JPS63248182A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPS63248182A
JPS63248182A JP62083151A JP8315187A JPS63248182A JP S63248182 A JPS63248182 A JP S63248182A JP 62083151 A JP62083151 A JP 62083151A JP 8315187 A JP8315187 A JP 8315187A JP S63248182 A JPS63248182 A JP S63248182A
Authority
JP
Japan
Prior art keywords
light
region
incident
power generation
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62083151A
Other languages
Japanese (ja)
Inventor
Mikio Deguchi
幹雄 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62083151A priority Critical patent/JPS63248182A/en
Publication of JPS63248182A publication Critical patent/JPS63248182A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To utilize the amount of light of incident beams maximally by forming an optical refraction region to a glass substrate or the surface of a cover glass and making incident beams reach to a region contributing to power generation. CONSTITUTION:Incident beams h1 projected toward a region, which does not contribute to power generation, such as a grid electrode are refracted in an optical refraction region A forming a recessed section in a glass 1, and projected to a photoelectric conversion section 3 contributing to power generation. Accordingly, the amount of light of incident beams can be utilized maximally, and the effective efficiency of a solar cell is improved. The recessed section may take a protruding shape, or the combination of the recessed section and the protruding section may be used.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は太陽電池、特に入射光エネルギーをイ1°効
に利用する太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a solar cell, and particularly to a solar cell that efficiently utilizes incident light energy.

〔従来の技術〕[Conventional technology]

第10図は太陽電池の従来例を示す一部切欠側面説明図
であり、第10図(a)はガラス基板側より光を入射す
る状態を示す説明図、第10図(b)はカバーガラス側
より光を入射する状態を示す説明図である0図中、1は
ガラス基板、2は太陽電池の光入射面側にある格子電極
、3は光電変換部、4はカバーガラスである。従来の太
陽電池は、ガラス基板1上に太陽電池を形成する構造(
第10図(a))と、太陽電池をカバーガラスで覆い、
封止する構造(第1θ図(b))がある。
FIG. 10 is a partially cutaway side view showing a conventional example of a solar cell, FIG. 10(a) is an explanatory view showing a state in which light is incident from the glass substrate side, and FIG. 10(b) is a cover glass. In Figure 0, which is an explanatory diagram showing a state in which light is incident from the side, 1 is a glass substrate, 2 is a grid electrode on the light incident surface side of the solar cell, 3 is a photoelectric conversion unit, and 4 is a cover glass. Conventional solar cells have a structure in which a solar cell is formed on a glass substrate 1 (
FIG. 10(a)), covering the solar cell with a cover glass,
There is a sealing structure (FIG. 1(b)).

前記従来例のいづれの太陽電池においても、光が入射し
た場合、光入射面側にある格子電極2゜あるいは複数の
太陽電池素子を横方向に並設した際の各太陽電池間の間
隙、(図示せず)等の発電に寄手しない領域に入射する
入射光り、は発電に寄与せず、無効なエネルギーとして
失われてしまう。
In any of the conventional solar cells described above, when light is incident, the grid electrode 2° on the light incident surface side or the gap between each solar cell when a plurality of solar cell elements are arranged side by side in the horizontal direction, ( Incident light that enters areas that do not contribute to power generation, such as (not shown), does not contribute to power generation and is lost as ineffective energy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように、従来例においては、太陽電池のガラス基
板又はカバーガラス面に光が入射した場合1発“主領域
に寄与しない領域への入射光は無効エネルギーとして失
われるという問題点がある。
As described above, in the conventional example, there is a problem that when light is incident on the glass substrate or cover glass surface of a solar cell, the incident light on an area that does not contribute to the main area is lost as ineffective energy.

この発明は上記のような従来例の問題点を解消するため
になされたもので、入射光の光量を最大限に利用できる
太陽1[池を得ることを目的とする。
This invention was made in order to solve the problems of the conventional example as described above, and its purpose is to obtain a solar pond that can make maximum use of the amount of incident light.

〔問題点を解決するための手段〕[Means for solving problems]

このため、この発明においては、格子電極等の発電に寄
与しない領域に対応するガラス基板もしくはカバーガラ
ス面部に光屈折領域(A)を形成し、前記光屈折領域(
A)への入射光を、前記光屈折領域(A)で屈折させて
、発電に寄与する領域に到達させることにより、前記問
題点を解決し目的を達成しようとするものである。
Therefore, in the present invention, a light refraction region (A) is formed on the glass substrate or cover glass surface portion corresponding to a region such as a grid electrode that does not contribute to power generation, and the light refraction region (A) is
The above-mentioned problem is solved and the objective is achieved by refracting the light incident on A) at the light refraction region (A) and making it reach the region that contributes to power generation.

〔作用〕[Effect]

この発明における太陽電池の発電に寄与しない領域への
入射光は、光屈折領域(A)により屈折され、発電に寄
与する領域に到達する。
In this invention, light incident on a region of the solar cell that does not contribute to power generation is refracted by the light refraction region (A) and reaches a region that contributes to power generation.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。第
1図は、この発明の一実施例の光屈折領域(A)が凹状
である太陽電池に光が入射する状態を示す一部切欠側面
説明図、第2図は第1図の光屈折領域(A)への入射光
の経路を示す説明図、第3図は、第2図において発電に
′fJ与するデータを示すグラフであり、第3図(a)
は溝傾斜角θ=450の場合のグラフ、第3図(b)は
θ=600の場合のグラフであり、第4図は、第2図に
おいて、光線が太陽電池に爪直に入射する場合の、入射
光の発電に寄与するデータを示すグラフである。第5図
乃至第9図はこの発明の他の実施例の太陽電池に光が入
射する状態を示す一部切欠側面説明図であり、第5図は
ガラス基板の光屈折領域(A)が凸状、第6図はガラス
基板の光屈折領域(A)がレンズ状、第7図はカバーガ
ラスの光入射側と反対側のカバーガラスの光屈折領域(
A)が凸状、第8図は第7図の光屈折領域(A)が凹状
、第9図はカバーガラスの光入射面の光屈折領域(A)
か凹状およびその反対面の光屈折領域(A)が凸状の組
合せの谷場合の説明図である。
Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a partially cutaway side view showing a state in which light enters a solar cell in which the light refraction region (A) is concave according to an embodiment of the present invention, and FIG. 2 is a side view showing the light refraction region of FIG. FIG. 3 is an explanatory diagram showing the path of incident light to (A), and is a graph showing data that affects 'fJ to power generation in FIG.
is the graph when the groove inclination angle θ=450, FIG. 3(b) is the graph when θ=600, and FIG. 4 is the graph when the light ray is directly incident on the solar cell in FIG. 2 is a graph showing data contributing to power generation of incident light. 5 to 9 are partially cutaway side views showing a state in which light enters a solar cell according to another embodiment of the present invention, and FIG. 5 shows a convex light refraction area (A) of a glass substrate. Figure 6 shows that the light refraction area (A) of the glass substrate is lens-shaped, and Figure 7 shows that the light refraction area (A) of the cover glass on the side opposite to the light incident side of the cover glass is shaped like a lens.
A) is convex, Figure 8 shows the light refraction area (A) in Figure 7 is concave, and Figure 9 shows the light refraction area (A) on the light incident surface of the cover glass.
FIG. 4 is an explanatory diagram of a combination of a concave light refractive region (A) and a convex light refraction region (A) on the opposite surface;

図中1はガラス基板、2は発電に寄与しない領域である
格子電極1,3は発電に寄与する領域である光電変換部
、4はカバーガラス、Aは発電に寄与しない領域である
格子電極2に対応するガラス基板1又はカバーガラス4
面部に形成された光屈折領域、h、は光屈折領域に入射
する入射光、h2は直接発電に寄りする領域に入射する
直接光である。
In the figure, 1 is a glass substrate, 2 is an area that does not contribute to power generation, grid electrodes 1 and 3 are areas that contribute to power generation, which is a photoelectric conversion section, 4 is a cover glass, and A is a grid electrode 2 that is an area that does not contribute to power generation. Glass substrate 1 or cover glass 4 corresponding to
A light refraction region formed on the surface portion, h, is incident light that enters the light refraction region, and h2 is direct light that enters a region that is close to direct power generation.

しl中5同一符号は同一、又は相当部分を示し、前記従
来例におけると同一または相当構成要素も同一符号で表
わしている。
The same reference numerals throughout the drawings indicate the same or equivalent parts, and the same or equivalent components as in the conventional example are also represented by the same reference numerals.

次(、これらの各実施例の太陽電池の動作を図を用いて
説明する。
Next, the operation of the solar cells of each of these embodiments will be explained using diagrams.

先つ第1図および第2図の説明図において、ガラスJ^
板1の格子電極2に対応する面部には格子・′電極2に
沿って光屈折領域Aである凹状の特にV字状の溝が刻ま
れている。この光屈折領域Aに入射した入射光h1 は
、第1図に示すように、光屈折領域Aで屈折し、発電に
寄与する領域である光電変換部3に達する。
In the explanatory diagrams of Figures 1 and 2, glass J^
On the surface of the plate 1 corresponding to the grating electrode 2, a concave groove, particularly a V-shaped groove, which is a light refraction area A, is cut along the grating electrode 2. As shown in FIG. 1, the incident light h1 that has entered the light refraction region A is refracted by the light refraction region A and reaches the photoelectric conversion section 3, which is a region that contributes to power generation.

次に、第2図を用いて、前記動作を詳細に説明する。Next, the above operation will be explained in detail using FIG. 2.

第2図において、θは、7字状溝の側面の傾斜角、αは
、対応電池に対して入射する入射光h1の手直方向から
の傾きを示す入射角、θ′は入射光hl がスネルの法
則に従って溝側面で屈折する屈折角、nはガラス基板の
屈折率、Wは格子電極2の幅、即ち7字溝の幅、tは溝
の底から格子型J4i2までの距離である。
In Fig. 2, θ is the inclination angle of the side surface of the 7-shaped groove, α is the incident angle indicating the inclination from the vertical direction of the incident light h1 that enters the corresponding battery, and θ' is the inclination angle of the incident light h1 to the corresponding battery. The refraction angle at the groove side surface according to Snell's law, n is the refractive index of the glass substrate, W is the width of the grating electrode 2, that is, the width of the figure 7 groove, and t is the distance from the bottom of the groove to the grating type J4i2.

第2図に示すように、太陽電池に対して垂直方向から入
射角αだけ傾いた平行入射光線が入射する場合、この光
線の溝側面に対する入射角は(θ+α)となる。
As shown in FIG. 2, when a parallel incident light ray is incident on the solar cell at an angle of incidence α from the perpendicular direction, the angle of incidence of this light ray on the side surface of the groove is (θ+α).

ガラス基板の屈折率をnとすると、スネルの法則によっ
て、この光線の屈折角θ′は 0 ′= 5in−’(−%1n(0+ a )) −
−−−−−−−一式(1)n で与えられる。
If the refractive index of the glass substrate is n, then according to Snell's law, the refraction angle θ' of this ray is 0'=5in-'(-%1n(0+a))-
-----------Setup (1) is given by n.

ガラス基板の屈折率n>1であるから溝側面に入射する
光は、屈折し、 一一一一一一一一式(2) の条件を満す場合、すべて発電に寄与する領域の光電変
換部3に達し、格子電極2には光は入射しないので、太
陽電池に入射する光は有効に発電に利用される。
Since the refractive index of the glass substrate is n > 1, the light incident on the side surface of the groove is refracted, and if the following condition (2) is satisfied, photoelectric conversion occurs in the area that contributes to power generation. Since the light reaches the grid electrode 2 and does not enter the grid electrode 2, the light that enters the solar cell is effectively used for power generation.

第3図(a)(b)は上記式(2)の右辺の値を計算し
た結果をグラフで示しており、横軸は入第3図(a)は
傾斜角0=450の場合について、入射角α=00〜4
50に対し、また第3図(b)は傾斜角θ=600の場
合について、入射角α=QO〜300に対しての値であ
り、図中の各曲線は夫1ln=1.1,1.2,1.3
゜1.4,1.5.の場合を示している。
Figures 3(a) and 3(b) graph the results of calculating the values on the right side of equation (2) above, with the horizontal axis plotting Figure 3(a) for the case where the inclination angle is 0 = 450. Incident angle α=00~4
50, and FIG. 3(b) shows the values for the incident angle α=QO~300 for the case of the inclination angle θ=600, and each curve in the figure .2, 1.3
゜1.4, 1.5. The case is shown below.

θ=450の場合、第3図(a)より、α勺12°が1
7られる。即ち、太陽電池面にル直な方向から約12°
以内の光線はすべて発電に寄(yする領域に達し、又θ
=60°の場合は、第3図(b)より、溝側面に光線が
当る限り、太陽電池に入射する先はすべて発電に寄ep
する領域に導かれることがわかる。
When θ=450, from Fig. 3(a), α 12° is 1
7. That is, approximately 12 degrees from the direction perpendicular to the solar cell surface.
All the rays within the range reach the region where y occurs, and θ
= 60°, as shown in Figure 3(b), as long as the rays hit the side of the groove, all the points incident on the solar cell contribute to power generation.
You can see that it will lead you to the area where you want to go.

第4図は光が太陽電池面にIr直に入射1−る即ち入射
角α=0の場合について、傾斜角θ=0〜90L′に対
して式(2)の右辺の値を計算したものであり、横軸は
傾斜角θ、縦軸は式(2)の右場合、θ〉33°とすれ
ば、太陽電池に垂直に入射する光はすべて発電に寄与す
る領域に達することかわかる。
Figure 4 shows the value of the right side of equation (2) calculated for the inclination angle θ = 0 to 90L' in the case where the light is directly incident on the solar cell surface with Ir, that is, the incident angle α = 0. , and the horizontal axis is the inclination angle θ, and the vertical axis is the right side of equation (2), if θ>33°, it can be seen that all the light that perpendicularly enters the solar cell reaches the region that contributes to power generation.

以トは、九h1!折領域(A)がV字状の実施例である
。次に、光屈折領域(A)が他の形状の実施例について
第5図乃JJI第9図を用いて説明する。
From then on, 9h1! This is an embodiment in which the folding area (A) is V-shaped. Next, embodiments in which the light refraction region (A) has a different shape will be described with reference to FIG. 5 to JJI FIG. 9.

先つ、第5図において、光屈折領域Aは、ガラス基板l
の面部に凸状である山形部として形成されている。この
場合、光屈折領域Aに入射した入射光h1は、光屈折領
域Aで矢印の方向に屈折し、発電に寄与する領域である
光′心変換部3に達する。
First, in FIG. 5, the light refraction area A is located on the glass substrate l.
It is formed as a convex chevron on the surface. In this case, the incident light h1 that has entered the light refraction region A is refracted in the direction of the arrow in the light refraction region A, and reaches the light center conversion section 3, which is a region that contributes to power generation.

次に、第61%Jにおいては、光屈折領域Aは、ガラス
J^板1の面部にレンズ状構造部として形成されている
。この場合の光屈折領域Aへの入射光は、矢印の方向に
屈折し、光電変換部3に達する。
Next, in the 61st % J, the light refraction area A is formed as a lens-like structure on the surface of the glass J^ plate 1. In this case, the light incident on the light refraction area A is refracted in the direction of the arrow and reaches the photoelectric conversion section 3.

次に、第7図においては、光屈折@b3Aは、カバーガ
ラス4の光入射側と反対側の面部に凸状部として形成さ
れている。この場合、光屈折領域Aへの入射光は、矢印
の方向に屈折し、光電変換部3に達する。
Next, in FIG. 7, the light refraction @b3A is formed as a convex portion on the surface of the cover glass 4 on the side opposite to the light incident side. In this case, the light incident on the light refraction area A is refracted in the direction of the arrow and reaches the photoelectric conversion section 3.

次に、第8図においては、光屈折領域Aは、カバーガラ
ス4の光入射側と反対側の面部に凹状部として形成され
ている。この場合、光屈折領域Aへの入射光は、矢印の
方向に屈折し、光電変換部3に達する。
Next, in FIG. 8, the light refraction area A is formed as a concave portion on the surface of the cover glass 4 on the side opposite to the light incident side. In this case, the light incident on the light refraction area A is refracted in the direction of the arrow and reaches the photoelectric conversion section 3.

次に第9図においては、光屈折領域Aは、カバーガラス
4の光入射側の面部に凹状部および光入射側と反対側の
面部に凸状部として形成されている。この場合、光屈折
領域Aへの入射光は、矢印の方向に屈折し、光電変換部
3に達する。
Next, in FIG. 9, the light refraction area A is formed as a concave portion on the surface of the cover glass 4 on the light incident side and a convex portion on the surface opposite to the light incident side. In this case, the light incident on the light refraction area A is refracted in the direction of the arrow and reaches the photoelectric conversion section 3.

以−[の第1図および第5図乃を第9図のいづれの場合
も、光屈折領域Aへの入射光は、発電に寄!メする領域
である光電変換部3に有効に4かれ、太陽電池の実効効
率か向トする。
In any of the cases shown in FIGS. 1 and 5 to 9, the incident light on the light refraction area A contributes to power generation. It is effectively applied to the photoelectric conversion unit 3, which is the area where the photovoltaic power is measured, and increases the effective efficiency of the solar cell.

〔発明の効果〕〔Effect of the invention〕

以ト説明したように、この発明によ才lば、発電に寄l
メしない′Ki LJiに対応するガラス基板b+、、
<はカバーガラス面部に光屈折領域Aを形成し、光屈折
領域への入射光を、光屈折領域Aで7.7i折させて、
発電に寄与する領域に到達させることにより、太陽電池
の実効効率が向上する効果がある。
As explained above, this invention will greatly contribute to power generation.
Glass substrate b+ corresponding to 'Ki LJi'
< forms a light refraction area A on the cover glass surface, and refracts the incident light to the light refraction area 7.7i in the light refraction area A,
By reaching the region that contributes to power generation, the effective efficiency of the solar cell can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の太陽電池に光が入射す
る状態を示す一部切欠側面説明図、第2図は、第1UA
の入射光の経路を示す説明図、第3図は、第2図におい
て発電に寄与するデータを示すグラフであり、第3図(
a)はθ=450の場合のグラフ、第3図(b)はθ=
600の場合のグラフであり、第4図は、第2図におい
て、光か垂直入射の場合の発電に寄与するデータを示す
グラフである。第5図乃至第9図はこの発明の他の実施
例の太陽電池に光が入射する状態を示す一部切欠側面説
明図であり、第5図は光屈折領域が凸状、第6図は光屈
折領域がレンズ状、第7図はカバーガラスの光屈折領域
が凸状、第8図は、カバーガラスの光屈折領域が凹状、
第9図はカバーガラスの屈折領域が凹状と凸状の組合せ
の各場合の説明図、′$10図は太陽電池の従来例を示
す一部切欠側面説明図であり、第10図(a)はガラス
基板側より光を入射する状態を示す説明図、第10図(
b)はカバーガラス側より光を入射する状態を示す説明
図である。 1−−−−−−ガラス基板 2−−−−−格子電極 3・・・・・・光電変換部 4・・・・・・カバーガラス 八−・・−光屈折領域
FIG. 1 is a partially cutaway side view showing a state in which light enters a solar cell according to an embodiment of the present invention, and FIG.
FIG. 3 is a graph showing data contributing to power generation in FIG. 2, and FIG.
a) is the graph when θ=450, and FIG. 3(b) is the graph when θ=450.
600, and FIG. 4 is a graph showing data contributing to power generation in the case of vertical incidence of light in FIG. 2. 5 to 9 are partially cutaway side views showing a state in which light enters a solar cell according to another embodiment of the present invention, in which the light refraction region is convex in FIG. The light refraction region is lens-shaped, FIG. 7 shows that the light refraction region of the cover glass is convex, and FIG. 8 shows that the light refraction region of the cover glass is concave.
Figure 9 is an explanatory diagram of each case in which the refraction area of the cover glass is a combination of concave and convex shapes, Figure 10 is a partially cutaway side explanatory diagram showing a conventional example of a solar cell, and Figure 10 (a) is an explanatory diagram showing a state in which light is incident from the glass substrate side, Fig. 10 (
b) is an explanatory diagram showing a state in which light is incident from the cover glass side. 1--Glass substrate 2--Grid electrode 3...Photoelectric conversion section 4--Cover glass 8--Light refraction area

Claims (3)

【特許請求の範囲】[Claims] (1)格子電極等の発電に寄与しない領域に対応するガ
ラス基板もしくはカバーガラス面部に光屈折領域を形成
し、前記光屈折領域への入射光を前記光屈折領域で屈折
させて、発電に寄与する領域に到達させるようにしたこ
とを特徴とする太陽電池。
(1) A light refraction region is formed on the glass substrate or cover glass surface corresponding to an area that does not contribute to power generation, such as a grid electrode, and the light incident on the light refraction region is refracted by the light refraction region, thereby contributing to power generation. A solar cell characterized in that it can reach an area where
(2)前記光屈折領域は、凹状又は凸状もしくはこれら
の組合せであることを特徴とする特許請求の範囲第1項
記載の太陽電池。
(2) The solar cell according to claim 1, wherein the light refraction region has a concave shape, a convex shape, or a combination thereof.
(3)前記光屈折領域がレンズ状構造であることを特徴
とする特許請求の範囲第1項記載の太陽電池。
(3) The solar cell according to claim 1, wherein the light refraction region has a lens-like structure.
JP62083151A 1987-04-03 1987-04-03 Solar cell Pending JPS63248182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083151A JPS63248182A (en) 1987-04-03 1987-04-03 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083151A JPS63248182A (en) 1987-04-03 1987-04-03 Solar cell

Publications (1)

Publication Number Publication Date
JPS63248182A true JPS63248182A (en) 1988-10-14

Family

ID=13794228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083151A Pending JPS63248182A (en) 1987-04-03 1987-04-03 Solar cell

Country Status (1)

Country Link
JP (1) JPS63248182A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030376A1 (en) * 1999-02-18 2000-08-23 Sharp Kabushiki Kaisha Solar cell module and solar cell panel
JP2012204178A (en) * 2011-03-25 2012-10-22 Sony Corp Photoelectric conversion element, photoelectric conversion element array and their manufacturing methods, and electric equipment
US9799788B2 (en) 2009-06-30 2017-10-24 Lg Innotek Co., Ltd. Solar battery and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030376A1 (en) * 1999-02-18 2000-08-23 Sharp Kabushiki Kaisha Solar cell module and solar cell panel
US9799788B2 (en) 2009-06-30 2017-10-24 Lg Innotek Co., Ltd. Solar battery and method for manufacturing the same
JP2012204178A (en) * 2011-03-25 2012-10-22 Sony Corp Photoelectric conversion element, photoelectric conversion element array and their manufacturing methods, and electric equipment

Similar Documents

Publication Publication Date Title
US5255666A (en) Solar electric conversion unit and system
JP2000147262A (en) Converging device and photovoltaic power generation system utilizing the device
JPH10221528A (en) Solar battery device
JPS6187105A (en) Method of fucussing solar energy and lens device
JPH0661519A (en) Photoelectric cell module provided with reflector
JP2006080524A (en) Photovoltaic module of solar concentrating device
US20130139867A1 (en) Condensing lens, compound-eye lens condenser, and compound-eye concentrating solar cell assembly
US20070256732A1 (en) Photovoltaic module
US20150009568A1 (en) Light collection system and method
KR20110087615A (en) Concentrated solar cell module
JPH06275859A (en) Condensing device for solar cell
JPS63248182A (en) Solar cell
CN104730602B (en) A kind of condenser lens
KR101909228B1 (en) Apparatus of concentrator for cpv using linear fresnel lens
US20120298178A1 (en) Photovoltaic system for efficient solar radiation collection and solar panel incorporating same
JP2018060978A (en) Light-condensing solar power generator
JPH0637344A (en) Light-condensing type solar cell module
JP2002270885A (en) Light condensing solarlight power generator
KR101109044B1 (en) Apparatus for condensing sunlight
JP2010199342A (en) Solar cell, module, and photovoltaic power generator
US20240022208A1 (en) Spatial structure of a photovoltaic module or a concentrator of solar radiation
Nakatani et al. Optical Analysis of Secondary Optical Element for Microtracking CPV System with Core-shell Spherical Lens
JPH10303448A (en) Condensing solar battery module
JPS63226971A (en) Photoelectric element
Katardjiev Optical Characterisation of a Fractal Solar Concentrator