JP4440356B2 - Evaluation method of semiconductor processing jig - Google Patents

Evaluation method of semiconductor processing jig Download PDF

Info

Publication number
JP4440356B2
JP4440356B2 JP17173298A JP17173298A JP4440356B2 JP 4440356 B2 JP4440356 B2 JP 4440356B2 JP 17173298 A JP17173298 A JP 17173298A JP 17173298 A JP17173298 A JP 17173298A JP 4440356 B2 JP4440356 B2 JP 4440356B2
Authority
JP
Japan
Prior art keywords
semiconductor processing
particles
processing jig
sample
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17173298A
Other languages
Japanese (ja)
Other versions
JP2000012669A (en
Inventor
俊 松田
和禎 近藤
恵美子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP17173298A priority Critical patent/JP4440356B2/en
Publication of JP2000012669A publication Critical patent/JP2000012669A/en
Application granted granted Critical
Publication of JP4440356B2 publication Critical patent/JP4440356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体製造に使用する石英ガラス製の半導体処理用治具から発生するパーティクルの評価方法に関する。
【0002】
【従来の技術】
半導体の高集積化に伴い、微細で高清浄なウエーハ表面を確保するため、ウエーハ表面上のパーティクルの評価が重要となっており、半導体製造工程における炉内雰囲気からのパーティクルの汚染のほか、半導体処理用治具からウエーハに付着するパーティクルを評価することが重要となっている。
そして、従来においては、石英ガラス製半導体用処理治具のパーティクルに関する評価方法としては、半導体処理用治具にウエーハを搭載し、適宜処理を行った後、ウエーハ上に付着したパーティクルをパーティクルアナライザーで直接分析していた。
また、特開平7−183347号のように、治具材料で模擬ウエーハを製造してウエーハと同様に高温処理して影響評価を行っている。
【0003】
【発明が解決しようとする課題】
従来の方法は、高価な測定装置と付帯設備を必要とし、簡便に評価できないという問題があった。本発明の目的は、高価な設備を必要とせず、簡便に石英ガラス製の半導体処理用治具の評価方法を提供することである。
【0004】
【課題を解決するための手段】
従来の石英ガラス製半導体処理用治具、特にウエーハボートは、石英ガラス製の治具の表面に存在する傷等によって自ら破損するのを防止するため、治具表面全体を酸水素炎で焼き仕上げを行っている。しかし、溝の部分については熱によって溝形状の変形や溝の間隔が狂うため、完全に焼き仕上げをおこなえなかった。溝の部分を詳細に観察すると、表面がかなり粗く、研削面のためマイクロクラックが発生している。
【0005】
また、半導体処理用治具の製造工程における無機酸によるエッチング処理後の溝の表面状態を観察したところ、エッチングの度合いがそれぞれに相違していることを発見した。
研削面の表面は微少な凹凸が無数に存在し、この部分にウエーハが搭載されると、点荷重になり微細なガラスからのかけであるパーティクルが発生し、また、ウエーハ表面が凸部で引掻かれ、ウエーハ表面のスクラッチ発生で処理中にパーティクルが発生する。
マイクロクラックが存在すると、研削液が内部に浸透し、研削液に含まれる切粉が残留するが、切粉と研削液は無機酸では除去できず内部に残存してしまい、ウエーハの処理中に切粉がマイクロクラックから出てきてパーティクルの原因となる。
また、マイクロクラックは使用中に応力集中によってクラックが進行し、この際の石英ガラスからの発塵がパーティクルとなる。
【0006】
これらの知見から本発明を見出したものである。
すなわち、本発明は、サンプルの石英ガラスを純水に浸漬し、純水に超音波振動を加え、石英ガラス治具サンプル表面及びマイクロクラック内部に存在するパーティクルを振動により純水中に遊離させ、液中パーティクルカウンターでカウントすることで石英ガラス製半導体用治具を評価するものである。
これにより、半導体処理用治具がウエーハの汚染源となる除去しきれずに残留していたパーティクルの評価をサンプルで行うことができる。
評価の再現性及び信頼性を高めるために、サンプルの浸漬部分の表面積が純水量に対して一定値になるようにする。
【0007】
また、石英ガラス製サンプルを半導体処理用治具と同等な製作工程を経たものとすることでも半導体処理用治具をそのままサンプルとした場合と同様な予測評価を行うことができ、サンプルを半導体処理用治具のその製作工程を代表する一部材としてそのパーティクルを予測評価することもできる。こうすることで、製作工程ごとの半導体処理用治具のパーティクル評価をおこなえ、半導体処理用治具の製造工程のチェックをすることができる。
超音波振動を長時間加えるとキャビテーションによる気泡の影響が出て大きな数値としてカウンターに現れ、また短時間ではパーティクルの遊離が少なく、ブランクとの差が出にくいので、振動を加える時間は、2〜5分が好ましい。
また、振動数は超音波洗浄で多用される24ΚHz程度で出力は600W程度である。
【0008】
純水の比抵抗値が18ΜΩ・cm以上とした超純水を使用すると、純水中のパーティクルの粒子径が0.5μm以下となり、評価サンプルのブランクのパーティクル数を低減させ、再現性を高める上で好ましい。
【0009】
サンプル表面には、室内にサンプルを放置した場合など、塵、埃が再付着する可能性がある。このためブランクのパーティクルを測定する際にはこうした二次的な要因によるものを極力取り除く必要があり、原則として洗浄後、直ちに測定、あるいは清浄な状態で保管することが好ましいが、簡易な方法として、パーティクル測定前に純水洗浄を行うことで塵埃を除去可能であることを確認した。この時の条件としては比抵抗値2ΜΩ・cm以上の通常の純水洗浄で充分であることが判明したが、60℃以上では水中のパーティクルの遊動が大きくなるせいか再付着を増加させ除去効果を低減させることとなるので、予備洗浄としては60℃未満の温度とすることがよい。この場合の洗浄は、室内などから二次的に再付着したものを除くためだけなので、超音波洗浄のような強制的な洗浄は決して行わず、純水洗浄のみで再付着前の状態へ戻すこととなる。
【0010】
【発明の実施の形態】
実際の評価例を実施例で示す。
例1
純水をブランクとし、対象を半導体ウエーハボートの研削後の溝棒をサンプルとし、パーティクルを評価した。
図1に概要を示す。
定在波を弱めて超音波を均一にするため、超音波槽4内にステンレスワイヤの籠7を設置した。このステンレスワイヤ籠7内に純水を満たしたビーカー5をセットした。
サンプル1をスタンド2からステンレスワイヤ3で吊るし、ビーカー5内の純水6に浸漬した。サンプルの浸漬部分の表面積が純水に対して一定値となるようにするため、ビーカーに目盛を施しておき、サンプルを浸漬して上昇した水面の目盛を読み、水面上昇量が所定値になるようにサンプルを純水以外とは無接触の状態で浸漬する。
または、サンプル自体に浸漬標準線を施しておき、サンプルを浸漬標準線より上方でステンレスワイヤで吊るして標準線まで純水中に浸漬する。
このようにして、他の測定サンプルとの整合性を保つようにして比較し、評価の再現性と信頼性を高める。
また、ビーカー5から液中パーティクルカウンター(図示しない)へ試料を導くチューブ8を配設した。
24KHzの超音波をビーカー5を介して純水に5分間加え、測定容量100ml/回/分で連続して3回、測定範囲として0.1〜0.5μmと0.5μm以上を測定した。
測定結果を表1に示す。
0.5μm以上の粒径ではキャビテーションの影響も少なく、サンプルから遊離したパーティクルをカウントすることが可能である。
【0011】
【表1】

Figure 0004440356
【0012】
例2
ウエーハボートの製造工程ごとにサンプル溝棒のパーティクル評価を実施した結果を表2に示す。工程が進むごとの差が確認できる。
【0013】
【表2】
Figure 0004440356
【0014】
【発明の効果】
本発明は、高価な設備を使用せず、簡単な装置と液中パーティクルカウンターを使用して半導体処理用治具の研削工程のチェックをすることができる。
【図面の簡単な説明】
【図1】 パーティクル測定説明図
【符号の説明】
1 サンプル
4 超音波槽
6 純水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating particles generated from a semiconductor processing jig made of quartz glass used in semiconductor manufacturing.
[0002]
[Prior art]
With the high integration of semiconductors, it is important to evaluate the particles on the wafer surface in order to ensure a fine and clean wafer surface. In addition to particle contamination from the furnace atmosphere in the semiconductor manufacturing process, It is important to evaluate particles adhering to the wafer from the processing jig.
Conventionally, as a method for evaluating particles of a quartz glass semiconductor processing jig, a wafer is mounted on a semiconductor processing jig, and after appropriate processing, particles adhering to the wafer are removed with a particle analyzer. I was analyzing directly.
Further, as disclosed in JP-A-7-183347, a simulated wafer is manufactured from a jig material and subjected to high temperature treatment in the same manner as the wafer to evaluate the influence.
[0003]
[Problems to be solved by the invention]
The conventional method requires an expensive measuring device and incidental equipment, and has a problem that it cannot be easily evaluated. An object of the present invention is to provide a method for evaluating a semiconductor processing jig made of quartz glass easily without requiring expensive equipment.
[0004]
[Means for Solving the Problems]
Conventional quartz glass semiconductor processing jigs, especially wafer boats, are baked and finished with an oxyhydrogen flame to prevent them from being damaged by scratches on the surface of quartz glass jigs. It is carried out. However, since the groove portion was deformed by the heat and the groove interval was distorted by the heat, it could not be completely baked. When the groove portion is observed in detail, the surface is considerably rough, and microcracks are generated due to the ground surface.
[0005]
Moreover, when the surface state of the groove | channel after the etching process by the inorganic acid in the manufacturing process of the jig | tool for semiconductor processing was observed, it discovered that the degree of etching was different in each.
The surface of the grinding surface has countless minute irregularities, and when a wafer is mounted on this surface, particles that become point loads are generated from the fine glass, and the wafer surface is drawn by convex portions. Particles are generated during processing due to scratches on the wafer surface.
When microcracks exist, the grinding fluid penetrates into the interior, and chips contained in the grinding fluid remain, but the chips and grinding fluid cannot be removed by the inorganic acid and remain inside, and during the processing of the wafer. Chips come out of the microcracks and cause particles.
Microcracks are cracked by stress concentration during use, and dust generated from quartz glass at this time becomes particles.
[0006]
The present invention has been found from these findings.
That is, the present invention is to immerse the sample quartz glass in pure water, apply ultrasonic vibration to the pure water, release the particles present on the quartz glass jig sample surface and inside the microcrack into the pure water by vibration, The quartz glass semiconductor jig is evaluated by counting with an in-liquid particle counter.
This makes it possible to evaluate the particles that remain without being completely removed by the semiconductor processing jig, which becomes a contamination source of the wafer.
In order to improve the reproducibility and reliability of the evaluation, the surface area of the immersed portion of the sample is set to a constant value with respect to the amount of pure water.
[0007]
In addition, by making a quartz glass sample through the same manufacturing process as a semiconductor processing jig, it is possible to perform the same predictive evaluation as when the semiconductor processing jig is used as it is. The particles can be predicted and evaluated as one member representing the manufacturing process of the jig. By carrying out like this, the particle evaluation of the semiconductor processing jig for every manufacturing process can be performed, and the manufacturing process of the semiconductor processing jig can be checked.
When ultrasonic vibration is applied for a long time, the effect of bubbles due to cavitation appears, and it appears on the counter as a large numerical value. In addition, the release of particles is small in a short time and the difference from the blank is difficult to occur. 5 minutes is preferred.
The frequency is about 24 Hz, which is frequently used in ultrasonic cleaning, and the output is about 600W.
[0008]
When ultrapure water with a specific resistance value of 18 Ω · cm or more is used, the particle size of particles in pure water is 0.5 μm or less, reducing the number of blank particles in the evaluation sample and improving reproducibility. Preferred above.
[0009]
There is a possibility that dust and dirt will re-attach to the sample surface when the sample is left in the room. For this reason, when measuring blank particles, it is necessary to remove these secondary factors as much as possible. In principle, it is preferable to measure immediately after washing or store in a clean state, but as a simple method It was confirmed that dust could be removed by washing with pure water before measuring the particles. As a condition at this time, it was found that ordinary pure water cleaning with a specific resistance value of 2 Ω · cm or more was sufficient, but at 60 ° C or more, the movement of particles in water increases, so the reattachment increases and the removal effect Therefore, the preliminary cleaning is preferably performed at a temperature of less than 60 ° C. Since cleaning in this case is only to remove secondary re-adhesion from inside the room etc., forced cleaning such as ultrasonic cleaning is never performed, and only the pure water cleaning is used to return to the state before re-adhesion. It will be.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Examples of actual evaluation are shown in the examples.
Example 1
Particles were evaluated by using pure water as a blank and using a groove rod after grinding of a semiconductor wafer boat as a sample.
An overview is shown in FIG.
In order to weaken the standing wave and make the ultrasonic wave uniform, a stainless wire rod 7 was installed in the ultrasonic tank 4. A beaker 5 filled with pure water was set in the stainless wire rod 7.
Sample 1 was hung from stand 2 with stainless steel wire 3 and immersed in pure water 6 in beaker 5. In order to keep the surface area of the immersed part of the sample to a constant value with respect to pure water, the beaker is calibrated, the scale of the water surface that has risen when the sample is immersed is read, and the amount of increase in the water level reaches a predetermined value. Thus, the sample is immersed in a non-contact state except for pure water.
Alternatively, an immersion standard line is applied to the sample itself, and the sample is suspended with a stainless steel wire above the immersion standard line and immersed in pure water up to the standard line.
In this way, comparison is made while maintaining consistency with other measurement samples, and the reproducibility and reliability of evaluation are improved.
A tube 8 for guiding the sample from the beaker 5 to a submerged particle counter (not shown) was disposed.
Ultrasonic waves of 24 KHz were added to pure water for 5 minutes through the beaker 5, and the measurement range of 0.1 to 0.5 μm and 0.5 μm or more were measured three times continuously at a measurement capacity of 100 ml / time / minute.
The measurement results are shown in Table 1.
When the particle diameter is 0.5 μm or more, there is little influence of cavitation, and particles released from the sample can be counted.
[0011]
[Table 1]
Figure 0004440356
[0012]
Example 2
Table 2 shows the results of the particle evaluation of the sample groove rod for each wafer boat manufacturing process. Differences as the process progresses can be confirmed.
[0013]
[Table 2]
Figure 0004440356
[0014]
【The invention's effect】
The present invention can check a grinding process of a semiconductor processing jig using a simple apparatus and a submerged particle counter without using expensive equipment.
[Brief description of the drawings]
[Fig. 1] Particle measurement explanatory diagram [Explanation of symbols]
1 Sample 4 Ultrasonic tank 6 Pure water

Claims (1)

半導体処理用治具を構成する石英ガラスと同様の研削処理をおこなった石英ガラスサンプルを60℃未満で比抵抗値2ΜΩ・cm以上の純水で洗浄前処理し、更に、比抵抗値が18ΜΩ・cm以上である超純水中に浸漬し、超純水に超音波振動を2〜5分間加え、研削処理によって生成されたパーティクルを遊離させ、このパーティクルをカウントする半導体処理用治具の評価方法。A quartz glass sample that has been ground in the same manner as the quartz glass that forms the semiconductor processing jig is pre-cleaned with pure water with a specific resistance of 2ΜΩ · cm or higher at less than 60 ° C, and the specific resistance is 18ΜΩ · A method for evaluating a semiconductor processing jig, which is immersed in ultrapure water having a size of cm or more, ultrasonic waves are applied to the ultrapure water for 2 to 5 minutes, particles generated by the grinding process are released, and the particles are counted. .
JP17173298A 1998-06-18 1998-06-18 Evaluation method of semiconductor processing jig Expired - Lifetime JP4440356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17173298A JP4440356B2 (en) 1998-06-18 1998-06-18 Evaluation method of semiconductor processing jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17173298A JP4440356B2 (en) 1998-06-18 1998-06-18 Evaluation method of semiconductor processing jig

Publications (2)

Publication Number Publication Date
JP2000012669A JP2000012669A (en) 2000-01-14
JP4440356B2 true JP4440356B2 (en) 2010-03-24

Family

ID=15928664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17173298A Expired - Lifetime JP4440356B2 (en) 1998-06-18 1998-06-18 Evaluation method of semiconductor processing jig

Country Status (1)

Country Link
JP (1) JP4440356B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208109A (en) * 2010-03-08 2011-10-20 Asahi Kasei Chemicals Corp Method for producing polyorganosiloxane
CN101793667A (en) * 2010-03-24 2010-08-04 天津三星电机有限公司 Method for indirectly testing fume amount of dust-free appliance by adopting laser particle counter

Also Published As

Publication number Publication date
JP2000012669A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
CN108535174A (en) Optical glass sub-surface damage depth measurement method based on chemical attack
JP4440356B2 (en) Evaluation method of semiconductor processing jig
JP5219334B2 (en) Semiconductor substrate manufacturing method and quality evaluation method
WO2022237577A1 (en) Particle cleanliness detection method
KR102566201B1 (en) Semiconductor wafer evaluation method and manufacturing method, and semiconductor wafer manufacturing process management method
TW396477B (en) Conformity evaluating method of semiconductor wafer polishing process using silicon wafer
JP2001276760A (en) Method for evaluating cleanness component and apparatus therefor and cleaning method
CN113311057A (en) Method for testing trace pollution on surface of semiconductor manufacturing equipment component
KR20010071617A (en) Process for mapping metal contaminant concentration on a silicon wafer surface
JPH11195685A (en) Pattern defect inspection system and method of inspecting pattern defect
JP7054995B2 (en) Evaluation method of ultrapure water, evaluation method of membrane module for ultrapure water production, and evaluation method of ion exchange resin for ultrapure water production
JP2760735B2 (en) Particle inspection equipment for semiconductor wafers
Sasaki et al. Evaluation of particles on a Si wafer before and after cleaning using a new laser particle counter
KR100931788B1 (en) Compliance tester for cleaning parts for substrate cleaning equipment
KR0180799B1 (en) Internal defect measuring method of silicon wafer
JP2000510290A (en) Standard for calibration and checking of surface inspection equipment and method for the production of this standard
JP7243643B2 (en) Evaluation method of chemical treatment liquid
JP2000114333A (en) Evaluation method for silicon wafer surface minute defects
JPH02243959A (en) Method for evaluating quality of ultra pure water
FI58217C (en) FOERFARANDE FOER BESTAEMNING AV EGENSKAPER HOS ETT METALLFOEREMAOL GENOM MAETNING AV POTENTIALSKILLNADEN MELLAN DETTA FOEREMAOL OCH ETT ANNAT METALLFOEREMAOL SAMT EN PASTA FOER UTFOERING AV FOERFARANDET
JPH03252151A (en) Evaluation of semiconductor wafer
JP2010056102A (en) Method of evaluating metal contamination of abrasive cloth
JP2002200463A (en) Method for cleaning fluororesin-made instrument
KR100224498B1 (en) Cleaning method of silicon wafer
JPH0897263A (en) Contamination degree evaluating method in semiconductor device manufacturing step

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080704

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term