JP3178926B2 - Water quality evaluation method and apparatus - Google Patents

Water quality evaluation method and apparatus

Info

Publication number
JP3178926B2
JP3178926B2 JP34251492A JP34251492A JP3178926B2 JP 3178926 B2 JP3178926 B2 JP 3178926B2 JP 34251492 A JP34251492 A JP 34251492A JP 34251492 A JP34251492 A JP 34251492A JP 3178926 B2 JP3178926 B2 JP 3178926B2
Authority
JP
Japan
Prior art keywords
quartz
weight sensor
water
frequency
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34251492A
Other languages
Japanese (ja)
Other versions
JPH06194290A (en
Inventor
黒川秀昭
俊雄 沢
松本隆行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34251492A priority Critical patent/JP3178926B2/en
Publication of JPH06194290A publication Critical patent/JPH06194290A/en
Application granted granted Critical
Publication of JP3178926B2 publication Critical patent/JP3178926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水中の不純物量特に超純
水中に含まれる不純物を蒸発残留物量として測定する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of impurities in water, particularly impurities contained in ultrapure water, as the amount of evaporation residue.

【0002】[0002]

【従来の技術】従来、超純水の水質は、比抵抗、全有機
炭素(TOC)、微粒子、シリカそして生菌によって評
価されてきている。さらに、最近になって溶存酸素濃度
もその項目の中に加わり、主に表1の6項目によって評
価されている。現在、最も高純度と考えられる超純水の
水質を表1に示すが、これらの項目全てが検出感度以下
のレベルにあり、これまでの評価方法(手段)では、そ
の水質の優位差を評価できない状況にある。
2. Description of the Related Art Conventionally, the quality of ultrapure water has been evaluated by its specific resistance, total organic carbon (TOC), fine particles, silica, and viable bacteria. Furthermore, the dissolved oxygen concentration has recently been added to the items, and is evaluated mainly by the six items in Table 1. At present, the water quality of ultrapure water, which is considered to be the highest purity, is shown in Table 1. All of these items are at levels below the detection sensitivity, and the evaluation methods (means) to date have evaluated the superiority of the water quality. I cannot do it.

【0003】[0003]

【表1】 [Table 1]

【0004】そこで、ウォーターマーク法というLSI
の製造方法に沿った新しい評価方法が提案された。これ
は、シリコンウエハ上に超純水を滴下し、蒸発乾燥後に
残るしみをウォーターマークと称して、顕微鏡にて観察
しその量と色、形等から水質を評価するものである。通
常、超純水はウエハの洗浄工程において薬液等の処理に
よってウエハ上に付着した不純物を除去するために用い
るものであり、超純水リンス後はウエハは乾燥される。
したがって、蒸発・乾燥後に何もウエハ上に残らないこ
とが最良であり、ウォーターマーク法はLSI用超純水
の評価方法としては、LSI製造工程に沿ったものであ
ると考えられる。また、ウエハ表面にできた“しみ”を
コンピューターを用いて画像処理し、その量を定量的に
把握しようとする試みも行われているが、依然、実用の
域には達していない。
Therefore, an LSI called a watermark method is used.
A new evaluation method has been proposed in line with the manufacturing method. In this method, ultrapure water is dropped on a silicon wafer, and stains remaining after evaporation and drying are referred to as watermarks, which are observed with a microscope to evaluate water quality based on the amount, color, shape, and the like. Normally, ultrapure water is used to remove impurities adhered to the wafer by treatment with a chemical solution or the like in a wafer cleaning step, and the wafer is dried after rinsing with ultrapure water.
Therefore, it is best that nothing remains on the wafer after evaporation and drying, and it is considered that the watermark method is a method of evaluating ultrapure water for LSI in accordance with the LSI manufacturing process. Attempts have also been made to quantitatively determine the amount of "stain" formed on the wafer surface by using a computer to perform image processing, but this has not yet reached practical use.

【0005】このウォーターマークに関する公知例とし
ては、ケミカルエンジニアリング1990年1月号p.
68がある。
A well-known example of this watermark is disclosed in Chemical Engineering, January 1990, p.
There are 68.

【0006】[0006]

【発明が解決しようとする課題】上記、従来のウォータ
ーマーク法では、マークの有無や大きさ等の定性的な評
価は可能であるが、重量で定量的な評価をすることがで
きなかった。本発明の課題はこれを可能にすることにあ
る。
According to the above-mentioned conventional watermarking method, qualitative evaluation of the presence or absence and size of a mark is possible, but quantitative evaluation by weight cannot be performed. The object of the invention is to make this possible.

【0007】[0007]

【課題を解決するための手段】上記課題は、水晶振動子
と電極で構成される水晶重みセンサーを用いて振動子表
面の電極上にウォーターマークを作成し、乾燥前後の水
晶重みセンサーの振動数変化を測定することで解決でき
る。
The object of the present invention is to form a watermark on an electrode on the surface of a vibrator using a crystal weight sensor composed of a crystal vibrator and electrodes, and to determine the frequency of the crystal weight sensor before and after drying. It can be solved by measuring the change.

【0008】[0008]

【作用】通常、水晶振動子は固有振動数を持っている
が、その表面に何か付着することによって重量変化が生
じるとその振動数が変化する。また、その振動数は
(1)式に従って減少することが知られている。
Normally, a crystal resonator has a natural frequency. However, if a weight change occurs due to something adhering to the surface of the crystal resonator, the frequency changes. It is also known that the frequency decreases according to equation (1).

【0009】 ΔF=−2.3×1062 Δm/A (1) ここで、ΔFは振動数の変化量(Hz)、Fは固有振動
数(MHz)を、Δmは付着物の重量変化(g)を、そ
してAは電極の面積(cm2 )である。したがって、水
晶重みセンサー表面の電極に水滴を滴下し、蒸発乾燥後
と滴下前の振動数の変化を測定することで、サンプル水
中に含まれる不純物を重量で測定することが可能とな
る。ちなみに、固有振動数をMHz、電極面積を1cm
2 とすると1Hzの振動数の変化は12ngに相当する
ことになる。したがって、10μg/1の不純物を含む
超純水の場合約1.2ml滴下・乾燥することで1Hz
の振動数変化として測定できることになる。本発明原理
についての公知例としては、ぶんせき1989年2月号
があり、現在、水晶重みセンサーの特性を利用すること
で、金属の腐食速度や蒸着速度の測定を目的として研究
が行われている。
ΔF = −2.3 × 10 6 F 2 Δm / A (1) Here, ΔF is the amount of change in frequency (Hz), F is the natural frequency (MHz), and Δm is the weight of the deposit. Change (g) and A is the area of the electrode (cm 2 ). Therefore, it is possible to measure the impurities contained in the sample water by weight by dropping a water drop on the electrode on the surface of the quartz weight sensor and measuring the change in the frequency after evaporation and before the drop. By the way, natural frequency is MHz, electrode area is 1cm
Assuming that 2 , the change of the frequency of 1 Hz corresponds to 12 ng. Therefore, in the case of ultrapure water containing 10 μg / 1 impurity, about 1.2 ml is dropped and dried to obtain 1 Hz.
Can be measured as a change in the vibration frequency. As a publicly known example of the principle of the present invention, there is Bunseki February, 1989, and research is currently being conducted for the purpose of measuring the corrosion rate and deposition rate of metal by utilizing the characteristics of a quartz weight sensor. I have.

【0010】しかしながら、(1)式は電極表面に均一
に付着させることが条件であり、不均一な付着の場合は
(1)式は成り立たない。通常の電極表面に蒸発残査を
作成すると、ある一点に集中して残留物が残ることか
ら、残った位置によって振動数の変化が異なってしま
う。そこで、電極表面に凹凸をつけるか吸水性の物質を
付着させることにより、常に同一場所に残留させること
により位置による振動数変化の感度依存性を抑制するこ
とができる。
However, the condition (1) is a condition for uniform deposition on the electrode surface. In the case of non-uniform deposition, the condition (1) does not hold. When an evaporation residue is formed on a normal electrode surface, the residue remains at a certain point, so that the change in the frequency varies depending on the remaining position. Therefore, by making the electrode surface uneven or attaching a water-absorbing substance, it is always left in the same place, thereby suppressing the sensitivity dependency of the frequency change depending on the position.

【0011】[0011]

【実施例】以下図面を用いて本発明の実施例を詳細に説
明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】図1に本発明に係る水晶重みセンサーによ
る水質評価法の一例を示す。本評価装置構成は、水晶振
動子101、電極102,103、発振器104、振動
数測定器105と演算器106より構成される。本装置
の動作は、まず電極103表面に何も付着していない状
態での水晶振動子101の固定振動数を振動数測定器1
05により測定する。その後、水晶振動子101の上部
電極103上にサンプル管107を用いてサンプル水1
08(可能ならば既知量が良い)を滴下する。さらに、
滴下後のサンプル水108が乾燥した後に、再度、水晶
振動子101の固有振動数を振動数測定器105により
測定し、前後の振動数の変化量から演算器106によっ
て重量を算出し、サンプル水の量から最終的には水中の
不純物濃度を算出することができる。本装置を用いて、
固有周波数が6MHzの水晶振動子上に既知濃度(Na
Cl)、既知量のサンプル水を滴下・乾燥前後の振動数
変化を測定した結果を図5に示す。ここで、縦軸は振動
数の変化量ΔF(Hz)、横軸はサンプル水中に含まれ
ていたNaClの重量である。この結果、ΔFと付着物
重量の間には一次の関係が成立しており、本方式で水中
の不純物量を測定できることがわかる。しかし、水晶重
みセンサーは、付着物の電極表面における位置によって
その振動数変化の感度が大きく異なる。本結果では、特
にその点を考慮しなかったために、結果にばらつきが生
じている。したがって、付着物が均一に付着するか、も
しくは常に同一点に付着物が残留することが必要にな
る。
FIG. 1 shows an example of a water quality evaluation method using a quartz weight sensor according to the present invention. This evaluation device configuration includes a crystal unit 101, electrodes 102 and 103, an oscillator 104, a frequency measuring device 105, and a calculator 106. The operation of this apparatus is as follows. First, the fixed frequency of the crystal unit 101 in a state where nothing is attached to the surface of the electrode 103 is measured by the frequency
05. Thereafter, the sample water 1 is placed on the upper electrode 103 of the quartz oscillator 101 by using the sample tube 107.
08 (a known amount is good if possible) is added dropwise. further,
After the sample water 108 after the dripping is dried, the natural frequency of the quartz oscillator 101 is measured again by the frequency measuring device 105, and the weight is calculated by the calculator 106 from the change amount of the frequency before and after, and the sample water is calculated. Finally, the concentration of impurities in the water can be calculated from the amount of. Using this device,
A known concentration (Na) is placed on a quartz oscillator having a natural frequency of 6 MHz.
FIG. 5 shows the results of measuring the change in frequency before and after the addition of Cl) and a known amount of sample water. Here, the vertical axis represents the frequency change ΔF (Hz), and the horizontal axis represents the weight of NaCl contained in the sample water. As a result, a first-order relationship is established between ΔF and the weight of the attached matter, and it is understood that the amount of impurities in water can be measured by this method. However, the quartz weight sensor greatly varies in sensitivity to frequency change depending on the position of the deposit on the electrode surface. In the present results, the results are varied because no particular consideration is given to this point. Therefore, it is necessary that the deposits adhere uniformly or that the deposits always remain at the same point.

【0013】図2にそのための本発明に係る水質評価装
置に使用する水晶重みセンサーの電極形状の一例を示
す。ここで、本センサー200は水晶振動子201、下
部電極202、上部電極203、配線204より構成さ
れる。本センサー200は、その上部電極表面に細かい
凹凸205を設けており、この凹凸205によって滴下
したサンプル水が凹部に留まり、上部電極203上に均
一に残留物を残すことが可能になる。本実施例では、細
かい凹凸をつけたが、その他の方法としては、電極中央
に凹部を設けることで常に同一場所に残留させることが
可能になる。また、逆に中央に凸部を設けても、サンプ
ル水が凸部に付着しながら乾燥していくことから、最終
的には残留物も凸部近傍に残留させることが可能にな
る。
FIG. 2 shows an example of an electrode shape of a quartz weight sensor used in the water quality evaluation apparatus according to the present invention. Here, the present sensor 200 includes a quartz oscillator 201, a lower electrode 202, an upper electrode 203, and a wiring 204. The present sensor 200 has fine irregularities 205 on the surface of the upper electrode, and the sample water dropped by the irregularities 205 stays in the concave portions, so that the residue can be uniformly left on the upper electrode 203. In this embodiment, fine irregularities are provided, but as another method, a concave portion is provided at the center of the electrode so that the electrode can always remain at the same place. Conversely, even if a convex portion is provided at the center, the sample water is dried while adhering to the convex portion, so that finally, the residue can be left near the convex portion.

【0014】図3も本発明に係る水質評価に用いる水晶
重みセンサー電極形状の一例を示す。ここで、本センサ
ー300は水晶振動子301、下部電極302、上部電
極303、配線305,306より構成される。本セン
サー300は、その上部電極303の上に水分を吸収で
きる吸水性物質304が設置されている。この吸水性物
質304にサンプル水を滴下すると、サンプル水は吸水
性物質304内に均一に吸い込まれ、乾燥後に残る不純
物も均一に吸水性物質304内に残留することになり、
水中の不純物が上部電極303に対して均一に残留する
様になる。この吸水性物質の一例としては、布織布や紙
等が挙げられる。
FIG. 3 also shows an example of the shape of a crystal weight sensor electrode used for water quality evaluation according to the present invention. Here, the sensor 300 includes a quartz oscillator 301, a lower electrode 302, an upper electrode 303, and wirings 305 and 306. In the present sensor 300, a water-absorbing substance 304 capable of absorbing moisture is provided on an upper electrode 303 thereof. When the sample water is dropped onto the water-absorbing substance 304, the sample water is uniformly sucked into the water-absorbing substance 304, and the impurities remaining after drying also uniformly remain in the water-absorbing substance 304.
The impurities in the water remain uniformly on the upper electrode 303. Examples of the water-absorbing substance include woven fabric and paper.

【0015】図4に本発明を用いた水質評価システムの
一例を示す。本システムは水質評価装置400と超純水
装置の生成水配管408より構成され、さらに水質評価
装置は、水晶重みセンサー401、サンプル水滴下系4
02、サンプル水乾燥系403、発振器404、振動数
測定器405と演算器406より構成される。本システ
ムは超純水生成配管408内を流れる超純水を水質評価
装置400のサンプル水導入部409よりサンプル水滴
下系402に供給する。ここで、一定量のサンプル水が
水晶重みセンサー401の電極上に滴下され、サンプル
水乾燥系403よりクリーンな空気できれば高温空気を
吹き付けることによって、サンプル水を乾燥させる。乾
燥後に、水晶重みセンサー401の固有振動数を振動数
測定器405により測定し、滴下前の振動数測定結果か
らの変化量より演算器406によって重量を算出し、サ
ンプル水の量から最終的には水中の不純物濃度を算出
し、モニタリングすることができる。ここで、サンプル
水乾燥系403は高温もしくは常温の空気を吹き付ける
ことで乾燥させる例を挙げたが、他の方法でも特に問題
ない。また、本実施例は超純水製造装置の生成水のモニ
タリングを例に挙げたが、他の液体処理装置からの生成
液中の不純物濃度測定もしくはモニタリングにも適用す
ることが可能である。また、上記水質評価装置において
は、振動子表面の蒸発残留物を除去する機構、例えば電
極表面をブラッシングする機構や超純水等にて洗浄する
機構等を設けると、長期的な使用ができ、オンラインで
の測定が可能になる。
FIG. 4 shows an example of a water quality evaluation system using the present invention. This system includes a water quality evaluation device 400 and a generated water pipe 408 of an ultrapure water device. The water quality evaluation device further includes a crystal weight sensor 401, a sample water dropping system 4
02, a sample water drying system 403, an oscillator 404, a frequency measuring device 405, and a computing device 406. This system supplies ultrapure water flowing in the ultrapure water generation pipe 408 to the sample water dropping system 402 from the sample water introduction unit 409 of the water quality evaluation device 400. Here, a fixed amount of sample water is dropped on the electrode of the quartz weight sensor 401, and the sample water is dried by blowing clean air, if possible, from the sample water drying system 403 if possible. After drying, the natural frequency of the crystal weight sensor 401 is measured by the frequency measuring device 405, the weight is calculated by the calculator 406 from the variation from the frequency measurement result before dropping, and finally the weight is calculated from the amount of the sample water. Can calculate and monitor the concentration of impurities in water. Here, the example in which the sample water drying system 403 is dried by blowing high-temperature or normal-temperature air has been described, but other methods do not pose any problem. In the present embodiment, the monitoring of the generated water of the ultrapure water production apparatus has been described as an example, but the present invention can be applied to the measurement or monitoring of the impurity concentration in the generated liquid from another liquid processing apparatus. Further, in the water quality evaluation device, if a mechanism for removing the evaporation residue on the surface of the vibrator, for example, a mechanism for brushing the electrode surface or a mechanism for cleaning with ultrapure water or the like, can be used for a long time, Online measurement becomes possible.

【0016】[0016]

【発明の効果】本発明によれば、通常の純水ばかりでな
く超純水中に含まれる蒸発残留物をその重量で測定する
ことで、その水質を測定もしくはモニタリングすること
ができる。特に、LSI用の超純水の水質評価法として
は、LSI洗浄ではウエハ上に残る残留物が問題である
ことから、本評価法は非常に有効であると考えられる。
According to the present invention, the water quality can be measured or monitored by measuring the evaporation residue contained in not only ordinary pure water but also ultrapure water by its weight. In particular, as a method for evaluating the quality of ultrapure water for LSIs, residues remaining on wafers in LSI cleaning are problematic, and thus this evaluation method is considered to be very effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水晶重みセンサーによる水質評価
法の一例
FIG. 1 shows an example of a water quality evaluation method using a quartz weight sensor according to the present invention.

【図2】本発明に係る水質評価に用いる水晶重みセンサ
ー電極形状の一例
FIG. 2 shows an example of the shape of a quartz weight sensor electrode used for water quality evaluation according to the present invention.

【図3】本発明に係る水質評価に用いる水晶重みセンサ
ー電極形状の他の一例
FIG. 3 shows another example of the shape of a quartz weight sensor electrode used for water quality evaluation according to the present invention.

【図4】本発明を用いた水質評価システムの一例FIG. 4 shows an example of a water quality evaluation system using the present invention.

【図5】本発明に係る水質評価法の実験結果の一例FIG. 5 shows an example of an experimental result of the water quality evaluation method according to the present invention.

【符号の説明】[Explanation of symbols]

101…水晶振動子 102,103…
電極 104…発振器 105…振動数測
定器 106…演算器
101: quartz oscillator 102, 103 ...
Electrode 104 ... Oscillator 105 ... Frequency measuring device 106 ... Calculator

フロントページの続き (72)発明者 松本隆行 茨城県日立市大みか町七丁目2番1号 株式会社日立製作所エネルギー研究所内 (56)参考文献 ケミカルエンジニアリング、1990年1 月1日発行、第35巻第1号、p.68−72 化学工学、1994年8月5日発行、第58 巻第8号、p.650−651 (58)調査した分野(Int.Cl.7,DB名) G01N 5/00 - 5/04 G01N 33/18 JICSTファイル(JOIS)Continuation of the front page (72) Inventor Takayuki Matsumoto 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Energy Research Laboratory, Hitachi, Ltd. (56) References Chemical Engineering, issued January 1, 1990, volume 35, volume 35 No. 1, p. 68-72 Chemical Engineering, issued August 5, 1994, Vol. 58, No. 8, p. 650-651 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 5/00-5/04 G01N 33/18 JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固有振動数を持つ水晶振動子と電極で構
成される水晶重みセンサーの電極表面にサンプル水を滴
下し、滴下・乾燥前後の水晶重みセンサーの振動数変化
から、サンプル水中に含まれる不純物もしくは全蒸発残
留物の量を測定することを特徴とする水質評価方法。
1. A sample water is dropped on an electrode surface of a crystal weight sensor composed of a crystal oscillator having a natural frequency and an electrode, and is included in the sample water based on a change in the frequency of the crystal weight sensor before and after the dripping and drying. Water quality evaluation method characterized by measuring the amount of impurities or total evaporation residues.
【請求項2】 固定振動数を持つ水晶振動子と電極で構
成される水晶重みセンサーの電極表面にサンプル水を滴
下し、滴下・乾燥前後の水晶重みセンサーの振動数変化
から、サンプル水中に含まれる不純物もしくは全蒸発残
留物の量を測定することを特徴とする水質評価用の水晶
重みセンサーにおいて、その発振周波数と蒸発乾燥後の
付着物重量の間に相関がある様に電極を設けたことを特
徴とする水晶重みセンサー。
2. A sample water is dropped on an electrode surface of a quartz weight sensor composed of a quartz oscillator having a fixed frequency and an electrode, and is included in the sample water based on a change in the frequency of the quartz weight sensor before and after dripping and drying. In the quartz weight sensor for water quality evaluation, which measures the amount of impurities or total evaporation residues, the electrodes are provided so that there is a correlation between the oscillation frequency and the weight of the deposit after evaporation and drying. A quartz weight sensor characterized by the following.
【請求項3】 請求項2の水晶重みセンサーにおいて、
その発振周波数が付着物重量と相関があるようにサンプ
ル水を乾燥させる機構として、電極の中央もしくは表面
全体に凹凸を有していることを特徴とする水晶重みセン
サー。
3. The quartz weight sensor according to claim 2,
A quartz weight sensor comprising a mechanism for drying sample water such that the oscillation frequency is correlated with the weight of the attached matter, wherein the quartz crystal weight sensor has irregularities in the center or on the entire surface of the electrode.
【請求項4】 請求項2の水晶重みセンサーにおいて、
その発振周波数が付着物重量と相関があるようにサンプ
ル水を乾燥させる機構として、電極が吸水性の物質で構
成されるか、もしくは電極表面に吸水性の物質が設置さ
れていることを特徴とする水晶重みセンサー。
4. The quartz weight sensor according to claim 2,
As a mechanism for drying the sample water so that the oscillation frequency is correlated with the weight of the deposit, the electrode is composed of a water-absorbing substance, or a water-absorbing substance is installed on the electrode surface. Quartz weight sensor.
【請求項5】 固有振動数を持つ水晶振動子と電極で構
成される水晶重みセンサー、その振動子を発振させる発
振装置と振動数を測定する測定器、その測定値から計算
により重量を求める演算装置、水晶重みセンサー上にサ
ンプル水を滴下する滴下装置および滴下されたサンプル
水を乾燥させる乾燥装置から構成され、サンプル水の滴
下・乾燥前後における水晶重みセンサーの固有振動数の
変化からサンプル水中の不純物もしくは全蒸発残留物量
を測定することを特徴とする水質評価装置。
5. A quartz weight sensor comprising a quartz oscillator having a natural frequency and electrodes, an oscillator for oscillating the oscillator, and a measuring instrument for measuring the frequency, and an operation for calculating the weight from the measured value. It consists of a device, a dripping device that drops sample water on the quartz weight sensor, and a drying device that dries the sample water that has been dropped. A water quality evaluation device for measuring the amount of impurities or total evaporation residues.
JP34251492A 1992-12-22 1992-12-22 Water quality evaluation method and apparatus Expired - Fee Related JP3178926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34251492A JP3178926B2 (en) 1992-12-22 1992-12-22 Water quality evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34251492A JP3178926B2 (en) 1992-12-22 1992-12-22 Water quality evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JPH06194290A JPH06194290A (en) 1994-07-15
JP3178926B2 true JP3178926B2 (en) 2001-06-25

Family

ID=18354336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34251492A Expired - Fee Related JP3178926B2 (en) 1992-12-22 1992-12-22 Water quality evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP3178926B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572311B2 (en) * 1998-05-19 2004-09-29 独立行政法人物質・材料研究機構 Sea salt particle measuring device
JP3572310B2 (en) * 1998-05-19 2004-09-29 独立行政法人物質・材料研究機構 Method for determining the amount of sea salt particles
JP4232186B2 (en) * 1998-10-23 2009-03-04 栗田工業株式会社 Apparatus and method for measuring dissolved nitrogen concentration in ultrapure water
JP3933340B2 (en) * 1999-03-30 2007-06-20 昇 小山 Multi-channel QCM sensor device
JP4020539B2 (en) * 1999-06-29 2007-12-12 ジーイーヘルスケア バイオサイエンス株式会社 Method for measuring solute concentration in droplets using quartz crystal
AU2001253153A1 (en) 2000-04-05 2001-10-23 The Charles Stark Draper Laboratory, Inc. Apparatus and method for measuring the mass of a substance
US7378025B2 (en) * 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
JP4638281B2 (en) * 2005-05-30 2011-02-23 独立行政法人産業技術総合研究所 Detection sensor, vibrator
US20100119562A1 (en) * 2007-03-21 2010-05-13 Colgate Palmolive Company Structured Personal Care Compositions Comprising A Clay
BRPI0809165A2 (en) * 2008-03-21 2014-09-16 Colgate Palmolive Co METHOD FOR MEASURING WASTE LEFT BY A COMPOSITION ON A SUBSTRATE.
US8015860B2 (en) 2008-03-21 2011-09-13 Colgate-Palmolive Company Method of measuring deposition onto a substrate
KR20120115522A (en) 2009-12-23 2012-10-18 콜게이트-파아므올리브캄파니 Visually patterned and oriented compositions
JP6075002B2 (en) * 2012-10-17 2017-02-08 富士通株式会社 QCM sensor and manufacturing method thereof
JP6330300B2 (en) * 2013-12-02 2018-05-30 富士通株式会社 Corrosion sensor, corrosion sensor manufacturing method, corrosion sensor unit and corrosion monitor system
CN105928820B (en) * 2016-06-15 2019-02-15 济南兰光机电技术有限公司 A kind of rapid evaporation residue system and method
JP6926574B2 (en) * 2017-03-24 2021-08-25 東ソー株式会社 Cleanliness analyzer and analysis method
CN110455664A (en) * 2019-09-20 2019-11-15 浙江晶科能源有限公司 A kind of front electrode of solar battery weight in wet base measuring device and measuring method
KR20220103176A (en) * 2019-12-27 2022-07-21 후지필름 가부시키가이샤 management method, measuring method, measuring device, crystal oscillator sensor, and set

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ケミカルエンジニアリング、1990年1月1日発行、第35巻第1号、p.68−72
化学工学、1994年8月5日発行、第58巻第8号、p.650−651

Also Published As

Publication number Publication date
JPH06194290A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JP3178926B2 (en) Water quality evaluation method and apparatus
US8608858B2 (en) Substrate cleaning apparatus and method for determining timing of replacement of cleaning member
JPH0822972A (en) Process and apparatus for manufacture of semiconductor device
TW201816913A (en) Methods and systems for liquid particle prequalification
JP3723502B2 (en) Cleaning method of polycrystalline silicon for semiconductor
Gettens et al. Quantification of fibrinogen adsorption onto 316L stainless steel
JPH01136339A (en) Cleaning apparatus
JP3572310B2 (en) Method for determining the amount of sea salt particles
JP4505918B2 (en) Water quality evaluation board holding container
JP5707670B2 (en) Water quality evaluation method and apparatus
JP2772361B2 (en) Ultrapure water quality evaluation method
JPH0731939A (en) Method for evaluating washing
JP4524834B2 (en) Water quality evaluation method
JP2906290B2 (en) Method for measuring metal impurities in gas
JPH1092789A (en) Etching speed evaluation method
JP4440356B2 (en) Evaluation method of semiconductor processing jig
KR100872958B1 (en) Method of error detection for analyzing system of wafer defect using copper decoration device
JP3675697B2 (en) Method and apparatus for measuring organic substance concentration in ambient air
JP2708399B2 (en) Method and apparatus for measuring attached matter to be cleaned
Okamura et al. Simultaneous observation of molecular contamination behavior in semiconductor clean room using quartz crystal microbalance
JPS5850306Y2 (en) Water quality measuring device
JPH0978267A (en) Detecting method for end point in cleaning process for thin film forming device with chlorine trifluoride
JP2004233069A (en) Gas analysis method and gas analysis system
JP2979779B2 (en) Etching equipment
KR20040059468A (en) Apparatus for cleaning wafer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees