JP3173892B2 - Control device for voltage imbalance compensator - Google Patents

Control device for voltage imbalance compensator

Info

Publication number
JP3173892B2
JP3173892B2 JP28683692A JP28683692A JP3173892B2 JP 3173892 B2 JP3173892 B2 JP 3173892B2 JP 28683692 A JP28683692 A JP 28683692A JP 28683692 A JP28683692 A JP 28683692A JP 3173892 B2 JP3173892 B2 JP 3173892B2
Authority
JP
Japan
Prior art keywords
voltage
phase
negative
compensation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28683692A
Other languages
Japanese (ja)
Other versions
JPH06113466A (en
Inventor
秀紀 藤田
俊弘 中村
茂雄 小西
謙二 馬場
武彦 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Chubu Electric Power Co Inc filed Critical Fuji Electric Co Ltd
Priority to JP28683692A priority Critical patent/JP3173892B2/en
Publication of JPH06113466A publication Critical patent/JPH06113466A/en
Application granted granted Critical
Publication of JP3173892B2 publication Critical patent/JP3173892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電力系統に接続された
不平衡負荷や送電線のインピーダンス不平衡に起因して
発生する電圧不平衡を改善するための、電力変換器を用
いた電圧不平衡補償装置の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage imbalance using a power converter for improving a voltage imbalance caused by an unbalanced load connected to a power system or an impedance imbalance of a transmission line. The present invention relates to a control device for a balance compensator.

【0002】[0002]

【従来の技術】図5は、従来のこの種の制御装置を示す
もので、図において、31は電力系統、32は変圧器、
1は制御対象となる自励式電力変換器を用いた電圧不平
衡補償装置、2は負荷、3a,3bは変流器、4は基準
正弦波発生回路、5a,5bは逆相電流検出回路、6
a,6bは反転アンプ、7a,7bは減算器、8a,8
bは電流調節器、9は補償装置1の出力電圧演算回路、
10はPWMパルス発生回路である。この制御装置で
は、負荷2の逆相電流を検出して補償装置1内の電力変
換器により前記逆相電流を補償する電流を系統31に注
入し、これによって電圧不平衡を是正している。
2. Description of the Related Art FIG. 5 shows a conventional control device of this kind, in which 31 is a power system, 32 is a transformer,
1 is a voltage imbalance compensator using a self-excited power converter to be controlled, 2 is a load, 3a and 3b are current transformers, 4 is a reference sine wave generation circuit, 5a and 5b are antiphase current detection circuits, 6
a and 6b are inverting amplifiers, 7a and 7b are subtractors, 8a and 8
b is a current regulator, 9 is an output voltage calculation circuit of the compensator 1,
Reference numeral 10 denotes a PWM pulse generation circuit. In this control device, a negative-phase current of the load 2 is detected, and a current for compensating the negative-phase current is injected into the system 31 by the power converter in the compensating device 1, thereby correcting the voltage imbalance.

【0003】すなわち、この制御装置の動作を詳述する
と、まず、負荷2の電流(負荷電流)iLa,iLb,iLc
を変流器3bにより検出し、これらの電流と基準正弦波
発生回路4により作られる系統電圧に同期した基準正弦
波sinθ,cosθ(θ=ωt)とから、逆相電流検
出回路5bにより負荷の逆相電流の回転座標系直交2軸
成分(逆相負荷電流)IL2d,IL2qを演算する。次い
で、これらの極性を反転アンプ6a,6bにより反転す
ることで、補償電流指令値IC2d *,IC2q *が作られる。
More specifically, the operation of this control device will be described in detail. First, the currents (load currents) i La , i Lb , i Lc of the load 2 are shown.
Is detected by the current transformer 3b, and based on these currents and the reference sine waves sin θ and cos θ (θ = ωt) synchronized with the system voltage generated by the reference sine wave generation circuit 4, the negative-phase current detection circuit 5b detects the load. Calculate the two-axis components (negative-sequence load current) I L2d and I L2q of the negative-sequence current in the rotating coordinate system. Next, these polarities are inverted by the inverting amplifiers 6a and 6b to generate compensation current command values I C2d * and I C2q * .

【0004】一方、他方の変流器3aにより検出された
補償装置1の電流(補償電流)iCa,iCb,iCcも同様
に逆相電流検出回路5aにより補償電流の直交2軸成分
(補償電流実際値)IC2d,IC2qが演算され、これらと
補償電流指令値IC2d *,IC2q *との偏差が減算器7a,
7bにより演算される。電流調節器8a,8bは上記偏
差が零になるように調節動作し、補償電流の制御を行>
う。出力電圧演算回路9は、電流調節器8a,8bの出
力に基づき補償装置1の三相出力電圧を演算するもので
あり、PWMパルス発生回路10はその出力電圧を得る
ために補償装置1のスイッチング素子に与えるゲートパ
ルスを生成する。
On the other hand, currents (compensation currents) i Ca , i Cb , and i Cc of the compensating device 1 detected by the other current transformer 3a are also similarly calculated by the anti-phase current detection circuit 5a. Compensation current actual values) I C2d and I C2q are calculated, and the deviation between these and the compensation current command values I C2d * and I C2q * is calculated by a subtractor 7a.
7b. The current regulators 8a and 8b perform an adjustment operation so that the above-mentioned deviation becomes zero, and control the compensation current.
U. The output voltage calculation circuit 9 calculates the three-phase output voltage of the compensator 1 based on the outputs of the current regulators 8a and 8b. The PWM pulse generation circuit 10 switches the compensator 1 to obtain the output voltage. A gate pulse to be applied to the device is generated.

【0005】ここで、逆相電流検出回路5a,5bは以
下の演算により、逆相電流の回転座標系直交2軸成分を
各々求める。まず、三相電流を正相成分及び逆相成分に
分けて次の数式1のように表す。なお、数式1におい
て、I1は正相電流の振幅、φ1は正相電流の位相角、I
2は逆相電流の振幅、φ2は逆相電流の位相角、θ=ωt
である。
Here, the negative phase current detection circuits 5a and 5b respectively obtain the two orthogonal axis components of the negative phase current in the rotating coordinate system by the following calculation. First, the three-phase current is divided into a positive-phase component and a negative-phase component and is represented by the following Equation 1. In Equation 1, I 1 is the amplitude of the positive-phase current, φ 1 is the phase angle of the positive-phase current, and I 1
2 is the amplitude of the negative phase current, φ 2 is the phase angle of the negative phase current, θ = ωt
It is.

【0006】[0006]

【数1】 (Equation 1)

【0007】これをαβ変換して数式2を得、この数式
2を通常のdq変換ではなく逆回転のdq変換を行うこ
とにより、数式3を得る。
This is subjected to αβ conversion to obtain Expression 2, and Expression 2 is obtained by performing the inverse rotation dq conversion instead of the normal dq conversion.

【0008】[0008]

【数2】 (Equation 2)

【0009】[0009]

【数3】 (Equation 3)

【0010】これらからローパスフィルタを介して直流
分を取り出すことにより、数式4、数式5によって表さ
れる逆相電流d軸成分I2d及び逆相電流q軸成分I2q
得られる。
By extracting a direct current component from these components through a low-pass filter, a negative-phase current d-axis component I 2d and a negative-phase current q-axis component I 2q represented by Expressions 4 and 5 are obtained.

【0011】[0011]

【数4】I2d=I2sinφ2 ## EQU4 ## I 2d = I 2 sin φ 2

【0012】[0012]

【数5】I2q=I2cosφ2 ## EQU5 ## I 2q = I 2 cos φ 2

【0013】以上の演算により、逆相電流検出回路5a
は補償電流iCa,iCb,iCcから逆相補償電流IC2d
C2qを求め、また、逆相電流検出回路5bは負荷電流
La,iLb,iLcから逆相負荷電流IL2d,IL2qを求め
る。なお、実際の制御装置では自励式電力変換器の直流
電圧を制御するための有効電力制御系が必要であり、ま
た、電力系統31の調相を行う場合には無効電力制御系
が必要になるが、図5ではこれらの図示を省略してあ
り、もっぱら逆相電力の制御系のみを示してある。
By the above operation, the negative phase current detection circuit 5a
Is calculated from the compensation currents i Ca , i Cb , i Cc in the negative phase compensation current I C2d ,
I C2q is obtained, and the anti-phase current detection circuit 5b obtains anti-phase load currents I L2d and I L2q from the load currents i La , i Lb and i Lc . Note that an actual control device requires an active power control system for controlling the DC voltage of the self-excited power converter, and a reactive power control system is required when performing phase adjustment of the power system 31. However, FIG. 5 omits these illustrations, and shows only the control system of the reverse-phase power.

【0014】[0014]

【発明が解決しようとする課題】上記従来の制御装置で
は、電圧不平衡補償装置1の設置点より下位にある不平
衡負荷に起因して発生する電圧不平衡は補償可能である
が、補償装置1の設置点より上位にある不平衡負荷や系
統インピーダンスの不平衡に起因して発生する電圧不平
衡は補償できないという問題がある。また、補償装置1
の設置点の上位及び下位に不平衡負荷が存在する場合に
下位にある負荷の逆相電流を補償すると、逆に電圧不平
衡が助長されてしまう場合がある。本発明は上記問題点
を解決するためになされたもので、その目的とするとこ
ろは、補償装置の設置位置に関わらずどのような系統運
用状態でも効果的に電圧不平衡を補償できるようにした
電圧不平衡補償装置の制御装置を提供することにある。
In the above-mentioned conventional control device, the voltage imbalance generated due to the unbalanced load lower than the installation point of the voltage imbalance compensation device 1 can be compensated. There is a problem that a voltage imbalance generated due to an unbalanced load or an imbalance in system impedance which is higher than the setting point 1 cannot be compensated. In addition, the compensation device 1
If there is an unbalanced load in the upper and lower positions of the installation point, compensating for the negative-sequence current of the lower load may adversely promote voltage imbalance. The present invention has been made to solve the above problems, and an object of the present invention is to enable voltage imbalance to be effectively compensated in any system operation state regardless of the installation position of a compensator. An object of the present invention is to provide a control device for a voltage imbalance compensation device.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明は、電力系統の電圧不平衡を検出し、回
転座標系直交2軸成分の補償電流指令値と補償電流実際
値との偏差を零にするように電流調節器を動作させてこ
の電流調節器の出力に基づき電圧不平衡補償装置の出力
電圧を演算し、前記補償装置内の電力変換器により電力
系統に逆相補償電流を注入させて前記電圧不平衡を是正
するための制御装置において、系統電圧の三相相電圧か
らその逆相電圧の直交2軸成分EA2d,EA2qを検出し、
これらの値から、 EA2=√(EA2d 2+EA2q 2), sinψ2=EA2d/EA2, cosψ2=EA2q/EA2 (EA2:逆相電圧絶対値、ψ2:逆相電圧位相角)を演
算する逆相電圧検出回路と、逆相電圧絶対値EA2と逆相
電圧不感帯値との偏差を入力として補償電圧指令値EC2
*を出力する電圧調節器と、前記sinψ2,cosψ2
と前記補償電圧指令値EC2 *と抵抗分R及びリアクタン
ス分Xからなる三相平均値の系統インピーダンス値とか
ら、前記電流調節器に対する補償電流指令値IC2d *,I
C2q *を、 IC2d *=EC2 *×(Rsinψ2−Xcosψ2)/(R2+X2), IC2q *=EC2 *×(Xsinψ2+Rcosψ2)/(R2+X2) なる演算により求める電流指令値演算回路とを備えたも
のである。
In order to achieve the above object, a first aspect of the present invention detects a voltage imbalance of a power system, and calculates a compensation current command value and a compensation current actual value of a two-axis component orthogonal to a rotating coordinate system. Of the voltage imbalance compensator based on the output of this current regulator, and the power converter in the compensator compensates for the negative phase in the power system. A control device for injecting a current to correct the voltage imbalance detects quadrature two-axis components EA2d and EA2q of the opposite-phase voltages from the three-phase voltages of the system voltage,
From these values, E A2 = √ (E A2d 2 + E A2q 2 ), sinψ 2 = E A2d / E A2 , cos 2 = E A2q / E A2 (E A2 : Negative phase voltage absolute value, ψ 2 : Negative phase) and reverse-phase voltage detecting circuit for calculating a voltage phase angle), the compensation voltage command value E a deviation between the reverse-phase voltage absolute value E A2 and the negative-phase voltage deadband value as an input C2
A voltage regulator for outputting * , and the sin 前 記2 and cosψ 2
From the compensation voltage command value E C2 * and the system impedance value of the three-phase average value including the resistance component R and the reactance component X, a compensation current command value I C2d * , I
C2q * is calculated as follows : I C2d * = E C2 * × (R sin ψ 2 −X cos ψ 2 ) / (R 2 + X 2 ), I C2q * = E C2 * × (X sin ψ 2 + R cos ψ 2 ) / (R 2 + X 2 ) And a current command value calculation circuit obtained by the following.

【0016】第2の発明は、上記第1の発明において、
逆相電圧検出回路が、系統電圧の三相線間電圧から逆相
電圧を検出するようにしたものである。更に、第3の発
明は、上記第1または第2の発明において、逆相負荷電
流を検出して補償電流を演算する回路を備え、逆相負荷
電流に対する補償電流指令値と電流指令値演算回路から
出力される逆相電圧に対する補償電流指令値とを各々加
算した結果を電流調節器に対する新たな補償電流指令値
とするものである。
According to a second aspect, in the first aspect,
The negative-phase voltage detection circuit detects the negative-phase voltage from the three-phase line voltage of the system voltage. Further, a third invention according to the first or second invention, further comprising a circuit for detecting a negative-phase load current and calculating a compensation current, wherein a compensation current command value and a current command value calculation circuit for the negative-phase load current are provided. And a new compensation current command value for the current regulator is obtained by adding the compensation current command value for the negative-phase voltage output from the controller.

【0017】[0017]

【作用】第1または第2の発明においては、負荷の逆相
電流を検出してそれを補償するのではなく、系統の三相
相電圧または三相線間電圧から逆相電圧を検出して補償
電流指令値を演算し、電流調節器の出力に基づくPWM
制御により系統に補償電流を注入して電圧不平衡を補償
する。また、第3の発明においては、上記逆相電圧補償
と負荷の逆相電流補償とを併用して電圧不平衡を補償す
る。これにより、補償装置設置点の上位及び下位の不平
衡負荷や系統インピーダンス不平衡に起因する電圧不平
衡現象のすべてを系統運用状態に関係なく効果的に補償
することができる。
In the first or second aspect of the invention, instead of detecting and compensating for the negative-phase current of the load, the negative-phase voltage is detected from the three-phase voltage of the system or the three-phase line voltage. Compensation current command value is calculated and PWM based on the output of current regulator
A compensation current is injected into the system by control to compensate for voltage imbalance. Further, in the third invention, the voltage imbalance is compensated for by using both the above-described negative phase voltage compensation and negative phase current compensation of the load. This makes it possible to effectively compensate for all unbalanced loads at the upper and lower positions of the compensating device installation point and voltage unbalance phenomena caused by system impedance imbalance regardless of the system operation state.

【0018】[0018]

【実施例】以下、図に沿って各発明の実施例を説明す
る。図1は第1の発明の実施例を示しており、図5と同
一の構成要素には同一の番号を付して詳述を省略し、以
下では異なる部分を中心に説明する。すなわち本実施例
では、系統の三相相電圧eAa,eAb,eAcを計器用変圧
器11により検出し、これらと基準正弦波sinθ,c
osθとに基づき、逆相電圧絶対値EA2及び逆相電圧の
位相角を示す信号sinψ2,cosψ2を演算する逆相
電圧検出回路12を備えている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 shows an embodiment of the first invention. The same components as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted. Hereinafter, different portions will be mainly described. That is, in the present embodiment, the three-phase voltages e Aa , e Ab , and e Ac of the system are detected by the instrument transformer 11, and are detected together with the reference sine waves sin θ, c
Based on the Osshita, signal Sinpusai 2 indicating the phase angle of the reverse-phase voltage absolute value E A2 and the negative phase voltage, and a negative-phase voltage detecting circuit 12 for calculating a cos 2.

【0019】そして、設定器13aにより設定される逆
相電圧不感帯値を減算器7cにより逆相電圧絶対値EA2
から差し引いて得られる偏差が電圧調節器14に入力さ
れ、その出力の補償電圧指令値EC2 *と上記sinψ2
cosψ2及び設定器13b,13cにより設定される
三相平均値の系統インピーダンス値の抵抗分R、リアク
タンス分Xとから、電流指令値演算回路17が補償電流
指令値IC2d *,IC2q *を演算するように構成されてい
る。
Then, the negative phase voltage dead zone value set by the setter 13a is subtracted by the subtractor 7c into the negative phase voltage absolute value E A2.
Is input to the voltage regulator 14, and the compensation voltage command value E C2 * of the output and the sinψ 2 ,
From the cos 演算2 and the resistance R and the reactance X of the system impedance value of the three-phase average value set by the setting units 13b and 13c, the current command value calculation circuit 17 calculates the compensation current command values I C2d * and I C2q * . It is configured to calculate.

【0020】また、逆相電圧絶対値EA2はコンパレータ
15に入力されており、このコンパレータ15は、逆相
電圧絶対値EA2が逆相電圧不感帯値よりも小さい所定値
より小さくなった際に信号を出力し、不感帯値に等しい
かそれよりも小さい所定値より大きくなった際に上記信
号の出力が停止されるように動作する。このコンパレー
タ15の出力信号はタイマ16に入力される。タイマ1
6は上述した状態が所定時間以上継続すると出力信号が
変化し、この信号により電圧調節器14の出力の零ホー
ルド及びホールド解除を行うように構成されている。
The negative-phase voltage absolute value E A2 is input to a comparator 15, and the comparator 15 detects when the negative-phase voltage absolute value E A2 becomes smaller than a predetermined value smaller than the negative-phase voltage dead zone value. A signal is output, and the output of the signal is stopped when the signal becomes larger than a predetermined value smaller than or equal to the dead zone value. The output signal of the comparator 15 is input to the timer 16. Timer 1
An output signal 6 changes the output signal when the above-mentioned state continues for a predetermined time or more, and performs zero hold and release of the output of the voltage regulator 14 by this signal.

【0021】ここで、逆相電圧検出回路12は、図5に
おいて説明した逆相電流検出演算と同様な下記の演算に
より、逆相電圧絶対値EA2及び逆相電圧の位相角信号s
inψ2,cosψ2を求める。まず、三相電圧を正相成
分と逆相成分とに分け、数式6のように表す。なお、数
式6においてEA1は正相電圧振幅、ψ1は正相電圧位相
角、EA2は逆相電圧振幅(逆相電圧絶対値)、ψ2は逆
相電圧位相角である。次に、αβ変換及び逆回転のdq
変換を行って数式7を得る。
Here, the negative-sequence voltage detection circuit 12 calculates the negative-sequence voltage absolute value E A2 and the phase angle signal s of the negative-sequence voltage by the following calculation similar to the negative-sequence current detection calculation described in FIG.
inψ 2, determine the cosψ 2. First, the three-phase voltage is divided into a positive-phase component and a negative-phase component, and is represented by Expression 6. Incidentally, E A1 positive phase voltage amplitude, [psi 1 is the positive phase voltage phase angle, E A2 reverse phase voltage amplitude (reverse-phase voltage absolute value) In Equation 6, [psi 2 is a reverse-phase voltage phase angle. Next, dβ of αβ conversion and reverse rotation
Equation 7 is obtained by performing the conversion.

【0022】[0022]

【数6】 (Equation 6)

【0023】[0023]

【数7】 (Equation 7)

【0024】これらから前記同様にローパスフィルタを
介して直流分を取り出すことにより、数式8、数式9に
よって表される逆相電圧d軸成分EA2d及び逆相電圧q
軸成分EA2qが得られる。
By extracting the DC component from these through the low-pass filter in the same manner as described above, the negative-phase voltage d-axis component E A2d and the negative- phase voltage q
The axial component E A2q is obtained.

【0025】[0025]

【数8】EA2d=EA2sinψ2 [Equation 8] E A2d = E A2 sinψ 2

【0026】[0026]

【数9】EA2q=EA2cosψ2 [Equation 9] E A2q = E A2 cosψ 2

【0027】以上から、EA2,sinψ2,cosψ
2は、逆相電圧検出回路12による次の数式10ないし
数式12の演算によって求めることができる。
From the above, E A2 , sin { 2 , cos}
2 can be obtained by the calculation of the following Expressions 10 to 12 by the anti-phase voltage detection circuit 12.

【0028】[0028]

【数10】EA2=√(EA2d 2+EA2q 2[ Equation 10] E A2 = √ (E A2d 2 + E A2q 2 )

【0029】[0029]

【数11】sinψ2=EA2d/EA2 [Equation 11] sinψ 2 = E A2d / E A2

【0030】[0030]

【数12】cosψ2=EA2q/EA2 [Number 12] cosψ 2 = E A2q / E A2

【0031】一方、電流指令値演算回路17は電圧調節
器14からの補償電圧指令値EC2 *、上記sinψ2,c
osψ2及び系統インピーダンス値の抵抗分R、リアク
タンス分Xに基づき、次の数式13、数式14により補
償電流指令値IC2d *,IC2q *を演算する回路である。
On the other hand, the current command value calculation circuit 17 calculates the compensation voltage command value E C2 * from the voltage regulator 14 and the above sinψ 2 , c
Ospusai 2 and based on the resistance component R, reactance X of the system impedance values, the following equation 13, the compensation current command value I C2d * according to Equation 14, a circuit for calculating the I C2q *.

【0032】[0032]

【数13】 IC2d *=EC2 *×(Rsinψ2−Xcosψ2)/(R2+X2I C2d * = E C2 * × (R sin ψ 2 −X cos ψ 2 ) / (R 2 + X 2 )

【0033】[0033]

【数14】 IC2q *=EC2 *×(Xsinψ2+Rcosψ2)/(R2+X2I C2q * = E C2 * × (X sin ψ 2 + R cos 2 ) / (R 2 + X 2 )

【0034】次に、これらの計算式の意味について、図
2の系統モデル図を参照しつつ説明する。なお、図2に
おける符号中の添字「 ’」は複素数ベクトル表示であ
ることを示している。電圧不平衡補償装置1の設置点に
おける相電圧及び電流は、数式15、数式16により表
される。
Next, the meaning of these formulas will be described with reference to the system model diagram of FIG. Note that the suffix "" in the code in FIG. 2 indicates that it is a complex vector representation. The phase voltage and current at the installation point of the voltage imbalance compensator 1 are represented by Expressions 15 and 16.

【0035】[0035]

【数15】 (Equation 15)

【0036】[0036]

【数16】 (Equation 16)

【0037】各電圧・電流を対称座標変換して数式17
ないし数式21のように表す。ここで、系統の三相交流
電源を理想電源とすると、e’S0=0,e’S2=0、ま
た、零相電流はないとすると、i’S0=0,i’L0
0,i’C0=0である。
The respective voltages and currents are converted into symmetric coordinates by the following equation (17).
Or as shown in Equation 21. Here, if the three-phase AC power supply of the system is an ideal power supply, e ' S0 = 0, e' S2 = 0, and if there is no zero-phase current, i ' S0 = 0, i' L0 =
0, i ' C0 = 0.

【0038】[0038]

【数17】 [Equation 17]

【0039】[0039]

【数18】 (Equation 18)

【0040】[0040]

【数19】 [Equation 19]

【0041】[0041]

【数20】 (Equation 20)

【0042】[0042]

【数21】 (Equation 21)

【0043】なお、数式17ないし数式21において
は、数式22を条件とする。この数式22において、 a=−1/2+j√3/2,a2=−1/2−j√3/2 である。
Expressions 17 to 21 are based on Expression 22. In this equation 22, a = − ++ j√3 / 2, and a 2 = − / − j√3 / 2.

【0044】[0044]

【数22】 (Equation 22)

【0045】以上の式から、数式23が成り立つ。From the above equations, Equation 23 is established.

【0046】[0046]

【数23】 (Equation 23)

【0047】補償電流として逆相電流のみを注入して逆
相電圧の補償を行うものとし、i’C1=0とすると、数
式24が得られる。
Assuming that only the negative-sequence current is injected as the compensating current, the negative-sequence voltage is compensated. If i ′ C1 = 0, Equation 24 is obtained.

【0048】[0048]

【数24】 e’A2=−(1/3)×{(Za+aZb+a2Zc)i’L1+(Za+Zb +Zc)(i’L2+i’C2)}E ′ A2 = − (1/3) × {(Za + aZb + a 2 Zc) i ′ L1 + (Za + Zb + Zc) (i ′ L2 + i ′ C2 )}

【0049】また、補償前の逆相電圧を数式25により
表し、補償装置1による補償電圧を数式26により表す
と、数式24による補償後の電圧e’A2は数式27のよ
うになる。
When the negative-phase voltage before compensation is expressed by Expression 25 and the compensation voltage by the compensating device 1 is expressed by Expression 26, the voltage e ′ A2 after compensation by Expression 24 is expressed by Expression 27.

【0050】[0050]

【数25】 e’B2=−(1/3)×{(Za+aZb+a2Zc)i’L1+(Za+Zb +Zc)i’L2E ′ B2 = − (1 /) × {(Za + aZb + a 2 Zc) i ′ L1 + (Za + Zb + Zc) i ′ L2 }

【0051】[0051]

【数26】 e’C2=−(1/3)×(Za+Zb+Zc)i’C2 E ′ C2 = − (1 /) × (Za + Zb + Zc) i ′ C2

【0052】[0052]

【数27】e’A2=e’B2+e’C2 [Equation 27] e ′ A2 = e ′ B2 + e ′ C2

【0053】ここで、補償電圧e’C2を数式28のよう
におき、図3のベクトル図に示すように補償電圧を補償
後の電圧と逆向きになるように制御し、ゲインKCを調
整することにより、逆相電圧を補償することができる。
これにより、補償後の電圧e’A2は数式29のようにな
る。
[0053] Here, placing the compensation voltage e 'C2 as in Equation 28, controlled to be a voltage and reverse after compensating the compensation voltage as shown in the vector diagram of FIG. 3, adjusting the gain K C By doing so, the reverse phase voltage can be compensated.
Thus, the compensated voltage e ′ A2 is as shown in Expression 29.

【0054】[0054]

【数28】e’C2=−KC×e’A2 (KC≧0)[Equation 28] e ′ C2 = −K C × e ′ A2 (K C ≧ 0)

【0055】[0055]

【数29】e’A2=e’B2/(1+KC[Equation 29] e ′ A2 = e ′ B2 / (1 + K C )

【0056】なお、補償電流i’C2は数式30のように
なり、Za=Ra+jXa,Zb=Rb+jXb,Zc
=Rc+jXc,R=(Ra+Rb+Rc)/3,X=
(Xa+Xb+Xc)/3とすると、数式31が得られ
る。
Note that the compensation current i ' C2 is as shown in Expression 30, where Za = Ra + jXa, Zb = Rb + jXb, Zc
= Rc + jXc, R = (Ra + Rb + Rc) / 3, X =
If (Xa + Xb + Xc) / 3, Equation 31 is obtained.

【0057】[0057]

【数30】 i’C2=3KC×e’A2/(Za+Zb+Zc)I ′ C2 = 3K C × e ′ A2 / (Za + Zb + Zc)

【0058】[0058]

【数31】i’C2=KC×e’A2/(R+jX)I ′ C2 = K C × e ′ A2 / (R + jX)

【0059】一方、i’C2,e’A2は各々数式32、数
式33により表すことができるので、数式34を得る。
On the other hand, since i ′ C2 and e ′ A2 can be expressed by Expressions 32 and 33, respectively, Expression 34 is obtained.

【0060】[0060]

【数32】i’C2=IC2q+jIC2d [ Expression 32] i ′ C2 = I C2q + jI C2d

【0061】[0061]

【数33】e’A2=EA2q+jEA2d [ Equation 33] e ′ A2 = E A2q + jE A2d

【0062】[0062]

【数34】 (Equation 34)

【0063】以上から、図1において逆相電圧の絶対値
を調節する電圧調節器14の出力の逆相電圧指令値をE
C2 *=KCA2と置き、数式34に従って電流指令値演算
回路17により逆相電流指令値IC2d *,IC2q *の演算を
行うものとすると、数式35が得られる。
As described above, in FIG. 1, the negative-phase voltage command value of the output of the voltage regulator 14 for adjusting the absolute value of the negative-phase voltage is represented by E
C2 * = Position and K C E A2, negative sequence current command value I C2d * by the current command value calculating circuit 17 according to equation 34, assuming that performs calculation of I C2q *, Equation 35 is obtained.

【0064】[0064]

【数35】 (Equation 35)

【0065】上記第1の発明の実施例は系統電圧の三相
相電圧を検出して制御を行うものであるが、相電圧では
なく三相線間電圧を検出して制御することも可能であ
る。第2の発明はこの着想に基づくものであり、その実
施例の制御装置は、図1における系統電圧の三相相電圧
Aa,eAb,eAcを三相線間電圧eAab,eAbc,eAca
に、また、逆相電圧検出回路12の出力の逆相電圧絶対
値EA2をEAD2に置き換えて構成される。この場合、逆
相電圧検出回路12は、前述の演算と実質的に同様な下
記の演算により、線間電圧の逆相電圧絶対値EAD2と位
相角信号sinψ2,cosψ2との演算を行う。
In the first embodiment of the present invention, the control is performed by detecting the three-phase voltage of the system voltage. However, it is also possible to detect and control the three-phase line voltage instead of the phase voltage. is there. The second invention is based on this idea, and the control device of the embodiment converts the three-phase voltages e Aa , e Ab , and e Ac of the system voltage in FIG. 1 into three-phase line voltages e Aab , e Abc. , E Aca
To also configured by replacing the negative-phase voltage absolute value E A2 of the output of the negative-phase voltage detecting circuit 12 to E AD2. In this case, reverse-phase voltage detecting circuit 12 is carried out by calculation substantially similar to the following operation described above, the reverse-phase voltage absolute value E AD2 and the phase angle signal Sinpusai 2 of the line voltage, the operation of the cos 2 .

【0066】すなわち、三相電圧を正相成分と逆相成分
とに分け、数式36のように表す。なお、数式36にお
いてEAD1は正相電圧振幅、ψ1は正相電圧位相角、E
AD2は逆相電圧振幅(逆相電圧絶対値)、ψ2は逆相電圧
位相角である。次に、αβ変換及び逆回転のdq変換を
行って数式37を得る。
That is, the three-phase voltage is divided into a positive-phase component and a negative-phase component, and is represented by Expression 36. Incidentally, the E AD1 in Equation 36 the positive phase voltage amplitude, [psi 1 is the positive phase voltage phase angle, E
AD2 reverse phase voltage amplitude (reverse-phase voltage absolute value), [psi 2 is a reverse-phase voltage phase angle. Next, the αβ conversion and the inverse rotation dq conversion are performed to obtain Expression 37.

【0067】[0067]

【数36】 [Equation 36]

【0068】[0068]

【数37】 (37)

【0069】これらから前記同様にローパスフィルタを
介して直流分を取り出すことにより、数式38、数式3
9によって表される逆相電圧d軸成分EAD2d及び逆相電
圧q軸成分EAD2qが得られる。
By extracting the DC component from these through the low-pass filter in the same manner as described above, Equations 38 and 3 are obtained.
A negative-phase voltage d-axis component E AD2d and a negative- phase voltage q-axis component E AD2q represented by 9 are obtained.

【0070】[0070]

【数38】EAD2d=EAD2sinψ2 [Number 38] E AD2d = E AD2 sinψ 2

【0071】[0071]

【数39】EAD2q=EAD2cosψ2 [Number 39] E AD2q = E AD2 cosψ 2

【0072】以上から、EAD2,sinψ2,cosψ2
は、逆相電圧検出回路12による次の数式40ないし数
式42の演算によって求めることができる。
From the above, E AD2 , sinψ 2 , cosψ 2
Can be calculated by the following equations 40 to 42 by the negative-sequence voltage detection circuit 12.

【0073】[0073]

【数40】EAD2=√(EAD2d 2+EAD2q 2[ Equation 40] E AD2 = √ (E AD2d 2 + E AD2q 2 )

【0074】[0074]

【数41】sinψ2=EAD2d/EAD2 [Equation 41] sinψ 2 = E AD2d / E AD2

【0075】[0075]

【数42】cosψ2=EAD2q/EAD2 [ Equation 42] cosψ 2 = E AD2q / E AD2

【0076】また、この実施例のように線間電圧を検出
して制御する場合には、電流指令値演算回路17は次の
数式43、数式44により補償電流指令値IC2d *,I
C2q *を演算する。なお、これらの数式において、A,B
は各々数式45、数式46により表される。
When the control is performed by detecting the line voltage as in this embodiment, the current command value calculation circuit 17 calculates the compensation current command values I C2d * and I C
Calculate C2q * . In these equations, A, B
Are represented by Equations 45 and 46, respectively.

【0077】[0077]

【数43】 IC2d *=EC2 *×(Asinψ2−Bcosψ2)/(A2+B2[Number 43] I C2d * = E C2 * × (Asinψ 2 -Bcosψ 2) / (A 2 + B 2)

【0078】[0078]

【数44】 IC2q *=EC2 *×(Bsinψ2+Acosψ2)/(A2+B2I C2q * = E C2 * × (B sin ψ 2 + A cos ψ 2 ) / (A 2 + B 2 )

【0079】[0079]

【数45】A=√3R/2+X/2A = √3R / 2 + X / 2

【0080】[0080]

【数46】B=√3X/2−R/2B = √3X / 2−R / 2

【0081】以下に、これらの数式の誘導過程を示す。
まず、図2において、補償装置1の設置点における線間
電圧及び相電流は数式47、数式48によって表され
る。
Hereinafter, the derivation process of these equations will be described.
First, in FIG. 2, the line voltage and the phase current at the installation point of the compensator 1 are represented by Expressions 47 and 48.

【0082】[0082]

【数47】 [Equation 47]

【0083】[0083]

【数48】 [Equation 48]

【0084】各電圧・電流を対称座標変換して数式49
ないし数式53のように表す。ここで、系統の三相交流
電源を理想電源とすると、e’SD0=0,e’SD2=0、
また、零相電流はないとすると、i’S0=0,i’L0
0,i’C0=0である。
The respective voltages and currents are converted into symmetric coordinates by the following equation (49).
Or as shown in Equation 53. Here, assuming that the three-phase AC power supply of the system is an ideal power supply, e ′ SD0 = 0, e ′ SD2 = 0,
Assuming that there is no zero-phase current, i ′ S0 = 0, i ′ L0 =
0, i ' C0 = 0.

【0085】[0085]

【数49】 [Equation 49]

【0086】[0086]

【数50】 [Equation 50]

【0087】[0087]

【数51】 (Equation 51)

【0088】[0088]

【数52】 (Equation 52)

【0089】[0089]

【数53】 (Equation 53)

【0090】なお、数式49ないし数式53において
は、数式54を条件とする。この数式54において、 a=−1/2+j√3/2,a2=−1/2−j√3/2 である。
Expressions 49 to 53 are based on Expression 54. In this equation 54, a = − / + j√3 / 2 and a 2 = − / − j√3 / 2.

【0091】[0091]

【数54】 (Equation 54)

【0092】以上の式から、数式55が成り立つ。From the above equations, Equation 55 is established.

【0093】[0093]

【数55】 [Equation 55]

【0094】補償電流として逆相電流のみを注入して逆
相電圧の補償を行うものとし、i’C1=0とすると、数
式56が得られる。
Assuming that only the negative-sequence current is injected as the compensation current, the negative-sequence voltage is compensated. If i ′ C1 = 0, Equation 56 is obtained.

【0095】[0095]

【数56】 e’AD2=−{(1−a)/3}×{(Za+aZb+a2Zc)i’L1+(Z a+Zb+Zc)(i’L2+i’C2)}Equation 56] e 'AD2 = - {(1 -a) / 3} × {(Za + aZb + a 2 Zc) i' L1 + (Z a + Zb + Zc) (i 'L2 + i' C2)}

【0096】また、補償前の逆相電圧を数式57により
表し、補償装置1による補償電圧を数式58により表す
と、数式56による補償後の電圧e’AD2は数式59の
ようになる。
When the negative-phase voltage before compensation is expressed by Expression 57 and the compensation voltage by the compensator 1 is expressed by Expression 58, the voltage e ′ AD2 after compensation by Expression 56 is expressed by Expression 59.

【0097】[0097]

【数57】 e’BD2=−{(1−a)/3}×{(Za+aZb+a2Zc)i’L1+(Z a+Zb+Zc)i’L2Equation 57] e 'BD2 = - {(1 -a) / 3} × {(Za + aZb + a 2 Zc) i' L1 + (Z a + Zb + Zc) i 'L2}

【0098】[0098]

【数58】 e’CD2=−{(1−a)/3})×(Za+Zb+Zc)i’C2 E ′ CD2 = − {(1-a) / 3}) × (Za + Zb + Zc) i ′ C2

【0099】[0099]

【数59】e’AD2=e’BD2+e’CD2 [ Equation 59] e ′ AD2 = e ′ BD2 + e ′ CD2

【0100】ここで、補償電圧e’CD2を数式60のよ
うにおき、図3のベクトル図に示すように補償電圧を補
償後の電圧と逆向きになるように制御し、ゲインKC
調整することにより、逆相電圧を補償することができ
る。これにより、補償後の電圧e’AD2は数式61のよ
うになる。
[0100] Here, placing the compensation voltage e 'CD2 as Formula 60, controlled to be a voltage and reverse after compensating the compensation voltage as shown in the vector diagram of FIG. 3, adjusting the gain K C By doing so, the reverse phase voltage can be compensated. Thus, the compensated voltage e ′ AD2 is as shown in Expression 61.

【0101】[0101]

【数60】e’CD2=−KC×e’AD2 (KC≧0)E ′ CD2 = −K C × e ′ AD2 (K C ≧ 0)

【0102】[0102]

【数61】e’AD2=e’BD2/(1+KCE ′ AD2 = e ′ BD2 / (1 + K C )

【0103】なお、補償電流i’C2は数式62のように
なり、Za=Ra+jXa,Zb=Rb+jXb,Zc
=Rc+jXc,R=(Ra+Rb+Rc)/3,X=
(Xa+Xb+Xc)/3とすると、数式63が得られ
る。
Note that the compensation current i ′ C2 is as shown in Expression 62, where Za = Ra + jXa, Zb = Rb + jXb, Zc
= Rc + jXc, R = (Ra + Rb + Rc) / 3, X =
If (Xa + Xb + Xc) / 3, Equation 63 is obtained.

【0104】[0104]

【数62】 i’C2=3KC×e’AD2/{(1−a)×(Za+Zb+Zc)}I ′ C2 = 3K C × e ′ AD2 / {(1−a) × (Za + Zb + Zc)}

【0105】[0105]

【数63】 i’C2=KC×e’AD2/{(1−a)×(R+jX)}I ′ C2 = K C × e ′ AD2 / {(1−a) × (R + jX)}

【0106】一方、i’C2,e’AD2,1−aは各々数
式64ないし数式66により表すことができるので、A
=√3R/2+X/2,B=√3X/2−R/2とする
と、数式67を得る。
On the other hand, since i ′ C2 , e ′ AD2 , 1−a can be expressed by Equations 64 to 66, A ′
= √3R / 2 + X / 2, B = √3X / 2−R / 2, Equation 67 is obtained.

【0107】[0107]

【数64】i’C2=IC2q+jIC2d I ′ C2 = I C2q + jI C2d

【0108】[0108]

【数65】e’AD2=EAD2q+jEAD2d [ Equation 65] e ′ AD2 = E AD2q + jE AD2d

【0109】[0109]

【数66】 1−a=1−(−1/2+j√3/2)=√3(√3/2−j/2)1−a = 1 − (− / + j√3 / 2) = √3 (√3 / 2−j / 2)

【0110】[0110]

【数67】 [Equation 67]

【0111】以上から、図1において逆相電圧の絶対値
を調節する電圧調節器14の出力の逆相電圧指令値をE
C2 *=KCAD2/√3と置き、数式67に従って電流指
令値演算回路17により補償電流指令値IC2d *,IC2q *
の演算を行うものとすると、数式68が得られる。
As described above, in FIG. 1, the negative-phase voltage command value of the output of the voltage regulator 14 for adjusting the absolute value of the negative-phase voltage is represented by E
C2 * = Position and K C E AD2 / √3, the compensation current command value I C2d * by the current command value calculating circuit 17 according to equation 67, I C2q *
Equation 68 is obtained if the above operation is performed.

【0112】[0112]

【数68】 [Equation 68]

【0113】次いで、図4は第3の発明の実施例を示し
ている。この実施例では、図1と同様な系統電圧の逆相
電圧を検出して補償電流指令値を演算するための逆相電
圧検出回路12、電圧調節器14、電流指令値演算回路
17等を備えると共に、従来の技術(図5参照)のよう
に逆相負荷電流を検出して補償電流を演算する逆相電流
検出回路5b、反転アンプ6a,6b等も備えている。
そして、これら両方の回路により演算される補償電流指
令値を加算器18a,18bにより加算して得られる値
を電流調節器8a,8bに対する新たな補償電流指令値
とするように構成されている。
Next, FIG. 4 shows an embodiment of the third invention. In this embodiment, a negative phase voltage detecting circuit 12, a voltage regulator 14, a current command value calculating circuit 17 and the like for detecting a negative phase voltage of a system voltage similar to that of FIG. 1 and calculating a compensation current command value are provided. Also, as in the prior art (see FIG. 5), a negative-phase current detection circuit 5b for detecting a negative-phase load current and calculating a compensation current, and inverting amplifiers 6a and 6b are also provided.
The compensation current command values calculated by these two circuits are added by the adders 18a and 18b, and a value obtained by the addition is used as a new compensation current command value for the current regulators 8a and 8b.

【0114】また、逆相負荷電流補償と逆相電圧補償と
の容量配分を決めるために、反転アンプ6a,6bの出
力側にリミッタ19が設けられており、逆相負荷電流補
償量に制限をかけるようになっている。なお、逆相負荷
電流補償と逆相電圧補償との容量配分を決めるためのリ
ミッタ19は、図示のように逆相負荷電流補償回路では
なく逆相電圧補償回路の電流指令値側に設けたり、ある
いは逆相負荷電流補償回路及び逆相電圧補償回路の双方
の電流指令値側に設けることも可能である。
A limiter 19 is provided on the output side of the inverting amplifiers 6a and 6b to determine the capacity distribution between the negative-sequence load current compensation and the negative-sequence voltage compensation. It is designed to be applied. The limiter 19 for determining the capacity distribution between the negative-phase load current compensation and the negative-phase voltage compensation is provided not on the negative-phase load current compensation circuit but on the current command value side of the negative-phase voltage compensation circuit, as shown in FIG. Alternatively, it may be provided on the current command value side of both the negative phase load current compensating circuit and the negative phase voltage compensating circuit.

【0115】[0115]

【発明の効果】以上のように、第1または第2の発明に
おいては、系統の三相相電圧または三相線間電圧から逆
相電圧を検出して補償電流指令値を演算し、また、第3
の発明においては、逆相電圧補償と負荷の逆相電流補償
とを併用して補償電流指令値を演算し、電流調節器の出
力に基づき補償装置により系統に補償電流を注入して電
圧不平衡を補償するものである。これにより、補償装置
設置点の上位及び下位の不平衡負荷や系統インピーダン
ス不平衡に起因する電圧不平衡現象のすべてを、系統運
用状態に関係なく効果的に補償することができる。
As described above, in the first or second invention, a compensation current command value is calculated by detecting a reverse phase voltage from a three-phase voltage or a three-phase line voltage of a system. Third
In the invention of the present application, the compensation current command value is calculated by using both the opposite-phase voltage compensation and the opposite-phase current compensation of the load, and the compensation current is injected into the system by the compensator based on the output of the current regulator to cause the voltage imbalance. Is to compensate. This makes it possible to effectively compensate for all unbalanced loads at the upper and lower positions of the compensator installation point and all voltage unbalance phenomena caused by system impedance imbalance regardless of the system operation state.

【0116】更に、逆相電圧補償と負荷の逆相電流補償
との併用時には、必要に応じリミッタによって両者の補
償容量配分を行うことにより、上位系の不平衡負荷や系
統インピーダンスのアンバランスに起因する電圧不平
衡、及び、下位系の不平衡負荷に起因する電圧不平衡を
系統運用状態に応じて効果的に補償することが可能であ
る。
Further, when both the negative-sequence voltage compensation and the negative-sequence current compensation of the load are used at the same time, the compensating capacity of the two is distributed by the limiter as necessary, thereby causing the unbalanced load of the higher system and the imbalance of the system impedance. It is possible to effectively compensate for the voltage imbalance that occurs and the voltage imbalance caused by the lower system unbalanced load according to the system operation state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明の実施例の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of an embodiment of the first invention.

【図2】各実施例が適用される系統モデル図である。FIG. 2 is a system model diagram to which each embodiment is applied.

【図3】各実施例における不平衡電圧の補償原理を説明
するためのベクトル図である。
FIG. 3 is a vector diagram for explaining a principle of compensating an unbalanced voltage in each embodiment.

【図4】第3の発明の実施例の構成を示すブロック図で
ある。
FIG. 4 is a block diagram showing a configuration of an example of the third invention.

【図5】従来の技術を示すブロック図である。FIG. 5 is a block diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 電圧不平衡補償装置 2 負荷 3a,3b 変流器 4 基準正弦波発生回路 5a,5b 逆相電流検出回路 6a,6b 反転アンプ 7a,7b,7c 減算器 8a,8b 電流調節器 9 出力電圧演算回路 10 PWMパルス発生回路 11 計器用変圧器 12 逆相電圧検出回路 13a,13b,13c 設定器 14 電圧調節器 15 コンパレータ 16 タイマ 17 電流指令値演算回路 18a,18b 加算器 19 リミッタ 31 電力系統 32 変圧器 DESCRIPTION OF SYMBOLS 1 Voltage imbalance compensator 2 Load 3a, 3b Current transformer 4 Reference sine wave generation circuit 5a, 5b Negative phase current detection circuit 6a, 6b Inverting amplifier 7a, 7b, 7c Subtractor 8a, 8b Current regulator 9 Output voltage calculation Circuit 10 PWM pulse generation circuit 11 Instrument transformer 12 Negative phase voltage detection circuit 13a, 13b, 13c Setting device 14 Voltage regulator 15 Comparator 16 Timer 17 Current command value calculation circuit 18a, 18b Adder 19 Limiter 31 Power system 32 Transformer vessel

フロントページの続き (72)発明者 中村 俊弘 愛知県名古屋市緑区大高町字北関山20番 地の1 中部電力株式会社 技術開発本 部 電力技術研究所内 (72)発明者 小西 茂雄 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 馬場 謙二 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 小島 武彦 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 平1−97138(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 3/26 G05F 1/44 Continuation of the front page (72) Inventor Toshihiro Nakamura 20-1, Kita-Sanzan, Odaka-cho, Midori-ku, Nagoya-shi, Aichi Prefecture Chubu Electric Power Co., Inc. Technology Development Division Electric Power Technology Research Laboratory (72) Inventor Shigeo Konishi Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Kenji Baba 1-1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture, Japan Fuji Electric Co., Ltd. (72) Inventor Takehiko Kojima Kawasaki, Kanagawa Prefecture Fuji Electric Co., Ltd. (1-1) Tanabe Nitta, Ichikawasaki-ku (56) References JP-A-1-97138 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 3 / 26 G05F 1/44

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電力系統の電圧不平衡を検出し、回転座
標系直交2軸成分の補償電流指令値と補償電流実際値と
の偏差を零にするように電流調節器を動作させてこの電
流調節器の出力に基づき電圧不平衡補償装置の出力電圧
を演算し、前記補償装置内の電力変換器により電力系統
に逆相補償電流を注入させて前記電圧不平衡を是正する
ための制御装置において、 系統電圧の三相相電圧からその逆相電圧の直交2軸成分
A2d,EA2qを検出し、これらの値から、 EA2=√(EA2d 2+EA2q 2), sinψ2=EA2d/EA2, cosψ2=EA2q/EA2 (EA2:逆相電圧絶対値、ψ2:逆相電圧位相角)を演
算する逆相電圧検出回路と、 逆相電圧絶対値EA2と逆相電圧不感帯値との偏差を入力
として補償電圧指令値EC2 *を出力する電圧調節器と、 前記sinψ2,cosψ2と、前記補償電圧指令値EC2
*と、抵抗分R及びリアクタンス分Xからなる三相平均
値の系統インピーダンス値とから、前記電流調節器に対
する補償電流指令値IC2d *,IC2q *を、 IC2d *=EC2 *×(Rsinψ2−Xcosψ2)/(R2+X2), IC2q *=EC2 *×(Xsinψ2+Rcosψ2)/(R2+X2) なる演算により求める電流指令値演算回路と、 を備えたことを特徴とする電圧不平衡補償装置の制御装
置。
The present invention detects a voltage imbalance in a power system and operates a current controller to reduce a deviation between a compensation current command value and a compensation current actual value of two orthogonal components of a rotating coordinate system to zero. A controller for calculating the output voltage of the voltage imbalance compensator based on the output of the controller and injecting a negative-sequence compensation current into a power system by a power converter in the compensator to correct the voltage imbalance. From the three-phase voltage of the system voltage, orthogonal two-axis components E A2d and E A2q of the opposite phase voltage are detected, and from these values, E A2 = √ (E A2d 2 + E A2q 2 ), sinψ 2 = E A2d / E A2 , cosψ 2 = E A2q / E A2 (E A2 : Negative phase voltage absolute value, ψ 2 : Negative phase voltage phase angle) and a negative phase voltage absolute value E A2 a voltage regulator for outputting a compensation voltage command value E C2 * a deviation between the phase voltage deadband value as an input The sinψ 2, and cos 2, the compensation voltage command value E C2
*, And compensation current command values I C2d * and I C2q * for the current regulator from the system impedance value of the three-phase average value including the resistance component R and the reactance component X, I C2d * = E C2 * × ( Rsinψ 2 -Xcosψ 2) / (R 2 + X 2), I C2q * = E C2 * × (Xsinψ 2 + Rcosψ 2) / (R 2 + X 2) becomes the current command value calculating circuit for obtaining by calculation, further comprising a A control device for a voltage imbalance compensation device, comprising:
【請求項2】 電力系統の電圧不平衡を検出し、回転座
標系直交2軸成分の補償電流指令値と補償電流実際値と
の偏差を零にするように電流調節器を動作させてこの電
流調節器の出力に基づき電圧不平衡補償装置の出力電圧
を演算し、前記補償装置内の電力変換器により電力系統
に逆相補償電流を注入させて前記電圧不平衡を是正する
ための制御装置において、 系統電圧の三相線間電圧からその逆相電圧の直交2軸成
分EAD2d,EAD2qを検出し、これらの値から、 EAD2=√(EAD2d 2+EAD2q 2), sinψ2=EAD2d/EAD2, cosψ2=EAD2q/EAD2 (EAD2:逆相電圧絶対値、ψ2:逆相電圧位相角)を演
算する前記逆相電圧検出回路と、 逆相電圧絶対値EAD2と逆相電圧不感帯値との偏差を入
力として補償電圧指令値EC2 *を出力する電圧調節器
と、 前記sinψ2,cosψ2と、前記補償電圧指令値EC2
*と、抵抗分R及びリアクタンス分Xからなる三相平均
値の系統インピーダンス値とから、前記電流調節器に対
する補償電流指令値IC2d *,IC2q *を、 IC2d *=EC2 *×(Asinψ2−Bcosψ2)/(A2+B2), IC2q *=EC2 *×(Bsinψ2+Acosψ2)/(A2+B2) (ここで、A=√3R/2+X/2,B=√3X/2−
R/2)なる演算により求める電流指令値演算回路と、 を備えたことを特徴とする電圧不平衡補償装置の制御装
置。
2. A current controller which detects a voltage imbalance of a power system and operates a current regulator so as to make a deviation between a compensation current command value and an actual compensation current value of two orthogonal components of a rotating coordinate system zero. A controller for calculating the output voltage of the voltage imbalance compensator based on the output of the controller and injecting a negative-sequence compensation current into a power system by a power converter in the compensator to correct the voltage imbalance. From the three-phase line voltage of the system voltage, quadrature two-axis components E AD2d and E AD2q of the opposite phase voltages are detected, and from these values, E AD2 = √ (E AD2d 2 + E AD2q 2 ), sinψ 2 = E AD2d / E AD2 , cosψ 2 = E AD2q / E AD2 (E AD2 : Negative -phase voltage absolute value, ψ 2 : Negative -phase voltage phase angle) and the negative-phase voltage absolute value E AD2 to output the compensation voltage command value E C2 * as inputs a deviation between reverse phase voltage deadband value and A voltage regulator, the Sinpusai 2, and cos 2, the compensation voltage command value E C2
*, And compensation current command values I C2d * and I C2q * for the current regulator from the system impedance value of the three-phase average value including the resistance component R and the reactance component X, I C2d * = E C2 * × ( Asinψ 2 -Bcosψ 2) / (A 2 + B 2), I C2q * = E C2 * × (Bsinψ 2 + Acosψ 2) / (A 2 + B 2) ( where, A = √3R / 2 + X / 2, B = √3X / 2-
R / 2) a control circuit for a voltage imbalance compensation device, comprising: a current command value calculation circuit obtained by calculation.
【請求項3】 逆相電圧絶対値EA2またはEAD2が逆相
電圧不感帯値より小さい所定値よりも小さくなったこと
を検出して信号を出力し、逆相電圧不感帯値より小さい
かまたは等しい所定値より大きくなった時に前記信号の
出力を停止するコンパレータを設け、このコンパレータ
の出力信号に基づいて電圧調節器の出力の零ホールド及
びホールド解除を行う請求項1または2記載の電圧不平
衡補償装置の制御装置。
3. A signal is output upon detecting that the negative phase voltage absolute value E A2 or E AD2 has become smaller than a predetermined value smaller than the negative phase voltage dead zone value, and a signal is output, and is smaller than or equal to the negative phase voltage dead zone value. 3. The voltage imbalance compensation according to claim 1, further comprising a comparator for stopping the output of the signal when the voltage exceeds a predetermined value, and performing zero hold and release of the output of the voltage regulator based on the output signal of the comparator. Equipment control device.
【請求項4】 請求項1,2または3記載の電圧不平衡
補償装置の制御装置において、 電力系統に接続された負荷の三相電流からその逆相電流
の直交2軸成分IL2d,IL2qを検出する逆相電流検出回
路と、 これらの直交2軸成分IL2d,IL2qの値を反転して得た
逆相負荷電流に対する補償電流指令値と電流指令値演算
回路から出力される逆相電圧に対する補償電流指令値と
を各々加算する手段とを備え、 その加算結果を電流調節器に対する新たな補償電流指令
値とすることを特徴とする電圧不平衡補償装置の制御装
置。
4. The control device for a voltage imbalance compensator according to claim 1, 2 or 3, wherein a three-phase current of a load connected to a power system and two orthogonal components I L2d and I L2q of a negative-phase current thereof. Current detection circuit for detecting the phase difference, and a compensation current command value for a negative phase load current obtained by inverting the values of these orthogonal two-axis components I L2d and I L2q and a negative phase output from the current command value calculation circuit. Means for adding a compensation current command value with respect to the voltage, respectively, and using the addition result as a new compensation current command value for the current regulator.
【請求項5】 逆相負荷電流に対する補償電流指令値と
逆相電圧に対する補償電流指令値との少なくとも一方を
リミッタにより制限し、逆相負荷電流補償及び逆相電圧
補償の容量配分を行う請求項4記載の電圧不平衡補償装
置の制御装置。
5. A method according to claim 1, wherein at least one of a compensation current command value for the negative-sequence load current and a compensation current command value for the negative-sequence voltage is limited by a limiter, and capacity distribution for the negative-sequence load current compensation and the negative-sequence voltage compensation is performed. 5. The control device of the voltage imbalance compensation device according to 4.
JP28683692A 1992-09-30 1992-09-30 Control device for voltage imbalance compensator Expired - Lifetime JP3173892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28683692A JP3173892B2 (en) 1992-09-30 1992-09-30 Control device for voltage imbalance compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28683692A JP3173892B2 (en) 1992-09-30 1992-09-30 Control device for voltage imbalance compensator

Publications (2)

Publication Number Publication Date
JPH06113466A JPH06113466A (en) 1994-04-22
JP3173892B2 true JP3173892B2 (en) 2001-06-04

Family

ID=17709667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28683692A Expired - Lifetime JP3173892B2 (en) 1992-09-30 1992-09-30 Control device for voltage imbalance compensator

Country Status (1)

Country Link
JP (1) JP3173892B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259077B2 (en) * 2006-12-04 2013-08-07 株式会社京三製作所 Instantaneous voltage drop compensation circuit, power converter, instantaneous voltage drop compensation method, and instantaneous voltage drop compensation program
JP5121514B2 (en) * 2008-03-11 2013-01-16 三菱電機株式会社 Overvoltage suppression control method by reverse phase control
JP5004366B2 (en) * 2009-12-07 2012-08-22 株式会社京三製作所 Unbalance voltage compensation method, unbalance voltage compensation device, control method for three-phase converter, and control device for three-phase converter
CN102270849B (en) * 2011-07-28 2013-04-03 重庆大学 Method for suppressing neutral current of transformer
JP6904134B2 (en) * 2017-07-24 2021-07-14 富士電機株式会社 Static VAR compensator and its control method
JP7249471B1 (en) * 2022-08-23 2023-03-30 三菱電機株式会社 power converter

Also Published As

Publication number Publication date
JPH06113466A (en) 1994-04-22

Similar Documents

Publication Publication Date Title
JP2679411B2 (en) Parallel operation control device for AC output converter
JP4448855B2 (en) Power converter
EP2003758B1 (en) Power conversion apparatus and module including the power conversion apparatus
US5349522A (en) Method and apparatus for controlling the output voltage of an AC electrical system
JP3798894B2 (en) Harmonic compensation method
JPH10225131A (en) Controller of power converter
JP3173892B2 (en) Control device for voltage imbalance compensator
KR100543271B1 (en) Pwm converter and method of compensating unbalbnce for the same
JP2002238163A (en) Power converter
JP5892787B2 (en) Control circuit for power conversion circuit, grid-connected inverter system and three-phase PWM converter system using this control circuit
JP6909867B2 (en) Voltage compensator
JPH08256483A (en) Controller of neutral point clamp style pwm control type power converter
US7042193B2 (en) Control apparatus for rotating machine
JP3266966B2 (en) Positive / negative phase component detection circuit for three-phase electricity
JP3316860B2 (en) Power converter
KR100290816B1 (en) Compensating method of phase difference in harmonic component of power converter
JP3509935B2 (en) Control device for voltage source PWM converter
JPH07123726A (en) Power converter
JP2833187B2 (en) Power converter current control circuit
JPH1084675A (en) Power conversion device
JP3135600B2 (en) Unbalance compensator
JP2013085434A (en) Control circuit for power conversion circuit, and system interconnection inverter system and three-phase pwm converter system using the control circuit
JPH08111937A (en) General purpose compensating apparatus
JP3591159B2 (en) Control circuit of series compensator
JPH03135389A (en) Method and device for controlling voltage type inverter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010319

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12