JPH1093117A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH1093117A
JPH1093117A JP8240731A JP24073196A JPH1093117A JP H1093117 A JPH1093117 A JP H1093117A JP 8240731 A JP8240731 A JP 8240731A JP 24073196 A JP24073196 A JP 24073196A JP H1093117 A JPH1093117 A JP H1093117A
Authority
JP
Japan
Prior art keywords
collecting electrode
light
photoelectric conversion
incident
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8240731A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sano
芳明 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP8240731A priority Critical patent/JPH1093117A/en
Publication of JPH1093117A publication Critical patent/JPH1093117A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high photoelectric conversion factor by forming a side surface of a collecting electrode of a photoelectric conversion device with a stripe-like collecting electrode at a photosensitive surface of a photoelectric conversion device as a tilting surface which reflects incident light toward a photosensitive surface. SOLUTION: Side surfaces 22a and 22b of a collecting electrode 22 are formed as tilting surface, which reflected incident light toward a photosensitive surface, and a cross sectional contour of the collecting electrode 22 inside a plane at right angles to a stripe direction is made into a trapezoid. A part of incident light is incident on the tilting surfaces 22a, 22b of the trapezoid collecting electrode 22 and reflected by the tilting surfaces 22a, 22b, and proceeds straight toward a photosensitive surface 15c; and reflection light is injected into a photosensitive surface 15c. A part of incident light is incident on the photosensitive surface 15c of a substrate 15 directly, without passing through the collecting electrode 22. Since a high light intensity region 15b, wherein reflection incident light and direct incident light overlap each other is formed in the substrate 15 near a bottom part of the tilting surfaces 22a, 22b of the collecting electrode 22, a high photoelectric conversion factor can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光電変換装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device.

【0002】[0002]

【従来の技術】光電変換装置として、例えば文献I(P
hysics of Semiconductor D
evices−2nd Edition 1981,p
800)に開示されているような太陽電池素子がある。
図2の(A)及び(B)を参照して、従来の太陽電池素
子の構造及び動作につき説明する。図2の(A)は、太
陽電池素子の平面図、図2の(B)は、(A)のX−X
線に沿って切断した位置での切口断面を示す。
2. Description of the Related Art As a photoelectric conversion device, for example, Document I (P.
physics of Semiconductor D
devices-2nd Edition 1981, p.
800).
The structure and operation of a conventional solar cell element will be described with reference to FIGS. FIG. 2A is a plan view of the solar cell element, and FIG. 2B is an XX of FIG.
3 shows a cut section at a position cut along the line.

【0003】太陽電池素子10は、p及びn型シリコン
領域(11及び12)を有する半導体基板15と、この
半導体基板15の上面、すなわち受光面15cに設けら
れたキャリアを収集する収集電極(上部電極)16及び
反射防止膜18と、基板15の裏面に設けられた裏面電
極20とにより構成されている。そして、基板15中に
光起電力を発生させるp−n接合部14を設けてある。
The solar cell element 10 includes a semiconductor substrate 15 having p-type and n-type silicon regions (11 and 12), and a collecting electrode (upper part) for collecting carriers provided on the upper surface of the semiconductor substrate 15, that is, on the light receiving surface 15c. (Electrode) 16, an antireflection film 18, and a back surface electrode 20 provided on the back surface of the substrate 15. A pn junction 14 for generating photovoltaic power is provided in the substrate 15.

【0004】次に、太陽電池素子10の動作原理につ
き、以下に述べる。太陽電池素子の10の受光面(ここ
では反射防止膜18の面)に光が入射すると、半導体基
板15の内部に光キャリアーが発生する。この光キャリ
アーによりn型シリコン領域12からp型シリコン領域
11へ電子及び正孔の移動が起こり基板15の内部に電
流が流れる。このため、光によって生成された電子と正
孔対はp−n接合の界面電場によって互いに左右にドリ
フトして、キャリアが上部及び裏面電極に収集されて光
起電力が発生する。
Next, the operation principle of the solar cell element 10 will be described below. When light is incident on the light receiving surface (here, the surface of the antireflection film 18) of the solar cell element 10, photocarriers are generated inside the semiconductor substrate 15. Due to the photocarriers, electrons and holes move from the n-type silicon region 12 to the p-type silicon region 11 and a current flows inside the substrate 15. For this reason, the electrons and hole pairs generated by the light drift right and left with respect to each other due to the interface electric field of the pn junction, and the carriers are collected at the upper and lower electrodes to generate photovoltaic power.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
太陽電池素子10は、以下に述べる問題がある。従来の
太陽電池素子10では、半導体基板15の内部で発生し
た光キャリアを受光面に効率良く集めるため、収集電極
の形状を櫛歯状にしてある(図2の(A))。しかも、
従来の収集電極16の断面形状は四角形をしている。な
お、図2の(C)は、図2の(B)の収集電極の断面形
状の一部を拡大して示した部分的省略拡大図である。
However, the conventional solar cell element 10 has the following problems. In the conventional solar cell element 10, the shape of the collecting electrode is comb-shaped in order to efficiently collect the photocarriers generated inside the semiconductor substrate 15 on the light receiving surface (FIG. 2A). Moreover,
The cross-sectional shape of the conventional collecting electrode 16 is quadrangular. FIG. 2C is a partially omitted enlarged view showing a part of the cross-sectional shape of the collecting electrode of FIG. 2B in an enlarged manner.

【0006】また、従来の太陽電池素子10の受光面に
対して上部から光を入射させた場合、収集電極16は入
射光を透過しないため、基板15中に収集電極16によ
って形成された陰領域、すなわち収集電極により遮蔽さ
れた陰領域(陰形成領域ともいう)15aが形成され
る。この陰形成領域15aは、太陽電池素子の受光面積
を減少させることになるので、光電変換効率も減少して
好ましくない。
When light is incident on the light-receiving surface of the conventional solar cell element 10 from above, the collecting electrode 16 does not transmit the incident light, so that the shadow region formed by the collecting electrode 16 in the substrate 15 is formed. That is, a shadow region (also referred to as a shadow forming region) 15a shielded by the collecting electrode is formed. Since the shade forming region 15a reduces the light receiving area of the solar cell element, the photoelectric conversion efficiency also decreases, which is not preferable.

【0007】太陽電池素子10の光電変換効率(光電変
換効率は、入力となる太陽輻射光エネルギーと、太陽電
池の端子から出てくる電気出力エネルギーとの比をパー
セントで表した値をいう)を高めるには、収集電極16
の櫛歯16a間の間隔(L)を小さくし、収集電極16
の櫛歯幅(W)を大きくして収集電極16の抵抗値を下
げる必要がある。しかし、太陽電池素子10の収集電極
の櫛歯幅(W)を大きくすると、受光面積が減少して、
収集電極16による陰の領域(陰形成領域)15aが増
大するため、光電変換効率が低下してしまう。
[0007] The photoelectric conversion efficiency of the solar cell element 10 (the photoelectric conversion efficiency refers to a value representing the ratio of the input solar radiation energy to the electric output energy output from the terminals of the solar cell in percent). To increase, the collection electrode 16
The distance (L) between the comb teeth 16a of the
It is necessary to reduce the resistance value of the collecting electrode 16 by increasing the comb tooth width (W). However, when the comb tooth width (W) of the collecting electrode of the solar cell element 10 is increased, the light receiving area decreases,
Since the shadow area (shade forming area) 15a formed by the collecting electrode 16 increases, the photoelectric conversion efficiency decreases.

【0008】図5は、収集電極の櫛歯幅と変換損失との
関係を説明するための図である。図5から理解できるよ
うに、櫛歯幅Wを大きくすると、収集電極の断面積が大
きくなるため、電極の抵抗値が小さくなり、変換損失は
減少する(図5の曲線Iの実線)。
FIG. 5 is a diagram for explaining the relationship between the comb tooth width of the collecting electrode and the conversion loss. As can be understood from FIG. 5, when the comb tooth width W is increased, the cross-sectional area of the collecting electrode is increased, so that the resistance value of the electrode is reduced and the conversion loss is reduced (the solid line of the curve I in FIG. 5).

【0009】また、櫛歯幅Wを大きくすると、収集電極
16による陰形成領域15aが増大するため、変換損失
が増加する(図5の曲線IIの点線)。したがって、収
集電極の抵抗値と陰形成領域とのトータル(加算値)を
見ると、図5の曲線IIIに示すように、櫛歯幅を大き
くした場合、変換損失が一旦抵抗値の影響を受けて小さ
くなるが、その後、変換損失は次第に増大する。
When the width W of the comb teeth is increased, the shade forming area 15a formed by the collecting electrode 16 increases, so that the conversion loss increases (the dotted line of the curve II in FIG. 5). Therefore, looking at the total (added value) of the resistance value of the collecting electrode and the shadow forming region, as shown by the curve III in FIG. 5, when the comb tooth width is increased, the conversion loss is once affected by the resistance value. However, the conversion loss gradually increases thereafter.

【0010】このため、従来、変換損失を最小にするた
めの工夫として、収集電極16の膜厚を厚くして電極の
断面積を大きくすることにより、抵抗値を小さくすると
か、収集電極16の櫛歯幅Wを小さくして受光面積を広
げるとかの方法が取られていた。
For this reason, conventionally, as a measure for minimizing the conversion loss, the resistance value is reduced by increasing the film thickness of the collecting electrode 16 and increasing the cross-sectional area of the electrode. A method of reducing the comb tooth width W to increase the light receiving area has been adopted.

【0011】しかし、収集電極16の櫛歯幅Wを最小に
したり、収集電極16の膜厚を厚くしたりする方法は、
おのずから限界があり、従来は十分に光電変換効率の高
い太陽電池素子を得ることができなかった。
However, the method of minimizing the comb tooth width W of the collecting electrode 16 or increasing the thickness of the collecting electrode 16 is as follows.
There is naturally a limit, and a solar cell element with sufficiently high photoelectric conversion efficiency could not be obtained conventionally.

【0012】そこで、受光面積を減少させずに高い光電
変換効率を得ることが可能な光電変換装置の実現が望ま
れていた。
Therefore, it has been desired to realize a photoelectric conversion device capable of obtaining high photoelectric conversion efficiency without reducing the light receiving area.

【0013】[0013]

【課題を解決するための手段】このため、この発明の光
電変換装置によれば、光電変換装置の受光面にストライ
プ状の収集電極を具えてなる当該光電変換装置におい
て、収集電極の側面を、入射光を受光面に向けて反射さ
せる傾斜面として形成してなることを特徴とする。
Therefore, according to the photoelectric conversion device of the present invention, in a photoelectric conversion device having a stripe-shaped collection electrode on a light receiving surface of the photoelectric conversion device, the side face of the collection electrode is It is characterized in that it is formed as an inclined surface that reflects incident light toward the light receiving surface.

【0014】この発明では、収集電極の側面に、入射光
を反射させる傾斜面を形成してあるため、受光面の上部
から傾斜面に入射された光は、この傾斜面により反射さ
れ、反射された光は所定の角度で受光面内に透過する。
したがって、光電変換装置の受光面には、傾斜面から反
射した反射入射光と直接受光面に入射される直接入射光
とが重なり合って高光強度領域が形成される。したがっ
て、傾斜面から反射して受光面に入射した光強度の増加
分が、従来に比べ、受光面での光強度を増大させるので
傾斜面を有しない従来の収集電極を採用した光電変換装
置に比べて光電変換効率が増大する。
In the present invention, since the inclined surface for reflecting the incident light is formed on the side surface of the collecting electrode, the light incident on the inclined surface from above the light receiving surface is reflected and reflected by the inclined surface. The transmitted light passes through the light receiving surface at a predetermined angle.
Therefore, on the light receiving surface of the photoelectric conversion device, a high light intensity area is formed by overlapping the reflected incident light reflected from the inclined surface and the direct incident light directly incident on the light receiving surface. Therefore, an increase in the light intensity reflected from the inclined surface and incident on the light receiving surface increases the light intensity on the light receiving surface as compared with the related art, so that a photoelectric conversion device employing a conventional collecting electrode having no inclined surface can be used. Compared with this, the photoelectric conversion efficiency increases.

【0015】また、この発明では、好ましくは収集電極
の、ストライプ方向に対して直交する面内における断面
形状を台形又は三角形とするのが良い。
In the present invention, preferably, the cross-sectional shape of the collecting electrode in a plane perpendicular to the stripe direction is trapezoidal or triangular.

【0016】このように、収集電極の断面形状を台形又
は三角形にすることにより、収集電極の側面を、傾斜面
とすることができるので、この傾斜面に入射した入射光
は、反射されて受光面に透過して高光強度領域を形成す
ることができる。
As described above, by making the cross-sectional shape of the collecting electrode trapezoidal or triangular, the side surface of the collecting electrode can be an inclined surface, so that the incident light incident on the inclined surface is reflected and received. A high light intensity region can be formed by transmitting through the surface.

【0017】また、この発明では、好ましくは光電変換
装置の受光面に対する法線と傾斜面との傾斜角度を5〜
35度の角度範囲とするのが好適である。
In the present invention, the inclination angle between the normal to the light receiving surface of the photoelectric conversion device and the inclined surface is preferably 5 to 5.
Preferably, the angle range is 35 degrees.

【0018】このような傾斜角度を5〜35度に設定す
ることにより、傾斜面に入射する入射光を受光面に向け
て効率よく反射させることができる。このため、収集電
極によって光電変換装置の受光面に形成される陰形成領
域を保障する効果がある。
By setting the inclination angle to 5 to 35 degrees, the incident light incident on the inclined surface can be efficiently reflected toward the light receiving surface. For this reason, there is an effect of ensuring a shadow forming region formed on the light receiving surface of the photoelectric conversion device by the collecting electrode.

【0019】また、この発明では、好ましくは収集電極
の形状を櫛歯状とするのが良い。櫛歯状の収集電極形状
にすることにより、櫛歯同士の間隔を小さくして光電変
換装置に生成するキャリアを効率良く収集電極に収集す
ることができる。
In the present invention, it is preferable that the shape of the collecting electrode is comb-shaped. By making the shape of the comb-shaped collecting electrode, the spacing between the comb teeth can be reduced and the carrier generated in the photoelectric conversion device can be efficiently collected by the collecting electrode.

【0020】[0020]

【発明の実施の形態】以下、図を参照して、この発明の
光電変換装置、特に太陽電池素子の実施の形態例につき
説明する。なお、図1、図2及び図4は、この発明が理
解できる程度に各構成成分の形状、大きさ及び配置関係
を概略的に示してあるにすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of a photoelectric conversion device of the present invention, in particular, a solar cell element will be described below. FIGS. 1, 2 and 4 merely show the shapes, sizes and arrangements of the components so that the present invention can be understood.

【0021】この発明の太陽電池素子10は、収集電極
の構造以外、既に説明した従来の構造と同様な構造であ
るため、この発明では、特に収集電極に注目してその構
造を詳細に説明する。
Since the solar cell element 10 of the present invention has the same structure as the above-described conventional structure except for the structure of the collecting electrode, the structure of the present invention will be described in detail focusing on the collecting electrode. .

【0022】[第1の実施の形態]図1の(A)を参照
して、この発明の収集電極の第1の実施の形態につき説
明する。なお、図1の(A)は、太陽電池素子の受光面
上に形成されている収集電極の櫛歯の方向に対して直交
する面内に切断した位置での切口断面を示す。
[First Embodiment] A first embodiment of the collecting electrode of the present invention will be described with reference to FIG. FIG. 1A shows a cross-sectional view of a position cut along a plane orthogonal to the direction of the comb teeth of the collecting electrode formed on the light receiving surface of the solar cell element.

【0023】この発明では、収集電極22の側面22a
及び22bを、入射光を受光面に向けて反射させる傾斜
面として形成してある。そして、第1の実施の形態で
は、収集電極22の、ストライプ方向に対して直交する
面内における断面形状を台形としてある(図1の
(A))。ここでは、断面形状が台形の収集電極を台形
型の収集電極22と称する。
In the present invention, the side surface 22a of the collecting electrode 22
And 22b are formed as inclined surfaces for reflecting the incident light toward the light receiving surface. In the first embodiment, the cross-sectional shape of the collector electrode 22 in a plane perpendicular to the stripe direction is a trapezoid (FIG. 1A). Here, a trapezoidal collector electrode having a trapezoidal cross section is referred to as a trapezoidal collector electrode 22.

【0024】次に、図1の(A)を参照して、太陽電池
素子の受光面に入射光を照射させたときの光の挙動につ
き説明する。
Next, with reference to FIG. 1A, the behavior of light when the light receiving surface of the solar cell element is irradiated with incident light will be described.

【0025】台形型の収集電極22を有する太陽電池の
受光面の上部から光が入射した場合、収集電極22の下
側の基板15には、従来と同様な収集電極22による陰
形成領域15aが形成される。
When light is incident from above the light receiving surface of a solar cell having a trapezoidal collecting electrode 22, the substrate 15 below the collecting electrode 22 has a shadow forming region 15a formed by the collecting electrode 22 as in the prior art. It is formed.

【0026】また、入射光の一部は、台形型の収集電極
22の傾斜面22a及び22bに入射して、傾斜面22
a及び22bに反射され、受光面15cに向かって直進
する。その後、反射光は受光面15c内に入射される。
ここでは、傾斜面22a及び22bに反射して受光面1
5c内に入射した入射光を反射入射光と称する。
A part of the incident light is incident on the inclined surfaces 22a and 22b of the trapezoidal collecting electrode 22, and the inclined surface 22a
a and 22b, and go straight toward the light receiving surface 15c. Thereafter, the reflected light enters the light receiving surface 15c.
Here, the light receiving surface 1 is reflected by the inclined surfaces 22a and 22b.
The incident light that has entered the inside 5c is referred to as reflected incident light.

【0027】一方、図1の(A)の構造体に入射した入
射光の一部は、台形型の収集電極22を経ずに、直接基
板15の受光面15cに入射する。ここでは、受光面1
5cに直接入射する入射光を直接入射光と称する。この
ため、収集電極の傾斜面22a,22bの裾部の近傍の
基板15中には、反射入射光と直接入射光とが重なり合
った高光強度領域15bが形成される(図1の
(A))。
On the other hand, a part of the incident light that has entered the structure shown in FIG. 1A directly enters the light receiving surface 15 c of the substrate 15 without passing through the trapezoidal collecting electrode 22. Here, the light receiving surface 1
The incident light directly incident on 5c is referred to as direct incident light. For this reason, a high light intensity region 15b in which the reflected incident light and the direct incident light overlap each other is formed in the substrate 15 near the skirts of the inclined surfaces 22a and 22b of the collecting electrodes (FIG. 1A). .

【0028】次に、図3の(A)及び(B)を参照し
て、平坦な面に光を入射し、この入射光の角度を変えた
ときの光電力の反射係数の依存性につき説明する。な
お、図3の(A)は、入射角度と光電力の反射係数の関
係を計算式により算出してプロットした図であり、横軸
に入射光の角度(度)を取り、縦軸に光電力の反射係数
(任意定数)を取って示す。また、図3の(B)は、入
射光の電界、入射角度θi、屈折光の電界、及び屈折角
度θt の関係を説明するための図である。
Next, with reference to FIGS. 3A and 3B, a description will be given of the dependency of the reflection coefficient of the optical power when light is incident on a flat surface and the angle of the incident light is changed. I do. FIG. 3A is a diagram in which the relationship between the incident angle and the reflection coefficient of optical power is calculated and plotted using a calculation formula. The horizontal axis represents the angle (degree) of the incident light, and the vertical axis represents the light. The power reflection coefficient (arbitrary constant) is shown. Also, (B) in FIG. 3, the electric field of the incident light is a diagram for the incident angle theta i, electric field of refracted light, and the relationship between the refractive angle theta t be described.

【0029】この発明では、図3の(A)を作成するた
め、まず、図3の(B)を参照して、計算式より光反射
係数を求める。
In the present invention, in order to create FIG. 3A, first, the light reflection coefficient is obtained from a calculation formula with reference to FIG. 3B.

【0030】図3の(B)から理解できるように、屈折
率n2 の基板(例えばGaAs基板)に、入射光の電界
i を法線NN’に対しθi の角度で入射させた場合、
入射光の電界Ei は、GaAs基板の表面に反射され
て、反射光の電界Er とGaAs基板に透過して直進す
る透過光の電界Et とに分かれる。
[0030] As can be understood from FIG. 3 (B), a substrate of refractive index n 2 (for example, GaAs substrate), when is incident at an angle theta i field E i of the incident light to the normal NN ' ,
Electric field E i of the incident light is reflected on the surface of the GaAs substrate, divided into an electric field E t transmitted light straight passes through the electric field E r and the GaAs substrate of the reflected light.

【0031】このとき、光反射係数γE は、(1)式で
表される。
At this time, the light reflection coefficient γ E is expressed by equation (1).

【0032】 γE =Er /Ei =(n1 cosθi −n2 cosθt )/(n1 cosθi +n2 cos θt )・・・(1) ただし、Ei は入射光の電界、Er は反射光の電界、n
1 は空気の屈折率(n1 =1)、n2 はGaAs基板の
屈折率、θi は入射光の入射角度、θt は透過光の屈折
角度とする。
Γ E = E r / E i = (n 1 cos θ i −n 2 cos θ t ) / (n 1 cos θ i + n 2 cos θ t ) (1) where E i is the electric field of the incident light. , Er is the electric field of the reflected light, n
1 is the refractive index of air (n 1 = 1), n 2 is the refractive index of the GaAs substrate, θ i is the incident angle of incident light, and θ t is the refraction angle of transmitted light.

【0033】(1)式において、n1 (空気の屈折率は
1)およびn2 (GaAsの屈折率)が既知であり、入
射角度θi がわかれば、スネルの屈折の法則により屈折
角度θt が求まる。このようにして求めたn1 、n2
cosθi 及びcosθt を(1)式の右辺の項に代入
して、光反射係数γE が求まる。
In the equation (1), n 1 (the refractive index of air is 1) and n 2 (the refractive index of GaAs) are known, and if the incident angle θ i is known, the refraction angle θ is obtained according to Snell's law of refraction. t is found. N 1 , n 2 ,
By substituting cos θ i and cos θ t into the terms on the right side of equation (1), the light reflection coefficient γ E is obtained.

【0034】また、電力は、電界の二乗に比例するの
で、光電力の反射係数RE は(2)式で表わされる。
Further, power is proportional to the square of the electric field, the reflection coefficient R E of the optical power is expressed by equation (2).

【0035】RE =γE 2 ・・・(2) 上記(1)及び(2)式を用いて入射角度θi を変えた
ときの光電力の反射係数を算出してプロットしたしたの
が図3の(A)である。
R E = γ E 2 (2) The reflection coefficient of the optical power when the incident angle θ i is changed using the above equations (1) and (2) is calculated and plotted. It is (A) of FIG.

【0036】図3の(A)から理解できるように、入射
角(θi )が0から70度までは光電力の反射係数が
0.1〜0.2程度であるが、入射角(θi )が70度
を越えると光電力の反射係数が急激に増大する。したが
って、反射係数の増大は変換損失の原因となるので、入
射角は、70度以下にする必要がある。
As can be understood from FIG. 3A, the reflection coefficient of the optical power is about 0.1 to 0.2 when the incident angle (θ i ) is 0 to 70 degrees, but the incident angle (θ When i ) exceeds 70 degrees, the reflection coefficient of the optical power sharply increases. Therefore, since an increase in the reflection coefficient causes conversion loss, the incident angle needs to be 70 degrees or less.

【0037】次に、図4を参照して、台形型の収集電極
22と傾斜面に反射した光の入射角度の関係につき説明
する。なお、図4は、台形型の収集電極の傾斜角度と傾
斜面に反射された入射角度の関係を説明するための図で
ある。ここでは、台形型の収集電極22の側面22a及
び22b、すなわち傾斜面を符号ABとする。また、こ
の傾斜面ABと受光面15cの法線BHとの角度をθg
とする。
Next, the relationship between the trapezoidal collecting electrode 22 and the incident angle of light reflected on the inclined surface will be described with reference to FIG. FIG. 4 is a diagram for explaining the relationship between the inclination angle of the trapezoidal collecting electrode and the incident angle reflected on the inclined surface. Here, the side surfaces 22a and 22b of the trapezoidal collecting electrode 22, that is, the inclined surfaces are denoted by the symbol AB. Further, the angle between the inclined surface AB and the normal BH of the light receiving surface 15c is θ g
And

【0038】入射光MOは、台形型の収集電極22の傾
斜面ABに対して入射されると、傾斜面ABで反射され
てON方向へ直進する。このとき、法線BHと入射光M
Oは平行であるから∠HBOと∠MOAとは等しくな
る。
When the incident light MO enters the inclined surface AB of the trapezoidal collecting electrode 22, it is reflected by the inclined surface AB and travels straight in the ON direction. At this time, the normal BH and the incident light M
Since O is parallel, ∠HBO and ∠MOA are equal.

【0039】また、入射角θi と反射角θr とは等しい
ので、∠MOAと∠BONは等しくなる。したがって、
反射光ONと法線HBとの交点をSとすれば、∠HBO
と∠BONとを加算した角度(2θg )が∠HSOと等
しくなる。
Since the incident angle θ i is equal to the reflection angle θ r , ∠MOA and ∠BON are equal. Therefore,
If the intersection of the reflected light ON and the normal HB is S, then ∠HBO
The angle (2θ g ) obtained by adding ∠BON is equal to ∠HSO.

【0040】また、反射光ONが入射する受光面上の法
線をH’Nとすれば、∠H’NOと∠HSOは等しくな
る。
If the normal on the light receiving surface where the reflected light ON is incident is H'N, then ∠H'NO is equal to ∠HSO.

【0041】上述の説明からも明らかなように、傾斜角
∠HBO(θg )の二倍角が反射光と法線との角度∠
H’NO(2θg )になることがわかる。
As is clear from the above description, the inclination angle {the double angle of HBO (θ g ) is the angle between the reflected light and the normal line}
It can be seen that H′NO (2θ g ) is obtained.

【0042】図3の(A)で既に説明したように、入射
角を70度以上にすると光電力の反射係数が増大するの
で、入射角は70度以下にする必要がある。したがっ
て、台形型の収集電極22の傾斜角度∠HBOは、光電
力の反射係数を増大させないためには、入射角度∠H’
NOの1/2、すなわち35度以内にする必要がある。
As already described with reference to FIG. 3A, when the incident angle is set to 70 degrees or more, the reflection coefficient of the optical power increases. Therefore, the incident angle must be set to 70 degrees or less. Therefore, the inclination angle ∠HBO of the trapezoidal collecting electrode 22 is set to the incident angle ∠H ′ in order not to increase the reflection coefficient of the optical power.
It is necessary to make it within 1/2 of NO, that is, within 35 degrees.

【0043】また、台形型の収集電極22の傾斜角度を
0度に近づけると、入射光の反射効果が失われるため、
傾斜角度は5度以上とするのが好適である。したがっ
て、この発明の第1の実施の形態では、傾斜角度を5〜
35度の角度範囲とするのが良い。
If the inclination angle of the trapezoidal collecting electrode 22 is made close to 0 degrees, the effect of reflecting incident light is lost.
It is preferable that the inclination angle is 5 degrees or more. Therefore, in the first embodiment of the present invention, the inclination angle is 5 to 5.
The angle range is preferably 35 degrees.

【0044】上述したように、第1の実施の形態では、
収集電極を台形断面とし、収集電極の側面を、傾斜面と
することにより入射光は、傾斜面に反射して受光面に向
けて直進し、受光面に透過する反射入射光と、直接受光
面に入射する直接入射光とが重ね合わされて、基板15
の収集電極22の近傍に高光強度領域15bが形成され
る。このため、この発明では、太陽電池素子の受光面の
光強度が従来よりも大きくなるので、収集電極により基
板15に形成された陰形成領域が実質的に保障され、変
換効率が向上する。
As described above, in the first embodiment,
By making the collecting electrode a trapezoidal cross section and making the side surface of the collecting electrode an inclined surface, the incident light is reflected on the inclined surface, goes straight toward the light receiving surface, and is reflected incident light transmitted through the light receiving surface, and directly on the light receiving surface Is superimposed on the direct incident light incident on the
A high light intensity region 15b is formed near the collecting electrode 22 of FIG. For this reason, in the present invention, the light intensity on the light receiving surface of the solar cell element becomes larger than before, so that the shadow forming region formed on the substrate 15 by the collecting electrode is substantially guaranteed, and the conversion efficiency is improved.

【0045】[第2の実施の形態]次に、図1の(B)
を参照して、この発明の第2の実施の形態につき説明す
る。図1の(B)は、櫛歯状の収集電極の断面形状を三
角形としたときの断面を示す。
[Second Embodiment] Next, FIG.
The second embodiment of the present invention will be described with reference to FIG. FIG. 1B shows a cross section when the cross-sectional shape of the comb-shaped collecting electrode is triangular.

【0046】収集電極24の断面形状を三角形にしたと
きも、台形断面のときと同様な高光強度領域15bが受
光面に形成される(図1のB)。このため、太陽電池素
子の受光面に対し光を垂直に入射させた場合、収集電極
24によって形成される陰形成領域15aは、高光強度
領域15bにより保障されるため、実質的に陰形成領域
15aが減少して光電変換効率を高める効果がある。
When the cross-sectional shape of the collecting electrode 24 is triangular, a high light intensity region 15b similar to that of the trapezoidal cross-section is formed on the light receiving surface (FIG. 1B). For this reason, when light is vertically incident on the light-receiving surface of the solar cell element, the shadow-forming region 15a formed by the collecting electrode 24 is secured by the high-light-intensity region 15b. Has the effect of increasing the photoelectric conversion efficiency.

【0047】また、この発明では、三角形型の収集電極
24にすることにより、台形型の収集電極22に比べ、
収集電極24の断面積を大きくすることができるので、
収集電極の抵抗値が小さくなり、変換損失を低減できる
という利点がある。
Further, according to the present invention, the triangular collector electrode 24 is used, so that the trapezoidal collector electrode 22 can be used.
Since the cross-sectional area of the collecting electrode 24 can be increased,
There is an advantage that the resistance value of the collecting electrode is reduced and the conversion loss can be reduced.

【0048】上述した第1及び第2の実施の形態では、
光電変換装置として太陽電池素子を用いた例につき説明
したが、光を電気信号に変換する受光素子、例えばホト
ダイオード、イメージセンサ、フォトトランジスタ及び
光導電セルとか、光により抵抗値が変化するフォトコン
ダクター素子とかの収集電極としても応用が可能であ
る。
In the first and second embodiments described above,
Although an example using a solar cell element as a photoelectric conversion device has been described, a light-receiving element that converts light into an electric signal, such as a photodiode, an image sensor, a phototransistor, and a photoconductive cell, or a photoconductor element whose resistance value changes with light. It can also be applied as a collecting electrode.

【0049】[0049]

【発明の効果】上述した説明から明らかのように、この
発明の光電変換装置によれば、収集電極の側面を、入射
光を受光面に向けて反射させる傾斜面として形成してあ
るため、傾斜面に反射されて受光面に入射される光(反
射入射光)と直接受光面に入射する光(直接入射光)と
が重なり合った領域(高光強度領域)が受光面に形成さ
れる。このため、収集電極により形成された陰形成領域
が保障されることになり、従来に比べて光電変換効率を
高めることができる。また、光電変換装置を太陽電池素
子とした場合、従来に比べ、高起電力が期待できる。
As is apparent from the above description, according to the photoelectric conversion device of the present invention, the side surface of the collecting electrode is formed as an inclined surface for reflecting the incident light toward the light receiving surface. An area (high light intensity area) where light reflected on the surface and incident on the light receiving surface (reflected incident light) and light directly incident on the light receiving surface (direct incident light) overlaps is formed on the light receiving surface. For this reason, the shadow-forming region formed by the collecting electrode is ensured, and the photoelectric conversion efficiency can be increased as compared with the related art. In addition, when the photoelectric conversion device is a solar cell element, higher electromotive force can be expected as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)〜(B)は、この発明の台形型及び三角
形型の収集電極の断面形状を説明するために供する断面
図である。
FIGS. 1A and 1B are cross-sectional views for explaining the cross-sectional shapes of trapezoidal and triangular collector electrodes of the present invention.

【図2】(A)は、従来の太陽電池素子の構造を説明す
るために供する平面図、(B)は、(A)のX−X線に
沿って切断したときの断面図、(C)は、(B)の収集
電極部分の一部を拡大して示した拡大図である。
2A is a plan view for explaining the structure of a conventional solar cell element, FIG. 2B is a cross-sectional view taken along line XX of FIG. 2A, and FIG. () Is an enlarged view showing a part of the collecting electrode portion of (B) in an enlarged manner.

【図3】(A)は、入射角と光電力の反射係数の関係を
説明するための図であり、(B)は、入射光の電界、反
射光の電界及び透過光の電界と各種角度との関係を説明
するための図である。
3A is a diagram for explaining a relationship between an incident angle and a reflection coefficient of optical power, and FIG. 3B is a diagram illustrating various angles of an electric field of incident light, an electric field of reflected light, and an electric field of transmitted light. It is a figure for explaining the relation with.

【図4】台形型の収集電極の傾斜面に、入射光が入射し
たときの入射角度と傾斜角度との関係を説明するための
図である。
FIG. 4 is a diagram for explaining a relationship between an incident angle and an inclination angle when incident light is incident on an inclined surface of a trapezoidal collecting electrode.

【図5】収集電極の櫛歯幅と変換損失の関係を説明する
ための図である。
FIG. 5 is a diagram for explaining a relationship between a comb tooth width of a collecting electrode and a conversion loss.

【符号の説明】[Explanation of symbols]

15:半導体基板 15a:陰形成領域 15b:高光強度領域 15c:受光面 22:台形型収集電極 24:三角形型収集電極 22a,22b,24a,24b:傾斜面 15: Semiconductor substrate 15a: Shadow forming region 15b: High light intensity region 15c: Light receiving surface 22: Trapezoidal collecting electrode 24: Triangular collecting electrode 22a, 22b, 24a, 24b: Inclined surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光電変換装置の受光面にストライプ状の
収集電極を具えてなる当該光電変換装置において、 前記収集電極の側面を、入射光を受光面に向けて反射さ
せる傾斜面として形成してなることを特徴とする光電変
換装置。
1. A photoelectric conversion device comprising a collection electrode in the form of a stripe on a light-receiving surface of the photoelectric conversion device, wherein a side surface of the collection electrode is formed as an inclined surface for reflecting incident light toward the light-receiving surface. A photoelectric conversion device, comprising:
【請求項2】 請求項1に記載の光電変換装置におい
て、 前記収集電極の、ストライプ方向に対して直交する面内
における断面形状を台形としたことを特徴とする光電変
換装置。
2. The photoelectric conversion device according to claim 1, wherein a cross-sectional shape of the collecting electrode in a plane orthogonal to a stripe direction is trapezoidal.
【請求項3】 請求項1に記載の光電変換装置におい
て、 前記収集電極の、ストライプ方向に対して直交する面内
における断面形状を三角形としたことを特徴とする光電
変換装置。
3. The photoelectric conversion device according to claim 1, wherein a cross-sectional shape of the collection electrode in a plane orthogonal to a stripe direction is triangular.
【請求項4】 請求項1に記載の光電変換装置におい
て、 前記受光面に対する法線と前記傾斜面との傾斜角度を5
〜35度の角度範囲とすることを特徴とする光電変換装
置。
4. The photoelectric conversion device according to claim 1, wherein an inclination angle between a normal to the light receiving surface and the inclined surface is 5 degrees.
A photoelectric conversion device having an angle range of up to 35 degrees.
【請求項5】 請求項1〜4に記載の光電変換装置にお
いて、 前記収集電極の形状を櫛歯状とすることを特徴とする光
電変換装置。
5. The photoelectric conversion device according to claim 1, wherein said collecting electrode has a comb-like shape.
【請求項6】 請求項1〜4に記載の光電変換装置にお
いて、 前記光電変換装置を太陽電池素子とすることを特徴とす
る光電変換装置。
6. The photoelectric conversion device according to claim 1, wherein the photoelectric conversion device is a solar cell element.
JP8240731A 1996-09-11 1996-09-11 Photoelectric conversion device Withdrawn JPH1093117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8240731A JPH1093117A (en) 1996-09-11 1996-09-11 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8240731A JPH1093117A (en) 1996-09-11 1996-09-11 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH1093117A true JPH1093117A (en) 1998-04-10

Family

ID=17063870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8240731A Withdrawn JPH1093117A (en) 1996-09-11 1996-09-11 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH1093117A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526248B1 (en) * 1999-09-16 2003-02-25 Ricoh Company, Ltd. Toner support member and developing device prevented from charging toner by friction
JP2006060104A (en) * 2004-08-23 2006-03-02 Sony Corp Photoelectric conversion element and its manufacturing method
JP2010225977A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Solar battery module
US8063299B2 (en) 2003-06-27 2011-11-22 Sanyo Electric Co., Ltd. Solar battery module
JP2012033564A (en) * 2010-07-28 2012-02-16 Mitsubishi Electric Corp Solar cell and method for manufacturing the same
JP2016535448A (en) * 2013-10-30 2016-11-10 ベイジン アポロ ディン ロン ソーラー テクノロジー カンパニー リミテッド Thin film solar cell module manufacturing method and thin film solar cell module
US9559235B2 (en) 2010-12-17 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526248B1 (en) * 1999-09-16 2003-02-25 Ricoh Company, Ltd. Toner support member and developing device prevented from charging toner by friction
US8063299B2 (en) 2003-06-27 2011-11-22 Sanyo Electric Co., Ltd. Solar battery module
EP2442372A2 (en) 2003-06-27 2012-04-18 Sanyo Electric Co., Ltd. Solar Battery Module
US9780245B2 (en) 2003-06-27 2017-10-03 Panasonic Intellectual Property Mgmt Co., Ltd. Solar battery module
JP2006060104A (en) * 2004-08-23 2006-03-02 Sony Corp Photoelectric conversion element and its manufacturing method
JP2010225977A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Solar battery module
JP2012033564A (en) * 2010-07-28 2012-02-16 Mitsubishi Electric Corp Solar cell and method for manufacturing the same
US9559235B2 (en) 2010-12-17 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
JP2016535448A (en) * 2013-10-30 2016-11-10 ベイジン アポロ ディン ロン ソーラー テクノロジー カンパニー リミテッド Thin film solar cell module manufacturing method and thin film solar cell module

Similar Documents

Publication Publication Date Title
EP1716596B1 (en) Silicon-based schottky barrier infrared optical detector
JPH05235396A (en) Semiconductor photoreceptor
US4151005A (en) Radiation hardened semiconductor photovoltaic generator
JPH1093117A (en) Photoelectric conversion device
JP2661341B2 (en) Semiconductor light receiving element
CN111755536B (en) Photoelectric detection device and manufacturing method thereof
WO2021074967A1 (en) Light-receiving element
JP2773930B2 (en) Light detection device
JP2675574B2 (en) Semiconductor light receiving element
JPH0130092B2 (en)
JPS58201377A (en) Solar battery element
JP2002270885A (en) Light condensing solarlight power generator
JPH0411787A (en) Semiconductor light receiving device
JP3331268B2 (en) Solar cell element and method of manufacturing the same
Averine et al. Geometry optimization of the interdigitated metal-semiconductor-metal photodiode structures
JPH0539640Y2 (en)
JPWO2002091484A1 (en) Semiconductor light receiving element for repeatedly propagating incident light in light absorption layer and method of manufacturing the same
JPH0846227A (en) Light confinement structure of photovoltaic element
JPH10335689A (en) Solar cell device
JPH0555619A (en) Semiconductor photodetector
JPH11163383A (en) Semiconductor light-receiving element
JPS6193671A (en) Photodetector
JP2004055620A (en) Semiconductor photodetector
JPS63248182A (en) Solar cell
CN112086527A (en) Compensation reflector integrated total reflection type single-row carrier photodiode

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202