JPH1096685A - Method for evaluating adhesion amount of particle - Google Patents

Method for evaluating adhesion amount of particle

Info

Publication number
JPH1096685A
JPH1096685A JP25347496A JP25347496A JPH1096685A JP H1096685 A JPH1096685 A JP H1096685A JP 25347496 A JP25347496 A JP 25347496A JP 25347496 A JP25347496 A JP 25347496A JP H1096685 A JPH1096685 A JP H1096685A
Authority
JP
Japan
Prior art keywords
solution
particles
coated
amount
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25347496A
Other languages
Japanese (ja)
Inventor
Keiko Kawakami
桂子 河上
Tadashi Sakon
正 佐近
Masao Sakashita
雅雄 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25347496A priority Critical patent/JPH1096685A/en
Publication of JPH1096685A publication Critical patent/JPH1096685A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating an adhesion amount of particles as an adhesion index of particles in a development of a wet surface treatment liquid such as a cleaning liquid, an etching liquid or the like for semiconductor wafers. SOLUTION: A measurement material coated to a quartz vibrator by CVD or sputtering is immersed in a solution, and an adhesion amount of particles during a surface treatment such as cleaning or the like is obtained by monitoring a change of a resonant frequency of the quartz vibrator. The quartz vibrator coated with the measurement material is incorporated in a flow cell, and measured while factors of the solution, e.g. a temperature, a pH, a fluid state, etc., are controlled. The flow cell is constituted so that the solution becomes a laminar flow by securing a flow path of a uniform thickness above the quartz vibrator coated with the measurement material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエハの洗
浄液やエッチング液等のウエット系表面処理液の開発に
おいてパーティクル付着性の指標としてのパーティクル
付着量評価方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a particle adhesion amount as an index of particle adhesion in the development of a wet surface treatment liquid such as a cleaning liquid or an etching liquid for a semiconductor wafer.

【0002】[0002]

【従来の技術】従来、半導体ウエハの洗浄等のウエット
系表面処理によるウエハへのパーティクル付着量は表面
異物計で測定されていた。表面異物計はウエハ表面にレ
ーザー光をあて、その散乱状態からパーティクル付着数
を測定する手法である。しかし、本手法で感知できるパ
ーティクルの最小径は0.17μm程度とされている。
今後集積度の増大に伴いますます小さなパーティクルが
問題となってくることが予想されるが、0.1μm以下
のパーティクル付着量を測定する適当な方法はまだ無
い。また、このような光学的手段においては、洗浄液中
での計測は不可能であり、ウエハを一度洗浄液から取り
出し、乾燥させてから測定しなくてはならない。パーテ
ィクルの付着量は洗浄液の温度、pH、流動状態などに
大きく依存することが知られているが、従来法ではこの
ような因子を制御しながらパーティクル付着量を計測す
ることはできない。従って、洗浄液等のウエット系表面
処理液設計の指針となるようなパーティクル付着挙動に
関する系統的な知見が極めて少なく、洗浄液等の設計は
未だ試行錯誤にたよっている部分が大きい。
2. Description of the Related Art Conventionally, the amount of particles attached to a wafer by wet surface treatment such as cleaning of a semiconductor wafer has been measured by a surface foreign particle meter. The surface foreign particle meter is a method of irradiating a laser beam on the wafer surface and measuring the number of adhered particles from the scattering state. However, the minimum diameter of the particles that can be detected by this method is about 0.17 μm.
It is expected that smaller particles will become a problem as the degree of integration increases in the future, but there is no suitable method for measuring the amount of particles attached to 0.1 μm or less. Further, in such an optical means, measurement in the cleaning liquid is impossible, and the measurement must be performed after the wafer is once taken out of the cleaning liquid and dried. It is known that the amount of adhered particles greatly depends on the temperature, pH, flow state and the like of the cleaning liquid, but the conventional method cannot measure the amount of adhered particles while controlling such factors. Therefore, there is very little systematic knowledge on the particle adhesion behavior that can be a guide for the design of a wet surface treatment solution such as a cleaning solution, and the design of a cleaning solution is largely a matter of trial and error.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は上述し
た問題点を除去して、パーティクル付着量を小径まで液
中で計測し評価することが可能な方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems and to provide a method capable of measuring and evaluating the amount of attached particles to a small diameter in a liquid.

【0004】[0004]

【課題を解決するための手段】上記の問題点を解決する
ための本発明の方法は、水晶振動子にCVD法やスパッ
タ法で被覆した測定材料を溶液中に浸漬し、洗浄等の表
面処理工程におけるパーティクル付着量を水晶振動子の
共振周波数変化をモニターすることにより得られるよう
にしたものである。また、測定材料を被覆した水晶振動
子をフローセルに組み込み、温度、pH、流動状態等、
溶液側の因子を制御して測定が行える方法である。フロ
ーセルは測定材料を被覆した水晶振動子上に均一の厚み
の流路を確保することにより溶液が層流になるように構
成されている。
According to the method of the present invention for solving the above-mentioned problems, a measuring material coated on a quartz oscillator by a CVD method or a sputtering method is immersed in a solution and subjected to surface treatment such as washing. The amount of particles attached in the process can be obtained by monitoring the change in the resonance frequency of the quartz oscillator. In addition, a quartz resonator coated with the measurement material is incorporated into the flow cell, and the temperature, pH, flow state, etc.
This is a method in which measurement can be performed by controlling factors on the solution side. The flow cell is configured such that the solution has a laminar flow by securing a flow path having a uniform thickness on the quartz resonator coated with the measurement material.

【0005】[0005]

【発明の実施の形態】共振回路に組み込まれた水晶振動
子は、その厚み方向に対して垂直方向に振動周波数(f
0 )で共振する。このとき水晶振動子に被覆した測定材
料が溶液に接触しパーティクル付着による質量増加が生
じると、共振周波数変化(Δf)が生じる。Δfとパー
ティクル付着数(N)の関係は多くの場合、以下の式で
与えられる。 N=−Δf/{[2(4/3)πa3 ρP /(ρμ)1/2 ]f0 2 +6a2 [πηL ρL /(ρμ)]1/2 ・[1+(2/9)(a/δ)] f0 3/2 } (1) δ=(ηL /ρL πf)1/2 (2) 但し、f:共振周波数 N:単位面積当たりの付着パー
ティクル数 ρP :パーティクル密度 a:パーティクル半径
ηL :溶液粘度 ρL :溶液密度 μ:水晶振動子弾性率 ρ:水晶振動
子密度である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A quartz oscillator incorporated in a resonance circuit has an oscillation frequency (f) perpendicular to the thickness direction.
Resonates at 0 ). At this time, when the measurement material coated on the crystal unit comes into contact with the solution and the mass increases due to the adhesion of particles, a change in resonance frequency (Δf) occurs. The relationship between Δf and the number of attached particles (N) is often given by the following equation. N = -Δf / {[2 ( 4/3) πa 3 ρ P / (ρμ) 1/2] f 0 2 + 6a 2 [πη L ρ L / (ρμ)] 1/2 · [1+ (2/9 ) (A / δ)] f 0 3/2 } (1) δ = (η L / ρ L πf) 1/2 (2) where f: resonance frequency N: number of attached particles per unit area ρ P : Particle density a: Particle radius
η L : solution viscosity ρ L : solution density μ: crystal oscillator elastic modulus ρ: crystal oscillator density.

【0006】また、上式が成立しない場合でもNとΔf
は比例関係にある。したがって、共振周波数変化Δfを
連続的にモニターすることにより、付着パーティクル個
数をリアルタイムで測定することが可能である。
[0006] Even when the above equation does not hold, N and Δf
Are in a proportional relationship. Therefore, by continuously monitoring the resonance frequency change Δf, the number of attached particles can be measured in real time.

【0007】[0007]

【実施例】【Example】

(実施例1)水晶振動子の電極上にスパッタ法を用いて
Siを5000Å蒸着し、さらにスパッタ法を用いてS
iO2 膜を厚み2000Å蒸着した。この手法により水
晶振動子に密着性良くSiO2 膜を形成することができ
た。この水晶振動子をフローセルに組み込み、pHが1
になるように調整したHCl水溶液をフローセル内に流
速4.3cm/sで循環させた。周波数が安定したところで
直径0.1μmのポリスチレンラテックス標準粒子を添
加した。Δfは時間とともに増加した。Δf測定後、水
晶振動子上のSiO2 膜表面を電子顕微鏡で観察し、付
着パーティクル数とΔfの関係を調べたところ比例関係
にあり、その傾きは式(1)および(2)から計算され
た値と一致した。(図1参照) (実施例2)実施例1と同様な手法により水晶振動子に
密着性良くSiO2 膜を形成した。この水晶振動子をフ
ローセルに組み込み、pHが1になるように調整したH
Cl水溶液およびpHが7になるように調整したNaO
H水溶液を各々流速4.3cm/sで循環させ、実施例1と
同様にポリスチレンラテックス標準粒子の付着性評価実
験を行った。ΔfはpH1のほうが大きく、pH7では
Δfはほとんど変化しなかった(図2参照)。このこと
からpH7の洗浄液のほうがpH1の洗浄液よりパーテ
ィクル付着が起こりにくいことがわかった。
(Example 1) Si was deposited on an electrode of a quartz oscillator at 5000 ° by sputtering, and then S was deposited by sputtering.
An TiO 2 film was deposited to a thickness of 2000 °. With this method, a SiO 2 film could be formed on the quartz oscillator with good adhesion. This crystal oscillator is incorporated in a flow cell and the pH is 1
An aqueous HCl solution adjusted to be circulated in the flow cell was circulated at a flow rate of 4.3 cm / s. When the frequency became stable, standard polystyrene latex particles having a diameter of 0.1 μm were added. Δf increased with time. After measuring Δf, the surface of the SiO 2 film on the quartz oscillator was observed with an electron microscope, and the relationship between the number of attached particles and Δf was examined. The relationship was proportional, and the slope was calculated from equations (1) and (2). Value. (See FIG. 1) (Example 2) An SiO 2 film was formed on a quartz oscillator with good adhesion by the same method as in Example 1. This crystal oscillator was incorporated in a flow cell, and H adjusted to pH 1 was obtained.
Cl aqueous solution and NaO adjusted to pH 7
An H aqueous solution was circulated at a flow rate of 4.3 cm / s, and an adhesion evaluation experiment of polystyrene latex standard particles was performed in the same manner as in Example 1. Δf was larger at pH 1 and at pH 7, Δf hardly changed (see FIG. 2). From this, it was found that the pH of the cleaning solution of 7 was less likely to cause particle adhesion than the cleaning solution of the pH of 1.

【0008】[0008]

【発明の効果】本発明によれば、パーティクル付着量を
小径まで溶液中で評価することや溶液の流れ、pH等を
制御しながら評価することが可能になり、洗浄液等の表
面処理後の開発に極めて有用である。
According to the present invention, it is possible to evaluate the amount of particles attached to a solution to a small diameter in a solution, and to evaluate the solution while controlling the flow, pH, etc. of the solution. It is extremely useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の定量性を示した図で、共振周波数変化
Δfとポリスチレンラテックス標準粒子(PSL)付着
個数の関係を表している。
FIG. 1 is a graph showing the quantification of the present invention, showing the relationship between the resonance frequency change Δf and the number of adhered polystyrene latex standard particles (PSL).

【図2】SiO2 へのPSLの付着に対する洗浄液pH
の影響を表した図である。
FIG. 2: pH of the cleaning solution for the attachment of PSL to SiO 2
FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水晶振動子に半導体素子を構成する被測
定材料を被覆し、該測定材料を溶液に接触させ、発信器
により振動させた該水晶振動子の共振周波数変化から溶
液中における被測定材料へのパーティクル付着量を定量
的に評価することを特徴とするパーティクル付着量評価
方法。
1. A quartz crystal resonator is coated with a material to be measured constituting a semiconductor element, the measured material is brought into contact with a solution, and the quartz crystal resonator is vibrated by a transmitter. A method for evaluating the amount of adhered particles, characterized by quantitatively evaluating the amount of adhered particles to a material.
【請求項2】 半導体素子を構成する被測定材料を被覆
した水晶振動子をフローセルに組み込み、フローセル内
に溶液を流すことにより該測定材料を該溶液に接触さ
せ、発信器により振動させた該水晶振動子の共振周波数
変化から溶液中における被測定材料へのパーティクル付
着量を定量的に評価することを特徴とするパーティクル
付着量評価方法。
2. A quartz oscillator coated with a material to be measured constituting a semiconductor element is incorporated in a flow cell, and the solution is caused to flow into the flow cell so that the material to be measured is brought into contact with the solution and vibrated by a transmitter. A method for evaluating the amount of attached particles, characterized by quantitatively evaluating the amount of attached particles to a material to be measured in a solution from a change in the resonance frequency of a vibrator.
JP25347496A 1996-09-25 1996-09-25 Method for evaluating adhesion amount of particle Withdrawn JPH1096685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25347496A JPH1096685A (en) 1996-09-25 1996-09-25 Method for evaluating adhesion amount of particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25347496A JPH1096685A (en) 1996-09-25 1996-09-25 Method for evaluating adhesion amount of particle

Publications (1)

Publication Number Publication Date
JPH1096685A true JPH1096685A (en) 1998-04-14

Family

ID=17251893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25347496A Withdrawn JPH1096685A (en) 1996-09-25 1996-09-25 Method for evaluating adhesion amount of particle

Country Status (1)

Country Link
JP (1) JPH1096685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089348A (en) * 2006-09-29 2008-04-17 Kyocera Kinseki Corp Measuring terminal member and contamination measuring method using it
CN104034628A (en) * 2014-02-19 2014-09-10 宁波中科朝露新材料有限公司 A viscosity testing method of a soybean-based aldehyde-free timber adhesive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089348A (en) * 2006-09-29 2008-04-17 Kyocera Kinseki Corp Measuring terminal member and contamination measuring method using it
CN104034628A (en) * 2014-02-19 2014-09-10 宁波中科朝露新材料有限公司 A viscosity testing method of a soybean-based aldehyde-free timber adhesive

Similar Documents

Publication Publication Date Title
EP0775295B1 (en) A piezoelectric crystal microbalance device
US5706840A (en) Precision cleaning apparatus and method
Rabe et al. Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids
JP5140724B2 (en) Quartz crystal resonator and measurement method using the same
US8215171B1 (en) Uniform mass sensitivity thickness shear mode quartz resonator
JP3178926B2 (en) Water quality evaluation method and apparatus
Devkota et al. Mass loading effects in the acoustic vibrations of gold nanoplates
Rabe et al. Design, manufacturing, and characterization of high-frequency thickness-shear mode resonators
Bruckenstein et al. Dual quartz crystal microbalance compensation using a submerged reference crystal. Effect of surface roughness and liquid properties
JP3933340B2 (en) Multi-channel QCM sensor device
JPH1096685A (en) Method for evaluating adhesion amount of particle
JP2002544479A (en) High frequency measurement circuit with inherent noise reduction for resonant chemical sensors
Fernández et al. High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, and Experimental Characterization
Rösner et al. Use of a double-paddle oscillator for the study of metallic films at high temperatures
JP2007050371A (en) Standard particle application apparatus and standard particle application method
JP4039284B2 (en) Method for manufacturing mass measuring piezoelectric vibrator, mass measuring piezoelectric vibrator and mass measuring apparatus
JPH1092789A (en) Etching speed evaluation method
US10724934B2 (en) Method for validating a resonator
JP2003060461A (en) Method and apparatus for manufacturing piezoelectric vibration piece
Buettgenbach et al. High-frequency thickness-shear mode resonators for sensor application in liquids
JPH04289438A (en) Minute-amount measuring sensor and minute-amount measuring apparatus
JP7348873B2 (en) Sensor element and gas sensor
Abe et al. Energy dissipation in small-diameter quartz crystal microbalance experimentally studied for ultra-high sensitive gravimetry
JP3954430B2 (en) Concentration measurement method
Kao et al. Self assembled monolayer and protein adsorption studies on micromachined quartz crystal balances

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202