JP2018046654A - Control device of power converter - Google Patents

Control device of power converter Download PDF

Info

Publication number
JP2018046654A
JP2018046654A JP2016179521A JP2016179521A JP2018046654A JP 2018046654 A JP2018046654 A JP 2018046654A JP 2016179521 A JP2016179521 A JP 2016179521A JP 2016179521 A JP2016179521 A JP 2016179521A JP 2018046654 A JP2018046654 A JP 2018046654A
Authority
JP
Japan
Prior art keywords
axis
harmonic
phase
component
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016179521A
Other languages
Japanese (ja)
Other versions
JP6756975B2 (en
Inventor
晃裕 日野
Akihiro Hino
晃裕 日野
稔久 田重田
Toshihisa Tashigeta
稔久 田重田
まど華 八尾
Madoka Yao
まど華 八尾
博 篠原
Hiroshi Shinohara
博 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016179521A priority Critical patent/JP6756975B2/en
Publication of JP2018046654A publication Critical patent/JP2018046654A/en
Application granted granted Critical
Publication of JP6756975B2 publication Critical patent/JP6756975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device of a power converter that can accurately compensate for phase delay of a harmonic compensation signal and surely suppress a harmonic component of a power supply system.SOLUTION: A control device of a power converter comprises: a harmonic extractor 2 that sets as a phase of a power supply system a phase of a d-axis of a dq orthogonal rotary coordinate defined inside the control device of a power converter connected to the power supply system, sets an axis in an orthogonal direction of the d-axis as a q-axis, and removes DC components from d-axis components and q-axis components of DC signals of the power supply system to extract harmonic components in an arbitrary order; a phase adjustment calculator 4 that corrects a phase of the harmonic components by adding a phase correction vector determined from γ-axis components of the harmonic components to δ-axis components, in a γδ-orthogonal rotary coordinate in which the phase of the extracted harmonic components is set as the phase of a γ-axis and an axis in the orthogonal direction of the γ-axis is set as a δ-axis; and converters 5 and 6 which perform coordinate conversion of output signals to generate a command value of harmonic compensation currents to the power converter.SELECTED DRAWING: Figure 1

Description

本発明は、電力変換器の制御装置に関し、詳しくは、負荷電流に重畳された高調波成分による電力変換器の誤動作を防止するために、高調波成分を抑制する機能を備えた制御装置に関するものである。   The present invention relates to a control device for a power converter, and more particularly to a control device having a function of suppressing harmonic components in order to prevent malfunction of the power converter due to harmonic components superimposed on a load current. It is.

整流回路等を含む負荷を電源系統に接続すると、その負荷電流には高調波成分が含まれ、この高調波成分は、電源系統に接続された電力変換器の誤動作等を引き起こす原因となる。
上記の高調波成分を低減する手段の一つとして、いわゆるアクティブフィルタが知られている。
When a load including a rectifier circuit or the like is connected to the power supply system, the load current includes a harmonic component, and this harmonic component causes a malfunction of the power converter connected to the power supply system.
A so-called active filter is known as one of the means for reducing the above harmonic components.

図6は、並列型アクティブフィルタの適用例を示している。図6において、501は電源系統、502は連系リアクトル、503は電流検出器、504は負荷電流検出フィルタ(ローパスフィルタ)、506は電圧検出器、507はPLL回路、508はLCLフィルタ、505は高調波発生源の負荷600に並列に接続された並列型アクティブフィルタ、505aは高調波検出回路、505bはPI制御器等からなる電流制御器(ACR)、505cはPWM信号発生回路、505dはインバータである。   FIG. 6 shows an application example of the parallel type active filter. In FIG. 6, 501 is a power supply system, 502 is a connected reactor, 503 is a current detector, 504 is a load current detection filter (low-pass filter), 506 is a voltage detector, 507 is a PLL circuit, 508 is an LCL filter, and 505 is A parallel type active filter connected in parallel to the load 600 of the harmonic generation source, 505a is a harmonic detection circuit, 505b is a current controller (ACR) composed of a PI controller, 505c is a PWM signal generation circuit, and 505d is an inverter It is.

この並列型アクティブフィルタ505では、インバータ505dの動作により系統に補償電流iを注入することにより、負荷電流iに含まれる高調波成分を抑制している。なお、高調波検出回路505aは負荷電流検出フィルタ504の出力電流isensとPLL回路507からの位相角θとに基づいて高調波電流指令値iを生成する。 In this parallel type active filter 505, the compensation current i C is injected into the system by the operation of the inverter 505d, thereby suppressing the harmonic component contained in the load current i S. The harmonic detection circuit 505a generates a harmonic current command value i * based on the output current i sens of the load current detection filter 504 and the phase angle θ 1 from the PLL circuit 507.

しかしながら、図6の構成では、負荷電流検出フィルタ504や電流制御器505bの演算遅れ時間等の影響により、補償電流iの位相が負荷電流iの高調波成分に対して遅れるため、高調波成分を十分に抑制できない場合がある。
この場合の対策として、特許文献1には、補償電流iの指令値を進相させて電流制御器の演算遅れ時間を解消するようにしたアクティブフィルタ制御装置が記載されている。
However, in the configuration of FIG. 6, the phase of the compensation current i C is delayed with respect to the harmonic component of the load current i S due to the influence of the calculation delay time of the load current detection filter 504 and the current controller 505b. Ingredients may not be sufficiently suppressed.
As a countermeasure in this case, Patent Document 1 describes an active filter control device in which the command value of the compensation current i C is advanced to eliminate the calculation delay time of the current controller.

図7は、特許文献1に記載されたアクティブフィルタ制御装置の構成図であり、図6における各部と同一機能に相当する部分には同一の符号を付してある。
図7において、509は高調波成分抽出部、509aは負荷電流iを回転座標系のd,q軸成分i,iに変換するdq変換器、509bは変圧器(電圧検出器)、509cは位相検出器、509d,509eはd,q軸成分i,iの高調波成分をそれぞれ抽出するためのハイパスフィルタ、509fは逆dq変換器、510はLCフィルタ、511は電流検出器、512は遅延部、513は減算器である。
FIG. 7 is a configuration diagram of the active filter control device described in Patent Document 1, and parts corresponding to the same functions as those in FIG. 6 are denoted by the same reference numerals.
In FIG. 7, 509 is a harmonic component extraction unit, 509 a is a dq converter that converts the load current i S into d and q axis components i d and i q of the rotating coordinate system, 509 b is a transformer (voltage detector), 509c is a phase detector, 509d and 509e are high-pass filters for extracting the harmonic components of the d and q axis components i d and i q , 509f is an inverse dq converter, 510 is an LC filter, and 511 is a current detector. Reference numeral 512 denotes a delay unit, and 513 denotes a subtracter.

上記構成において、逆dq変換器509fはハイパスフィルタ509d,509eの出力を逆dq変換して補償電流指令値I を生成し、遅延部512は、電源電圧の一周期の位相である360度(2π[rad])から演算遅れ時間に相当する位相補正量θcmpを減算した値(2π−θcmp)だけ補償電流指令値I を遅延させて新たな補償電流指令値IC1 を生成する。そして、減算器513により補償電流指令値IC1 と補償電流検出値Iとの偏差を求め、この偏差がゼロになるように電流制御器505bを動作させている。 In the above configuration, the inverse dq converter 509f performs inverse dq conversion on the outputs of the high-pass filters 509d and 509e to generate a compensation current command value I C * . The delay unit 512 is 360 degrees which is the phase of one cycle of the power supply voltage. The compensation current command value I C * is delayed by a value (2π−θ cmp ) obtained by subtracting the phase correction amount θ cmp corresponding to the calculation delay time from (2π [rad]) to obtain a new compensation current command value I C1 * . Generate. The subtracter 513 obtains a deviation between the compensation current command value I C1 * and the compensation current detection value I C and operates the current controller 505b so that this deviation becomes zero.

図8(a)は、上記の補償電流指令値IC1 を演算する原理を示したものである。特許文献1では、波形a(補償電流指令値I )の位相を遅延部512により遅延させて波形b(補償電流指令値IC1 )を得ているが、もとの波形aが単一周波数で繰り返される場合、波形bは波形aに対して位相補正量θcmpだけ位相が進んだように見える。
このようにして見かけ上、進相させた波形b(補償電流指令値IC1 )に基づいてインバータ505dが系統に補償電流iを注入することにより、系統の高調波成分を抑制している。
FIG. 8A shows the principle of calculating the compensation current command value I C1 * . In Patent Document 1, the phase of the waveform a (compensation current command value I C * ) is delayed by the delay unit 512 to obtain the waveform b (compensation current command value I C1 * ). When repeated at one frequency, the waveform b appears to be advanced in phase by the phase correction amount θ cmp with respect to the waveform a.
In this manner, the inverter 505d injects the compensation current i C into the system based on the waveform b (compensation current command value I C1 * ) that is advanced in phase, thereby suppressing the harmonic components of the system. .

国際公開第2014−091915号(段落[0039]〜[0046]、図1等)International Publication No. 2014-091915 (paragraphs [0039] to [0046], FIG. 1 etc.)

特許文献1に記載された従来技術では、図8(a)に示すように、波形a(補償電流指令値I )のリアルタイムデータではなく、一周期前の波形aのデータを用いて演算した見かけ上の進相波形b(補償電流指令値IC1 )を用いて補償電流iの位相を補正している。すなわち、補償電流指令値IC1 の基礎になるデータが最新のものではないため、位相補正の確度が十分ではないという問題がある(なお、図8(b)については本発明の実施形態において説明する)。 In the prior art described in Patent Document 1, as shown in FIG. 8A, the calculation is performed using the data of the waveform a before one cycle, not the real-time data of the waveform a (compensation current command value I C * ). The phase of the compensation current i C is corrected using the apparent phase advance waveform b (compensation current command value I C1 * ). That is, since the data on which the compensation current command value I C1 * is based is not the latest, there is a problem that the accuracy of the phase correction is not sufficient (note that FIG. 8B is an embodiment of the present invention). explain).

そこで、本発明の解決課題は、電流制御器等を含む制御回路の演算遅れ時間に起因する補償電流の位相遅れを正確に補償して系統の高調波成分を確実に抑制可能とした電力変換器の制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a power converter capable of accurately suppressing the harmonic component of the system by accurately compensating for the phase delay of the compensation current caused by the calculation delay time of the control circuit including the current controller. It is to provide a control device.

上記課題を解決するため、請求項1に係る発明は、電源系統の交流信号に含まれる任意次数の高調波成分を検出し、検出された高調波成分を抑制するための高調波補償信号を生成して前記電源系統に接続された電力変換器に指令値として与えるようにした制御装置において、
前記制御装置の内部にdq直交回転座標を定義し、前記dq直交回転座標のd軸の位相を前記電源系統の位相とし、かつ、d軸に直交する方向の軸をq軸とすると共に、
前記電源系統の交流信号のd軸成分及びq軸成分から直流成分を除去して任意次数の高調波成分を抽出する高調波抽出手段と、
前記高調波抽出手段により抽出した高調波成分の位相をγ軸の位相とし、かつ、γ軸に直交する方向の軸をδ軸としたγδ直交回転座標において、抽出された高調波成分のγ軸成分から求めた位相補正ベクトルをδ軸に加算してδ軸成分を求め、前記γ軸成分及び前記δ軸成分を、前記γ軸成分のベクトルより位相が進んだ補償信号ベクトルの各成分として出力する位相調整演算手段と、
前記位相調整演算手段から出力された各成分を座標変換して前記高調波補償信号を生成する手段と、を備えたものである。
In order to solve the above problem, the invention according to claim 1 detects a harmonic component of an arbitrary order included in an AC signal of a power supply system and generates a harmonic compensation signal for suppressing the detected harmonic component. Then, in the control device that is given as a command value to the power converter connected to the power supply system,
A dq orthogonal rotation coordinate is defined inside the control device, a d-axis phase of the dq orthogonal rotation coordinate is a phase of the power supply system, and an axis perpendicular to the d-axis is a q-axis,
Harmonic extraction means for removing a direct-current component from the d-axis component and the q-axis component of the AC signal of the power supply system and extracting a harmonic component of an arbitrary order;
The γ-axis of the extracted harmonic component in the γδ orthogonal rotation coordinate with the phase of the harmonic component extracted by the harmonic extraction means as the phase of the γ-axis and the axis in the direction orthogonal to the γ-axis as the δ axis The phase correction vector obtained from the component is added to the δ axis to obtain the δ axis component, and the γ axis component and the δ axis component are output as each component of the compensation signal vector whose phase is advanced from the vector of the γ axis component. Phase adjustment calculation means for
Means for converting the components output from the phase adjustment calculation means to generate the harmonic compensation signal.

請求項2に係る発明は、請求項1に記載した制御装置において、前記位相調整演算手段の動作によって生じた高調波振幅誤差を補正する振幅補正手段を備えたものである。   According to a second aspect of the present invention, the control device according to the first aspect further comprises amplitude correction means for correcting a harmonic amplitude error caused by the operation of the phase adjustment calculation means.

請求項3に係る発明は、請求項1または2に記載した電力変換器の制御装置において、前記位相調整演算手段の出力信号の座標変換によって生じた高調波振幅誤差を補正する振幅補正手段を備えたものである。   According to a third aspect of the invention, there is provided the power converter control device according to the first or second aspect, further comprising amplitude correction means for correcting a harmonic amplitude error caused by coordinate conversion of the output signal of the phase adjustment calculation means. It is a thing.

本発明においては、任意次数の高調波成分に同期した回転座標変換を行い、その結果に所望の位相補正量に応じた位相補正ベクトルを加算して高調波補償信号の位相を補正する。
これにより、従来技術に比べて、高調波補償信号の一層正確な位相補正を可能にし、電源系統に存在する高調波成分を確実に抑制して電力変換器の誤動作等を防止することができる。
In the present invention, rotational coordinate conversion is performed in synchronization with harmonic components of an arbitrary order, and a phase correction vector corresponding to a desired phase correction amount is added to the result to correct the phase of the harmonic compensation signal.
Thereby, compared with the prior art, it is possible to perform more accurate phase correction of the harmonic compensation signal, and it is possible to surely suppress the harmonic component present in the power supply system and to prevent malfunction of the power converter.

本発明の第1実施形態を示すブロック図である。1 is a block diagram showing a first embodiment of the present invention. 第1実施形態における位相調整演算器の動作を説明するためのベクトル図である。It is a vector diagram for demonstrating operation | movement of the phase adjustment calculator in 1st Embodiment. 第1実施形態におけるγδ変換前のd軸,q軸負荷電流高調波成分の関係を示す図である。It is a figure which shows the relationship between the d-axis and q-axis load current harmonic component before (gamma) delta conversion in 1st Embodiment. 第1実施形態におけるγδ変換結果の説明図である。It is explanatory drawing of the (gamma) delta conversion result in 1st Embodiment. 本発明の第2実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of this invention. 並列型アクティブフィルタの適用例を示す図である。It is a figure which shows the example of application of a parallel type active filter. 特許文献1に記載された従来技術の構成図である。It is a block diagram of the prior art described in patent document 1. FIG. 補償電流指令値の演算原理を示す図であり、図8(a)は特許文献1によるもの、図8(b)は本発明の実施形態によるものである。FIG. 8A is a diagram illustrating a calculation principle of a compensation current command value, FIG. 8A is according to Patent Document 1, and FIG. 8B is according to an embodiment of the present invention.

以下、図に沿って本発明の実施形態を説明する。
なお、以下の実施形態は、負荷電流検出値isensが電源系統の基本波成分とN次高調波成分とを含んでいる場合のものである。また、以下では電流検出値の位相を補正する場合について説明するが、本発明は電圧検出値の位相を補正する場合にも適用可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following embodiment, the load current detection value i sens includes the fundamental wave component and the Nth harmonic component of the power supply system. Although the case where the phase of the current detection value is corrected will be described below, the present invention can also be applied to the case where the phase of the voltage detection value is corrected.

図1は、本発明の第1実施形態を示すブロック図である。
図1において、dq変換器1は、三相の負荷電流検出値isensをd軸,q軸負荷電流ISd,ISqに座標変換する。d軸及びq軸は直交回転座標を構成する制御軸であり、d軸の位相は系統電圧位相θvsに等しくとり、q軸はd軸から90°進み方向の軸とする。このd,q軸上では、負荷電流検出値isensの基本波成分が直流成分、高調波成分が(N−1)次の交流成分となる。なお、dq変換器1では、cos・sin演算器7により求めたcosθvs,sinθvsが座標変換に用いられる。
FIG. 1 is a block diagram showing a first embodiment of the present invention.
In FIG. 1, a dq converter 1 performs coordinate conversion of a three-phase load current detection value i sens into d-axis and q-axis load currents I Sd and I Sq . The d-axis and the q-axis are control axes constituting orthogonal rotation coordinates, and the phase of the d-axis is set equal to the system voltage phase θ vs , and the q-axis is an axis that is advanced by 90 ° from the d-axis. On the d and q axes, the fundamental wave component of the load current detection value i sens is a DC component, and the harmonic component is the (N−1) th AC component. In the dq converter 1, cos [theta] vs determined by cos · sin calculator 7, sin [theta vs is used to coordinate transformation.

高調波抽出器2は、d軸,q軸負荷電流ISd,ISqに含まれる直流成分を除去し、d軸,q軸負荷電流高調波成分ISh1d,ISh1qをそれぞれ抽出する。
γδ変換器3は、d軸,q軸負荷電流高調波成分ISh1d,ISh1qをγ軸,δ軸負荷電流高調波成分ISh1γ,ISh1δに座標変換する。γ軸及びδ軸も直交回転座標を構成する制御軸であり、γ軸の位相は高調波負荷電流ISh1γδ(ISh1γ,ISh1δのベクトル和)の位相とし、δ軸はγ軸から90°進み方向の軸とする。よって、高調波負荷電流ISh1γδはγ軸負荷電流高調波成分ISh1γのみとなり、δ軸負荷電流高調波成分ISh1δは零となる。このγδ軸変換器3の機能については、後に詳述する。
The harmonic extractor 2 removes DC components included in the d-axis and q-axis load currents I Sd and I Sq and extracts d-axis and q-axis load current harmonic components I Sh1d and I Sh1q , respectively.
The γδ converter 3 performs coordinate conversion of the d-axis and q-axis load current harmonic components I Sh1d and I Sh1q into the γ-axis and δ-axis load current harmonic components I Sh1γ and I Sh1δ . The γ-axis and δ-axis are also control axes constituting orthogonal rotation coordinates, and the phase of the γ-axis is the phase of the harmonic load current I Sh1γδ (vector sum of I Sh1γ and I Sh1δ ), and the δ-axis is 90 ° from the γ-axis. The axis of advance direction. Therefore, the harmonic load current I Sh1γδ is only the γ-axis load current harmonic component I Sh1γ , and the δ-axis load current harmonic component I Sh1δ is zero. The function of this γδ axis converter 3 will be described in detail later.

位相調整演算器4は、位相補正ベクトル演算器4a及び加算器4bの作用により、γ軸負荷電流高調波成分ISh1γとδ軸負荷電流高調波成分ISh1δ(=0)と位相補正量θcmpとから位相補正用のδ軸電流成分Iβδを求める。ここで、位相補正量θcmpは、予め測定された電流制御器(ACR)等の制御回路の演算遅れ時間に相当する補正量である。 The phase adjustment computing unit 4 has the γ-axis load current harmonic component I Sh1γ , the δ-axis load current harmonic component I Sh1δ (= 0) and the phase correction amount θ cmp by the action of the phase correction vector computing unit 4a and the adder 4b. Then, a δ-axis current component I βδ for phase correction is obtained. Here, the phase correction amount θ cmp is a correction amount corresponding to a calculation delay time of a control circuit such as a current controller (ACR) measured in advance.

図2は、位相調整演算器4の動作を説明するためのベクトル図である。
位相調整演算器4は、γ軸負荷電流高調波成分ISh1γ(=ISh1γδ)をそのままγ軸電流成分Iβγとして出力すると共に、位相補正ベクトル演算器4aが数式1によって求めた位相補正ベクトル(δ軸ベクトル)Iαδを加算器4bによってδ軸負荷電流高調波成分ISh1δ(=0)に加算することにより、δ軸電流成分Iβδ(=Iαδ)を出力する。
[数1]
αδ=ISh1γ×tanθcmp
これにより、図2に示す如く、ISh1γ(=Iβγ)より位相補正量θcmpだけ位相が進んだ補償信号ベクトルIβγδ(Iβγ,Iβδの合成ベクトル)を生成することができる。
FIG. 2 is a vector diagram for explaining the operation of the phase adjustment calculator 4.
The phase adjustment calculator 4 outputs the γ-axis load current harmonic component I Sh1γ (= I Sh1γδ ) as it is as the γ-axis current component I βγ , and the phase correction vector calculator 4 a calculates the phase correction vector ( A δ-axis current component I βδ (= I αδ ) is output by adding the δ-axis vector) I αδ to the δ-axis load current harmonic component I Sh1δ (= 0) by the adder 4b.
[Equation 1]
I αδ = I Sh1γ × tan θ cmp
As a result, as shown in FIG. 2, a compensation signal vector I βγδ (combined vector of I βγ and I βδ ) whose phase is advanced from I Sh1γ (= I βγ ) by the phase correction amount θ cmp can be generated.

逆γδ変換器5は、入力されたγ軸,δ軸電流成分Iβγ,Iβδをd軸,q軸負荷電流Iβd,Iβqに変換する。この演算は、γδ変換器3とは逆の処理によって行う。
更に、逆dq変換器6では、cos・sin演算器8により求めたcosθvs,sinθvsを用いて、逆γδ変換器5から出力されたd軸,q軸負荷電流Iβd,Iβqを、高調波補償信号としての三相の高調波補償電流icmpに変換する。この演算は、dq変換器1とは逆の処理によって行う。
なお、高調波補償電流icmpは、図示されていないインバータに対して出力電流指令値として与えられる。
The inverse γδ converter 5 converts the input γ-axis and δ-axis current components I βγ and I βδ into d-axis and q-axis load currents I βd and I βq . This calculation is performed by the reverse process of the γδ converter 3.
Furthermore, the inverse dq converter 6, cos [theta] vs determined by cos · sin calculator 8, using sin [theta vs, d-axis output from the inverse γδ converter 5, q axis load current I .beta.d, the I Betaq, It converts into a three-phase harmonic compensation current i cmp as a harmonic compensation signal. This calculation is performed by a process reverse to that of the dq converter 1.
The harmonic compensation current i cmp is given as an output current command value to an inverter not shown.

次に、前述したγδ変換器3の動作を説明する。
図3は、γδ変換前のd軸,q軸負荷電流高調波成分ISh1d,ISh1qの関係を示し、図4は、γδ変換結果を示している。
Next, the operation of the above-described γδ converter 3 will be described.
FIG. 3 shows the relationship between the d-axis and q-axis load current harmonic components I Sh1d and I Sh1q before γδ conversion, and FIG. 4 shows the γδ conversion result.

図3より、d軸,q軸負荷電流高調波成分ISh1d,ISh1qは(N−1)次の交流となり、ISh1dはISh1qに対して位相がT/4(TはISh1dの周期)だけ進んでいる。すなわち、d軸,q軸負荷電流高調波成分ISh1d,ISh1qは、図4に示すように、dq軸上を負荷電流高調波角周波数ωと系統電圧角周波数ωとの差分の角周波数で回転するベクトルと考えることができる。また、このベクトルの余弦、正弦は、それぞれd軸,q軸負荷電流高調波成分ISh1d,ISh1qによって代替することができる。 From FIG. 3, the d-axis and q-axis load current harmonic components I Sh1d and I Sh1q are (N−1) th order alternating current, and I Sh1d has a phase T / 4 with respect to I Sh1q (T is the period of I Sh1d ). ) Is going on. That is, as shown in FIG. 4, the d-axis and q-axis load current harmonic components I Sh1d and I Sh1q are the difference angles between the load current harmonic angular frequency ω h and the system voltage angular frequency ω s on the dq axis. It can be thought of as a vector that rotates with frequency. The cosine and sine of this vector can be replaced by d-axis and q-axis load current harmonic components I Sh1d and I Sh1q , respectively.

従って、数式2の演算を行うことにより、d軸,q軸負荷電流高調波成分ISh1d,ISh1qを高調波負荷電流位相θhdqに同期したγ軸,δ軸負荷電流高調波成分ISh1γ,ISh1δに変換することができる。

Figure 2018046654
Therefore, by performing the calculation of Equation 2, the d-axis and q-axis load current harmonic components I Sh1d and I Sh1q are synchronized with the harmonic load current phase θ hdq and the γ-axis and δ-axis load current harmonic components I Sh1γ , I Sh1δ can be converted.
Figure 2018046654

ここで、図8(b)は、本実施形態による補償電流指令値の演算原理を示す図である。図8(b)において、波形aがd軸,q軸負荷電流高調波成分ISh1d,ISh1qからなるベクトルISh1dqに相当し、波形aをγδ変換器3により回転座標変換して得たベクトルAがγ軸,δ軸負荷電流高調波成分ISh1γ,ISh1δからなるベクトルISh1γδに相当する。前述した位相調整演算器4の動作は、ベクトルAの位相を位相補正量θcmpだけ進めてベクトルB、すなわちγ軸,δ軸電流成分Iβγ,Iβδからなる補償信号ベクトルIβγδを求めており、ベクトルBに相当するIβγδを逆γδ変換器5により逆変換してd,q軸負荷電流Iβdqを求めることが波形b’を得ることに相当している。 Here, FIG. 8B is a diagram illustrating the calculation principle of the compensation current command value according to the present embodiment. In FIG. 8B, the waveform a corresponds to the vector I Sh1dq composed of the d-axis and q-axis load current harmonic components I Sh1d , I Sh1q, and the vector obtained by rotating the waveform a with the γδ converter 3. A corresponds to the vector I Sh1γδ composed of the γ-axis and δ-axis load current harmonic components I Sh1γ and I Sh1δ . The above-described operation of the phase adjustment calculator 4 advances the phase of the vector A by the phase correction amount θ cmp and obtains the compensation signal vector I βγδ composed of the vector B, that is, the γ-axis and δ-axis current components I βγ and I βδ. Thus, obtaining the d and q-axis load current I βdq by inversely transforming I βγδ corresponding to the vector B by the inverse γδ converter 5 corresponds to obtaining the waveform b ′.

このようにして得た図8(b)の波形b’は、波形aに対して位相がθcmpだけ進んでいる。すなわち、従来技術として説明した図8(a)との比較から明らかなように、この実施形態では、ISh1dq(波形a)のリアルタイムデータを用いて回転座標変換、進相処理、逆変換することによって補償信号ベクトルIβγδ(波形b’)を得ることができ、このIβγδを逆dq変換して最終的に高調波補償電流icmpを求めることができる。
このため、従来技術に比べて、演算遅れ時間に影響されることなく正確に系統の高調波を補償することが可能である。
The waveform b ′ in FIG. 8B obtained in this way has a phase advanced by θ cmp with respect to the waveform a. That is, as is apparent from comparison with FIG. 8A described as the prior art, in this embodiment, rotational coordinate conversion, phase advance processing, and inverse conversion are performed using real-time data of I Sh1dq (waveform a). Thus, the compensation signal vector I βγδ (waveform b ′) can be obtained, and the harmonic compensation current i cmp can be finally obtained by performing inverse dq conversion on this I βγδ .
For this reason, compared with the prior art, it is possible to accurately compensate the harmonics of the system without being affected by the calculation delay time.

次に、本発明の第2実施形態について説明する。
図5は、第2実施形態の構成を示すブロック図であり、図1における各部と同一機能を有する部分には同一の符号を付してある。
この第2実施形態は、図1の第1実施形態に対して、位相補正処理により発生する振幅誤差を補正するための第1振幅補正器9,第2振幅補正器10を逆γδ変換器5の前後に設けたものである。
Next, a second embodiment of the present invention will be described.
FIG. 5 is a block diagram showing the configuration of the second embodiment, and parts having the same functions as those in FIG. 1 are denoted by the same reference numerals.
This second embodiment is different from the first embodiment of FIG. 1 in that a first amplitude corrector 9 and a second amplitude corrector 10 for correcting an amplitude error generated by the phase correction process are replaced with an inverse γδ converter 5. It is provided before and after.

まず、第1振幅補正器9では、前述した位相調整演算器4による処理によって発生する振幅誤差を補正する。位相調整演算器4では、図2から明らかなように、演算後の補償信号ベクトルIβγδは演算前のベクトルISh1γδに比べて振幅が大きくなる。この振幅の増加率は、数式3によって求められる。
[数3]
増加率=√{(ISh1γ +Iβδ )/ISh1γ
よって、第1振幅補正器9において、上記増加率の逆数を補償信号ベクトルIβγδに乗算してベクトルIβ1γδの各成分Iβ1γ,Iβ1δを生成することにより、振幅誤差を補正している。
First, the first amplitude corrector 9 corrects an amplitude error generated by the processing by the phase adjustment calculator 4 described above. In the phase adjustment calculator 4, as is clear from FIG. 2, the compensated signal vector I βγδ after the calculation has a larger amplitude than the vector I Sh1γδ before the calculation. The increase rate of the amplitude is obtained by Equation 3.
[Equation 3]
Increase rate = √ {(I Sh1γ 2 + I βδ 2 ) / I Sh1γ 2 }
Therefore, the first amplitude corrector 9 corrects the amplitude error by multiplying the compensation signal vector I βγδ by the reciprocal of the increase rate to generate the components I β1γ and I β1δ of the vector I β1γδ .

次に、第2振幅補正器10の機能を説明する。
γδ変換演算と逆γδ変換演算では、dq軸高調波負荷電流ISh1d,ISh1qの振幅に応じて、変換後のベクトルの振幅が増減する。変換前と変換後のベクトルの振幅の増減率は、数式4によって求めることができる。

Figure 2018046654
従って、上記の増減率の逆数の2乗を、逆γδ変換器5から出力されるベクトルIβ1dqの各成分Iβ1d,Iβ1qに乗算して各成分Iβ2d,Iβ2q(ベクトルIβ2dq)を生成することにより振幅誤差を補正し、これらの成分Iβ2d,Iβ2qを逆dq変換器6に入力して高調波補償電流icmpを求めることとした。 Next, the function of the second amplitude corrector 10 will be described.
In the γδ conversion calculation and the inverse γδ conversion calculation, the amplitude of the converted vector increases or decreases according to the amplitude of the dq-axis harmonic load currents ISh1d and ISh1q . The increase / decrease rate of the amplitude of the vector before conversion and after conversion can be obtained by Equation 4.
Figure 2018046654
Accordingly, each component I β2d , I β2q (vector I β2dq ) is multiplied by the square of the reciprocal of the above increase / decrease rate by multiplying each component I β1d , I β1q of the vector I β1dq output from the inverse γδ converter 5. By generating the amplitude error, the components I β2d and I β2q are input to the inverse dq converter 6 to obtain the harmonic compensation current i cmp .

本発明は、交流/直流変換または直流/交流変換を行う各種の電力変換器の制御装置として利用することができる。   The present invention can be used as a control device for various power converters that perform AC / DC conversion or DC / AC conversion.

1:dq変換器
2:高調波抽出器
3:γδ変換器
4:位相調整演算器
4a:位相補正ベクトル演算器
4b:加算器
5:逆γδ変換器
6:逆dq変換器
7,8:cos・sin演算器
9:第1振幅補正器
10:第2振幅補正器
1: dq converter 2: harmonic extractor 3: γδ converter 4: phase adjustment calculator 4a: phase correction vector calculator 4b: adder 5: inverse γδ converter 6: inverse dq converter 7, 8: cos Sin calculator 9: first amplitude corrector 10: second amplitude corrector

Claims (3)

電源系統の交流信号に含まれる任意次数の高調波成分を検出し、検出された高調波成分を抑制するための高調波補償信号を生成して前記電源系統に接続された電力変換器に指令値として与えるようにした制御装置において、
前記制御装置の内部にdq直交回転座標を定義し、前記dq直交回転座標のd軸の位相を前記電源系統の位相とし、かつ、d軸に直交する方向の軸をq軸とすると共に、
前記電源系統の交流信号のd軸成分及びq軸成分から直流成分を除去して任意次数の高調波成分を抽出する高調波抽出手段と、
前記高調波抽出手段により抽出した高調波成分の位相をγ軸の位相とし、かつ、γ軸に直交する方向の軸をδ軸としたγδ直交回転座標において、抽出された高調波成分のγ軸成分から求めた位相補正ベクトルをδ軸に加算してδ軸成分を求め、前記γ軸成分及び前記δ軸成分を、前記γ軸成分のベクトルより位相が進んだ補償信号ベクトルの各成分として出力する位相調整演算手段と、
前記位相調整演算手段から出力された各成分を座標変換して前記高調波補償信号を生成する手段と、
を備えたことを特徴とする電力変換器の制御装置。
Detects harmonic components of any order included in the AC signal of the power supply system, generates a harmonic compensation signal for suppressing the detected harmonic components, and sends a command value to the power converter connected to the power supply system In the control device given as
A dq orthogonal rotation coordinate is defined inside the control device, a d-axis phase of the dq orthogonal rotation coordinate is a phase of the power supply system, and an axis perpendicular to the d-axis is a q-axis,
Harmonic extraction means for removing a direct-current component from the d-axis component and the q-axis component of the AC signal of the power supply system and extracting a harmonic component of an arbitrary order;
The γ-axis of the extracted harmonic component in the γδ orthogonal rotation coordinate with the phase of the harmonic component extracted by the harmonic extraction means as the phase of the γ-axis and the axis in the direction orthogonal to the γ-axis as the δ axis The phase correction vector obtained from the component is added to the δ axis to obtain the δ axis component, and the γ axis component and the δ axis component are output as each component of the compensation signal vector whose phase is advanced from the vector of the γ axis component. Phase adjustment calculation means for
Means for coordinate-converting each component output from the phase adjustment calculation means to generate the harmonic compensation signal;
An apparatus for controlling a power converter, comprising:
請求項1に記載した電力変換器の制御装置において、
前記位相調整演算手段の動作によって生じた高調波振幅誤差を補正する振幅補正手段を備えたことを特徴とする電力変換器の制御装置。
In the control apparatus of the power converter according to claim 1,
An apparatus for controlling a power converter, comprising amplitude correction means for correcting a harmonic amplitude error caused by the operation of the phase adjustment calculation means.
請求項1または2に記載した電力変換器の制御装置において、
前記位相調整演算手段の出力信号の座標変換によって生じた高調波振幅誤差を補正する振幅補正手段を備えたことを特徴とする電力変換器の制御装置。
In the control apparatus of the power converter according to claim 1 or 2,
An apparatus for controlling a power converter, comprising amplitude correction means for correcting a harmonic amplitude error caused by coordinate conversion of an output signal of the phase adjustment calculation means.
JP2016179521A 2016-09-14 2016-09-14 Power converter controller Active JP6756975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179521A JP6756975B2 (en) 2016-09-14 2016-09-14 Power converter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179521A JP6756975B2 (en) 2016-09-14 2016-09-14 Power converter controller

Publications (2)

Publication Number Publication Date
JP2018046654A true JP2018046654A (en) 2018-03-22
JP6756975B2 JP6756975B2 (en) 2020-09-16

Family

ID=61696133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179521A Active JP6756975B2 (en) 2016-09-14 2016-09-14 Power converter controller

Country Status (1)

Country Link
JP (1) JP6756975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019481A (en) * 2019-07-24 2021-02-15 株式会社明電舎 Modular multilevel cascade converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089553A (en) * 1994-06-16 1996-01-12 Nichicon Corp Active filter for power system
JPH09233701A (en) * 1996-02-29 1997-09-05 Hitachi Ltd Controller of active filter
JPH11103527A (en) * 1997-09-29 1999-04-13 Tokyo Electric Power Co Inc:The Higher harmonics compensating system
US20050035815A1 (en) * 2003-08-13 2005-02-17 Louis Cheng Active filter for multi-phase ac power system
JP2005261036A (en) * 2004-03-10 2005-09-22 Mitsubishi Electric Corp Controller of power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089553A (en) * 1994-06-16 1996-01-12 Nichicon Corp Active filter for power system
JPH09233701A (en) * 1996-02-29 1997-09-05 Hitachi Ltd Controller of active filter
JPH11103527A (en) * 1997-09-29 1999-04-13 Tokyo Electric Power Co Inc:The Higher harmonics compensating system
US20050035815A1 (en) * 2003-08-13 2005-02-17 Louis Cheng Active filter for multi-phase ac power system
JP2005261036A (en) * 2004-03-10 2005-09-22 Mitsubishi Electric Corp Controller of power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019481A (en) * 2019-07-24 2021-02-15 株式会社明電舎 Modular multilevel cascade converter
JP7322566B2 (en) 2019-07-24 2023-08-08 株式会社明電舎 Modular multilevel cascade converter

Also Published As

Publication number Publication date
JP6756975B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6295782B2 (en) Power conversion device, power generation system, control device, and power conversion method
US9401656B2 (en) Method of controlling power conversion apparatus
JP6132948B1 (en) Motor control device and motor control method
TW201330479A (en) Power conversion apparatus
JP2012055041A (en) Vector controller and motor control system
KR20190032556A (en) Inverter control device and motor drive system
JP5968564B2 (en) Power converter
JP5025295B2 (en) Semiconductor power converter
JP6848622B2 (en) Power converter and its control device
JP5021390B2 (en) Signal extracting device and reactive power compensator including the same
JP6431585B2 (en) Phase synchronization method of phase synchronization circuit used in grid connection system
JP2014036479A (en) Control device of electric power conversion device
JP2009038885A5 (en)
JP5888074B2 (en) Power converter
JP5621103B2 (en) Single-phase signal input device and grid interconnection device
WO2015186406A1 (en) Periodic disturbance automatic suppression device
KR101768800B1 (en) Offset and Scale Error Reduction Method According to Tracing Grid Phase Angle of Three-phase Grid-connected Inverters
JP6492031B2 (en) Voltage compensator
JP6756975B2 (en) Power converter controller
JP6776695B2 (en) Power converter
JP5637310B2 (en) Inverter device
JP6263990B2 (en) Synchronous control circuit for AC / DC converter
JP2009195059A (en) Power conversion method and power conversion apparatus
KR101975441B1 (en) Modified single phase-locked loop control method using moving average filter
JP6756293B2 (en) Rotating machine control device and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6756975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250