回路 33…PWM制御回路。Reference Signs List 10 power inverter 12 three-phase / d q coordinate conversion circuit 13, 14 high-pass filter 15 dq / 3-phase coordinate conversion circuit 21 k-th harmonic amplitude / phase correction block. 22: three-phase / kω rotation coordinate conversion circuit 23, 24: low-pass filter 25: kω / 3-phase rotation coordinate conversion circuit. 27: amplitude and phase correction circuit 32: current control circuit 33: PWM control circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下村 潤一 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Junichi Shimomura 2-1-17-1 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 系統負荷電流の高調波電流を検出し、検
出した高調波電流と系統へ出力するインバータの出力電
流とを比較し、その電流偏差がなくなるようにインバー
タを制御して高調波補償するものにおいて、 検出負荷電流を電源角周波数の補償しようとする高調波
の次数倍の値で回転する回転座標変換回路で変換し負荷
電流から補償しようとする次数の高調波を得、この高調
波を回転ベクトルへ変換し、その振幅と位相を独立に補
正し、この振幅,位相補正した高調波を検出高調波とし
て高調波補償し、高調波補償に伴う制御周期、電流検出
遅れ、電流制御の遅れによる振幅位相誤差がなくなるよ
うにしたことを特徴とする高調波補償方式。
1. A method for detecting a harmonic current of a system load current, comparing the detected harmonic current with an output current of an inverter to be output to the system, and controlling the inverter so as to eliminate the current deviation. In this method, the detected load current is converted by a rotating coordinate conversion circuit that rotates at a value that is a multiple of the harmonic to be compensated for the power supply angular frequency, and a harmonic of the order to be compensated is obtained from the load current. Is converted to a rotation vector, the amplitude and phase of which are independently corrected, and the harmonics whose amplitude and phase are corrected are subjected to harmonic compensation as detected harmonics. The control cycle, current detection delay, and current control A harmonic compensation method characterized by eliminating amplitude and phase errors due to delay.
【請求項2】 系統負荷電流の高調波電流を検出し、検
出した高調波電流と系統へ出力するインバータの出力電
流とを比較し、その電流偏差がなくなるようにインバー
タを制御して高調波補償するものにおいて、 検出負荷電流を電源角周波数の補償しようとする高調波
の各次数倍の値で回転する各回転座標変換回路で変換し
負荷電流から補償しようとする各次数の高調波を得、こ
の各次数の高調波をそれぞれ回転ベクトルへ変換し、そ
れぞれの振幅と位相を独立に補正し、この振幅,位相補
正した各次数の高調波を加算して検出高調波として高調
波補償し、高調波補償に伴う制御周期、電流検出遅れ、
電流制御の遅れによる振幅位相誤差がなくなるようにし
たことを特徴とする高調波補償方式。
2. Harmonic compensation by detecting a harmonic current of a system load current, comparing the detected harmonic current with an output current of an inverter output to the system, and controlling the inverter to eliminate the current deviation. In each of the above, the detected load current is converted by each rotating coordinate conversion circuit rotating at a value of each order multiple of the harmonic to be compensated for the power supply angular frequency, and the harmonic of each order to be compensated is obtained from the load current, The harmonics of each order are converted into rotation vectors, the amplitudes and phases of the harmonics are independently corrected, and the harmonics of the orders corrected for the amplitudes and phases are added to perform harmonic compensation as detected harmonics. Control cycle due to wave compensation, current detection delay,
A harmonic compensation method characterized by eliminating an amplitude phase error due to a delay in current control.
【請求項3】 系統負荷電流の高調波電流を検出し、検
出した高調波電流と系統へ出力するインバータの出力電
流を比較し、その電流偏差がなくなるようにインバータ
をPWM制御する高調波補償方式において、 検出負荷電流から確実に補償しようとする次数kの高調
波電流を、その次数kと電源周波数を掛けた値で回転す
る3相/kω回転座標変換回路でk次高調波分のみを直
流分に変換し、この直流分をローパスフィルタで抽出
し、kω/3相回転座標変換回路で3相に変換してk次
高調波電流を求め、 このk次高調波電流を電源周波数で回転する3相/dq
座標変換回路でd,q軸電流に変換し、このk次高調波
電流を振幅・位相誤差がなくなるように振幅と位相に補
正を加え、dq/3相座標変換回路で3相に変換して振
幅・位相補正されたk次高調波電流となし、 検出負荷電流から前記振幅・位相補正されたk次高調波
電流を除去し、k次高調波が除去された負荷電流を電源
周波数で回転する3相/dq座標変換回路でd,q軸電
流に変換し、ハイパスフィルタで高調波成分を抽出し、
dq/3相座標変換回路で3相に変換してk次高調波を
含まない高調波電流を求め、 このk次高調波を含まない高調波電流に前記振幅・位相
補正されたk次高調波電流を加えた高調波電流でインバ
ータを制御して高調波補償することを特徴とする高調波
補償方式。
3. A harmonic compensation system for detecting a harmonic current of a system load current, comparing the detected harmonic current with an output current of an inverter to be output to the system, and performing PWM control on the inverter to eliminate the current deviation. In the above, the harmonic current of the order k, which is to be surely compensated from the detected load current, is converted into a DC by a three-phase / kω rotational coordinate conversion circuit that rotates at a value obtained by multiplying the order k by the power supply frequency. And a DC component is extracted by a low-pass filter, and converted into three phases by a kω / 3-phase rotating coordinate conversion circuit to obtain a k-th harmonic current. The k-th harmonic current is rotated at the power supply frequency. 3 phase / dq
The d- and q-axis currents are converted by a coordinate conversion circuit, and the k-th harmonic current is corrected in amplitude and phase so that the amplitude and phase errors are eliminated, and converted into three phases by a dq / 3-phase coordinate conversion circuit. The k-th harmonic current whose amplitude and phase have been corrected is removed. The k-th harmonic current whose amplitude and phase has been corrected is removed from the detected load current, and the load current from which the k-order harmonic has been removed is rotated at the power supply frequency. A three-phase / dq coordinate conversion circuit converts the current into d- and q-axis currents, and a high-pass filter extracts harmonic components.
A dq / 3-phase coordinate conversion circuit converts the current into three phases to obtain a harmonic current that does not include the k-th harmonic. A harmonic compensation method characterized in that the inverter is controlled by the harmonic current to which the current is added to compensate the harmonic.
JP26297497A 1997-09-29 1997-09-29 Harmonic compensation method Expired - Fee Related JP3798894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26297497A JP3798894B2 (en) 1997-09-29 1997-09-29 Harmonic compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26297497A JP3798894B2 (en) 1997-09-29 1997-09-29 Harmonic compensation method

Publications (2)

Publication Number Publication Date
JPH11103527A true JPH11103527A (en) 1999-04-13
JP3798894B2 JP3798894B2 (en) 2006-07-19

Family

ID=17383144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26297497A Expired - Fee Related JP3798894B2 (en) 1997-09-29 1997-09-29 Harmonic compensation method

Country Status (1)

Country Link
JP (1) JP3798894B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485504B1 (en) * 2002-08-09 2005-04-27 동부아남반도체 주식회사 Apparatus for lowering an earth electric potential in semiconductor device
JP2008234298A (en) * 2007-03-20 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device
JP2009038885A (en) * 2007-08-01 2009-02-19 Daihen Corp Signal extracting device and reactive power compensator containing the same
JP2011254645A (en) * 2010-06-03 2011-12-15 Fuji Electric Co Ltd Power conversion equipment and power conversion system
CN102412579A (en) * 2011-09-26 2012-04-11 中国电力科学研究院 Harmonic current compensating method based on fast Fourier transform
CN102638192A (en) * 2011-02-14 2012-08-15 西门子公司 Controller for a power converter and method of operating the same
CN102801346A (en) * 2012-08-21 2012-11-28 深圳市通业科技发展有限公司 Three-phase inverter with no-signal interconnecting lines connected in parallel and control method of three-phase inverter
KR20130021134A (en) * 2011-08-22 2013-03-05 엘에스산전 주식회사 Apparatus for controlling current of inverter
CN103855717A (en) * 2014-03-27 2014-06-11 安徽工业大学 Pulse-free soft starting method of low-voltage SVG (static var generator)
WO2014091915A1 (en) * 2012-12-14 2014-06-19 ダイキン工業株式会社 Active filter control device
JP2018046654A (en) * 2016-09-14 2018-03-22 富士電機株式会社 Control device of power converter
WO2020129161A1 (en) * 2018-12-18 2020-06-25 三菱電機株式会社 Control device and active filter device
CN114061632A (en) * 2021-10-21 2022-02-18 上大电气科技(嘉兴)有限公司 High-precision magnetic encoder decoding method for compensating specified subharmonic
CN114123205A (en) * 2021-11-01 2022-03-01 深圳供电局有限公司 Harmonic compensation system and phase correction method and device thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683304B (en) * 2013-12-09 2015-06-24 国家电网公司 Control method for optimizing thyristor controlled transformer type controllable electric reactor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485504B1 (en) * 2002-08-09 2005-04-27 동부아남반도체 주식회사 Apparatus for lowering an earth electric potential in semiconductor device
JP2008234298A (en) * 2007-03-20 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device
JP2009038885A (en) * 2007-08-01 2009-02-19 Daihen Corp Signal extracting device and reactive power compensator containing the same
JP2011254645A (en) * 2010-06-03 2011-12-15 Fuji Electric Co Ltd Power conversion equipment and power conversion system
CN102638192A (en) * 2011-02-14 2012-08-15 西门子公司 Controller for a power converter and method of operating the same
KR20130021134A (en) * 2011-08-22 2013-03-05 엘에스산전 주식회사 Apparatus for controlling current of inverter
CN102412579A (en) * 2011-09-26 2012-04-11 中国电力科学研究院 Harmonic current compensating method based on fast Fourier transform
CN102801346A (en) * 2012-08-21 2012-11-28 深圳市通业科技发展有限公司 Three-phase inverter with no-signal interconnecting lines connected in parallel and control method of three-phase inverter
US9835364B2 (en) 2012-12-14 2017-12-05 Daikin Industries, Ltd. Active filter control device
WO2014091915A1 (en) * 2012-12-14 2014-06-19 ダイキン工業株式会社 Active filter control device
JP2014121145A (en) * 2012-12-14 2014-06-30 Daikin Ind Ltd Active filter control device
EP2933893A4 (en) * 2012-12-14 2016-07-27 Daikin Ind Ltd Active filter control device
CN103855717A (en) * 2014-03-27 2014-06-11 安徽工业大学 Pulse-free soft starting method of low-voltage SVG (static var generator)
JP2018046654A (en) * 2016-09-14 2018-03-22 富士電機株式会社 Control device of power converter
WO2020129161A1 (en) * 2018-12-18 2020-06-25 三菱電機株式会社 Control device and active filter device
CN114061632A (en) * 2021-10-21 2022-02-18 上大电气科技(嘉兴)有限公司 High-precision magnetic encoder decoding method for compensating specified subharmonic
CN114061632B (en) * 2021-10-21 2024-03-19 上大电气科技(嘉兴)有限公司 Decoding method of high-precision magnetic encoder for compensating appointed subharmonic
CN114123205A (en) * 2021-11-01 2022-03-01 深圳供电局有限公司 Harmonic compensation system and phase correction method and device thereof
CN114123205B (en) * 2021-11-01 2023-12-22 深圳供电局有限公司 Harmonic compensation system and phase correction method and device thereof

Also Published As

Publication number Publication date
JP3798894B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP3338159B2 (en) Amplitude / phase detector
JPH11103527A (en) Higher harmonics compensating system
JP5021390B2 (en) Signal extracting device and reactive power compensator including the same
JP5025295B2 (en) Semiconductor power converter
JP2009038885A5 (en)
JP3324249B2 (en) Power converter
JPH09215197A (en) Active filter device
JP3266966B2 (en) Positive / negative phase component detection circuit for three-phase electricity
JPH0662579A (en) Voltage-type inverter device
JP3173892B2 (en) Control device for voltage imbalance compensator
JP2009050091A (en) Phase detector
JP4107570B2 (en) Control method of self-excited converter
JPH07123726A (en) Power converter
JP3247252B2 (en) Control device for power converter
JPH10178741A (en) Power-line conditioner
JP2833187B2 (en) Power converter current control circuit
JPH0880052A (en) Active filter for power
JPH10201099A (en) Active filter
JP3509935B2 (en) Control device for voltage source PWM converter
JP3505626B2 (en) Power converter and power converter controller
JP6819818B1 (en) Power converter
JP2005168212A (en) Motor control device
US20230188030A1 (en) Power conversion device and control device
JP3261852B2 (en) Active filter compensation current command value calculation circuit
JPH08111937A (en) General purpose compensating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees