JPH1089804A - Out-tube boiling type heat exchanger and absorption refrigerator with this heat exchanger - Google Patents

Out-tube boiling type heat exchanger and absorption refrigerator with this heat exchanger

Info

Publication number
JPH1089804A
JPH1089804A JP23887796A JP23887796A JPH1089804A JP H1089804 A JPH1089804 A JP H1089804A JP 23887796 A JP23887796 A JP 23887796A JP 23887796 A JP23887796 A JP 23887796A JP H1089804 A JPH1089804 A JP H1089804A
Authority
JP
Japan
Prior art keywords
heat transfer
boiling
tube
transfer tubes
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23887796A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hashimoto
裕之 橋本
Naoki Ko
直樹 広
Kenji Nasako
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23887796A priority Critical patent/JPH1089804A/en
Publication of JPH1089804A publication Critical patent/JPH1089804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high heat-exchanging performance by providing a heat exchanger in such a manner that a plurality of heat transfer tubes disposed at a lower portion of a container effect out-tube boiling at a temperature lower than those of a plurality of heat transfer tubes disposed at an upper portion of the container. SOLUTION: This heat exchanger is so constituted that plural stages of a plurality of heat transfer tubes 6, 7 extending in a lateral direction are provided vertically inside a container 1 and that a boiling region of a low- temperature fluid is formed outside the heat transfer tubes by carrying out heat-exchanging between the low-temperature fluid A flowing inside the container 1 and a high-temperature fluid S flowing through the heat transfer tubes. In this case, one or plural heat transfer tubes 6, which are disposed at a lower portion of the container among the plurality of heat transfer tubes 6, 7, are composed of boiling accelerating tubes which effect out-tube boiling at a temperature lower than those of the plurality of heat transfer tubes 7 disposed at an upper portion of the container 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管壁を隔てて流れ
る高温流体と低温流体の間で熱交換を行なう熱交換器に
関し、特に、低温流体が流れる容器の内部に、高温流体
が流れる複数本の伝熱管を配置して、伝熱管の外部で低
温流体を沸騰させる管外沸騰型熱交換器、及びこれを低
温再生器として具えた吸収式冷凍機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for exchanging heat between a high-temperature fluid and a low-temperature fluid flowing through a pipe wall, and more particularly to a heat exchanger in which a high-temperature fluid flows inside a vessel through which a low-temperature fluid flows. TECHNICAL FIELD The present invention relates to an extra-boiling heat exchanger in which a heat transfer tube is arranged and a low-temperature fluid is boiled outside the heat transfer tube, and an absorption refrigerator equipped with the heat exchanger as a low-temperature regenerator.

【0002】[0002]

【従来の技術】一般に隔壁型の熱交換器は、図10に示
す如く容器(1)の内部に、2枚の仕切板(2)(3)を設置
して、熱交換室(11)、入口室(12)及び出口室(13)を形成
し、熱交換室(11)には低温流体入口管(42)及び低温流体
出口管(43)を接続すると共に、入口室(12)には高温流体
入口管(4)、出口室(13)には高温流体出口管(41)を接続
し、熱交換室(11)には、両仕切板(2)(3)の間に、入口
室(12)及び出口室(13)に連通する複数本の伝熱管(5)を
架設して構成されている。高温流体入口管(4)から容器
(1)の入口室(12)へ流入した高温流体Sは、熱交換室(1
1)の複数本の伝熱管(5)を通過した後、出口室(13)から
高温流体出口管(41)へ流出する。一方、低温流体入口管
(42)から容器(1)の熱交換室(11)へ流入した低温流体A
は、熱交換室(11)の内部を通過した後、低温流体出口管
(43)から外部へ流出する。この過程で、複数本の伝熱管
(5)の外周面が伝熱面となって、高温流体と低温流体の
間で熱交換が行なわれるのである。
2. Description of the Related Art Generally, a partition type heat exchanger is provided with two partition plates (2) and (3) inside a container (1) as shown in FIG. An inlet chamber (12) and an outlet chamber (13) are formed, and a low-temperature fluid inlet pipe (42) and a low-temperature fluid outlet pipe (43) are connected to the heat exchange chamber (11), and the inlet chamber (12) is connected to the inlet chamber (12). A high-temperature fluid outlet pipe (41) is connected to the high-temperature fluid inlet pipe (4) and the outlet chamber (13), and the heat exchange chamber (11) has an inlet chamber between the two partition plates (2) and (3). (12) and a plurality of heat transfer tubes (5) communicating with the outlet chamber (13). High temperature fluid inlet pipe (4) to container
The high-temperature fluid S flowing into the inlet chamber (12) of (1) flows into the heat exchange chamber (1).
After passing through the plurality of heat transfer tubes (5) of (1), it flows out of the outlet chamber (13) to the high temperature fluid outlet tube (41). On the other hand, the cryogenic fluid inlet pipe
Cryogenic fluid A flowing from (42) into the heat exchange chamber (11) of the container (1)
After passing through the heat exchange chamber (11),
Outflow from (43) to the outside. In this process, multiple heat transfer tubes
The outer peripheral surface of (5) serves as a heat transfer surface, and heat exchange is performed between the high-temperature fluid and the low-temperature fluid.

【0003】ところで、二重効用型の吸収式冷凍機にお
いては、吸収液としての臭化リチウム水溶液を濃縮する
ために、高温再生器と低温再生器が装備され、高温再生
器で加熱されて吸収液(臭化リチウム水溶液)から発生し
た冷媒蒸気(水蒸気)は、低温再生器へ送られて、再度、
吸収液の加熱源として再利用される。低温再生器は、基
本的には図10に示す隔壁型熱交換器と同じ構成を有
し、高温流体入口管(4)には高温流体として高温再生器
から水蒸気が供給され、低温流体入口管(42)は低温流体
として高温再生器から臭化リチウム水溶液が供給され
る。
A double-effect absorption refrigerator is equipped with a high-temperature regenerator and a low-temperature regenerator in order to concentrate an aqueous solution of lithium bromide as an absorbing solution. The refrigerant vapor (water vapor) generated from the liquid (aqueous lithium bromide) is sent to the low-temperature regenerator,
Reused as a heating source for the absorbing solution. The low-temperature regenerator has basically the same configuration as the partition type heat exchanger shown in FIG. 10, and steam is supplied from the high-temperature regenerator to the high-temperature fluid inlet pipe (4) as a high-temperature fluid. In (42), an aqueous solution of lithium bromide is supplied from a high-temperature regenerator as a low-temperature fluid.

【0004】これによって、容器(1)の熱交換室(11)で
は、伝熱管(5)を流れる水蒸気の熱によって、臭化リチ
ウム水溶液が加熱され、その中に含まれる水分が蒸発し
て、臭化リチウム水溶液が濃縮されるのである。尚、低
温再生器においては、高温の水蒸気が流入する伝熱管の
上流部では、伝熱管の表面温度が高く、この高温領域か
ら受ける熱によって、臭化リチウム水溶液の少なくとも
一部は沸騰することになる。
Thus, in the heat exchange chamber (11) of the container (1), the lithium bromide aqueous solution is heated by the heat of the steam flowing through the heat transfer tube (5), and the water contained therein evaporates. The aqueous lithium bromide solution is concentrated. In the low-temperature regenerator, the surface temperature of the heat transfer tube is high in the upstream portion of the heat transfer tube into which high-temperature steam flows, and at least a part of the lithium bromide aqueous solution boils due to heat received from the high-temperature region. Become.

【0005】[0005]

【発明が解決しようとする課題】二重効用型吸収式冷凍
機においては、一重効用型吸収式冷凍機よりも冷凍効率
が高いが、その効果は、低温再生器の熱交換性能に大き
く依存している。低温再生器のごとく、伝熱管の表面で
沸騰を生じる管外沸騰型熱交換器においては、伝熱管表
面で沸騰を生じない熱交換器とは、本質的に異なる熱伝
達機構が支配している。しかるに、従来は、管外沸騰型
熱交換器の性能の改善について、十分な研究が為されて
おらず、熱交換性能に改善の余地があった。本発明の目
的は、従来よりも熱交換性能の高い管外熱沸騰型熱交換
器を提供することである。
The refrigeration efficiency of a double-effect absorption refrigerator is higher than that of a single-effect absorption refrigerator, but the effect largely depends on the heat exchange performance of the low-temperature regenerator. ing. Like a low-temperature regenerator, an extra-boiling heat exchanger that boils on the surface of the heat transfer tube is governed by a heat transfer mechanism that is essentially different from a heat exchanger that does not boil on the surface of the heat transfer tube . However, conventionally, no sufficient research has been made on the improvement of the performance of the extra-boiling heat exchanger, and there is room for improvement in the heat exchange performance. An object of the present invention is to provide an extra-tube heat-boiling heat exchanger having higher heat exchange performance than conventional heat exchangers.

【0006】[0006]

【課題を解決する為の手段】本発明に係る管外沸騰型熱
交換器は、容器の内部に配置された複数本の伝熱管の
内、容器の下部に配置された1或いは複数本の伝熱管
が、容器の上部に配置された複数本の伝熱管よりも低い
温度で管外沸騰を起こす沸騰促進管であることを特徴と
する。上記管外沸騰型熱交換器は、例えば二重効用型の
吸収式冷凍機の低温再生器として装備される。
According to the present invention, there is provided an extra-boiling boiling heat exchanger comprising one or a plurality of heat transfer tubes disposed at a lower portion of a container among a plurality of heat transfer tubes disposed inside the container. The heat pipe is characterized in that the heat pipe is a boiling accelerating pipe that causes external boiling at a lower temperature than a plurality of heat transfer pipes arranged in the upper part of the container. The above-mentioned extra-boiling heat exchanger is equipped as a low-temperature regenerator of a double-effect absorption refrigerator, for example.

【0007】上記本発明の管外沸騰型熱交換器において
は、伝熱管の内部を流れる高温流体と伝熱管の外部を流
れる低温流体の間で熱交換が行なわれる。ここで、高温
流体と低温流体の温度は熱交換室内の位置によって変化
するが、高温流体の温度が比較的高い領域では、低温流
体は十分な熱を受けて沸騰することとなるのに対し、高
温流体の温度が比較的低い領域では、低温流体は沸騰す
るに至らない。この様に、比較的低温の管外沸騰型熱交
換器においては、沸騰の生じる領域と沸騰の生じない領
域が混在することになる。この様な場合、容器の上部に
配置された伝熱管によっては沸騰を生ぜずとも、容器の
下部に配置された伝熱管は、その沸騰促進作用によっ
て、比較的低温の領域でも、沸騰を起こすことになる。
沸騰によって伝熱管の周囲からは多数の気泡が連続的に
発生し、これらの気泡は、容器上部の伝熱管の間を縫っ
て浮上する。この過程で、これらの気泡が、容器上部の
伝熱管を取り巻く低温流体を掻き乱し、伝熱管表面での
対流熱伝達による熱交換を促進するのである。
In the above-mentioned outside-tube boiling heat exchanger of the present invention, heat is exchanged between a high-temperature fluid flowing inside the heat transfer tube and a low-temperature fluid flowing outside the heat transfer tube. Here, the temperature of the high-temperature fluid and the temperature of the low-temperature fluid vary depending on the position in the heat exchange chamber, but in a region where the temperature of the high-temperature fluid is relatively high, the low-temperature fluid receives sufficient heat and boils, In regions where the temperature of the hot fluid is relatively low, the cold fluid does not boil. Thus, in a relatively low temperature outside-boiling boiling heat exchanger, a region where boiling occurs and a region where boiling does not occur are mixed. In such a case, even if the heat transfer tube arranged at the top of the container does not cause boiling, the heat transfer tube arranged at the bottom of the container may cause boiling even in a relatively low temperature region due to its boiling promoting action. become.
A large number of air bubbles are continuously generated from the periphery of the heat transfer tube due to the boiling, and these air bubbles are stitched between the heat transfer tubes at the upper portion of the container to float. In this process, these bubbles disturb the low-temperature fluid surrounding the heat transfer tube at the top of the container, and promote heat exchange by convective heat transfer on the surface of the heat transfer tube.

【0008】容器下部の伝熱管においては、管外での沸
騰の発生によって、沸騰固有の伝熱特性を示し、対流熱
伝達が支配的な非沸騰状態での対流熱伝達に比べて、熱
交換が促進される。一方、容器上部の伝熱管において
は、上述の如く下部の伝熱管から発生する気泡によっ
て、対流熱伝達による熱交換が促進される。この結果、
熱交換器全体としての熱交換性能が向上することにな
る。
In the heat transfer tube at the lower part of the vessel, due to the occurrence of boiling outside the tube, the heat transfer characteristic inherent to boiling is exhibited, and the heat exchange is more efficient than in the non-boiling state where convective heat transfer is dominant. Is promoted. On the other hand, in the heat transfer tube in the upper part of the container, heat exchange by convective heat transfer is promoted by bubbles generated from the lower heat transfer tube as described above. As a result,
The heat exchange performance of the heat exchanger as a whole is improved.

【0009】具体的構成においては、容器の内部に配置
された複数本の伝熱管は、容器の下部に配置されて高温
流体が最初に流れ込むべき1或いは複数本の第1伝熱管
と、容器の上部に配置されて第1伝熱管を通過した高温
流体が次に流れ込むべき複数本の第2伝熱管とを具えて
いる。ここで、第1伝熱管は、表面が滑らかな通常の伝
熱管によって構成することが出来る。
In a specific configuration, the plurality of heat transfer tubes disposed inside the container are disposed at a lower portion of the container and one or more first heat transfer tubes into which a high-temperature fluid is to flow first, and a heat transfer tube of the container. A plurality of second heat transfer tubes, which are disposed at the top and through which the high-temperature fluid passing through the first heat transfer tubes is to flow next. Here, the first heat transfer tube can be constituted by a normal heat transfer tube having a smooth surface.

【0010】該具体的構成においては、先ず第1伝熱管
に高温流体が流れ込むことによって、第1伝熱管の表面
を介して、その周囲を取り巻く低温流体が加熱される。
そして、第1伝熱管を通過して温度の低下した高温流体
が次に第2伝熱管に流れ込むことによって、第2伝熱管
の表面を介して、その周囲を取り巻く低温流体が加熱さ
れる。この際、第1伝熱管の表面は、温度低下の生じて
いない高温流体によって、第2伝熱管の表面よりも高温
に加熱されるので、沸騰促進管としての機能を発揮し、
その周囲の低温流体は沸騰を生じることになる。
In this specific configuration, the high-temperature fluid flows into the first heat transfer tube first, so that the low-temperature fluid surrounding the first heat transfer tube is heated through the surface of the first heat transfer tube.
Then, the high-temperature fluid having a lowered temperature after passing through the first heat transfer tube flows into the second heat transfer tube, whereby the low-temperature fluid surrounding the second heat transfer tube is heated through the surface of the second heat transfer tube. At this time, since the surface of the first heat transfer tube is heated to a higher temperature than the surface of the second heat transfer tube by the high-temperature fluid in which the temperature does not decrease, it functions as a boiling promoting tube,
The surrounding cold fluid will cause boiling.

【0011】又、他の具体的構成においては、容器の下
部に配置された1或いは複数本の伝熱管には、沸騰を促
進するための表面処理が施され、該伝熱管が沸騰促進管
を構成している。該具体的構成においては、沸騰促進管
が表面処理によって沸騰を起こし易い構造を有してい
る。例えば、沸騰促進管の表面には、微細な凹部が無数
に形成されており、比較的低い温度においても、これら
の凹部に気泡核が生成され、該気泡核が気泡に成長し
て、管表面から離脱する。この気泡の生成、成長、離脱
を繰り返すことによって、核沸騰が継続される。
In another specific configuration, one or a plurality of heat transfer tubes disposed at the lower part of the vessel are subjected to a surface treatment for promoting boiling, and the heat transfer tubes are provided with a boiling promoting tube. Make up. In this specific configuration, the boiling accelerating tube has a structure in which boiling is easily caused by surface treatment. For example, countless fine recesses are formed on the surface of the boiling promoting tube, and even at a relatively low temperature, bubble nuclei are generated in these recesses, and the bubble nuclei grow into bubbles, and the surface of the tube increases. Break away from Nucleate boiling is continued by repeating generation, growth, and detachment of the bubbles.

【0012】更に具体的には、容器の上部に配置された
複数本の伝熱管は、容器の下部に配置された沸騰促進管
よりも対流熱伝達特性の良好な対流促進管によって構成
されている。対流促進管は、例えばその外周面に対流熱
伝達を促進するためのフィンを突設して構成される。該
具体的構成においては、容器上部の対流促進管の間を浮
上する気泡によって、対流促進管の対流促進機能が助長
され、これによって、対流熱伝達による熱交換が更に促
進される。
More specifically, the plurality of heat transfer tubes arranged at the top of the vessel are constituted by convection promotion tubes having better convection heat transfer characteristics than the boiling promotion tubes arranged at the bottom of the vessel. . The convection promoting tube is configured by, for example, protruding a fin for promoting convective heat transfer from an outer peripheral surface thereof. In this specific configuration, air bubbles floating between the convection promoting tubes at the top of the container promote the convection promoting function of the convection promoting tubes, thereby further promoting heat exchange by convective heat transfer.

【0013】[0013]

【発明の効果】本発明に係る管外沸騰型熱交換器によれ
ば、従来の管外沸騰型熱交換器よりも熱交換性能が向上
する。
According to the extra-boiling heat exchanger of the present invention, the heat exchange performance is improved as compared with the conventional extra-boiling heat exchanger.

【0014】[0014]

【発明の実施の形態】以下、本発明を二重効用型吸収式
冷凍機の低温再生器に実施した形態につき、図面に沿っ
て具体的に説明する。図3に示す低温再生器は、その胴
体となる容器(1)の内部に、2枚の仕切板(2)(3)を設
置して、熱交換室(11)、入口室(12)及び出口室(13)が形
成され、入口室(12)には高温流体入口管(4)、出口室(1
3)には高温流体出口管(41)が接続されると共に、熱交換
室(11)には低温流体入口管及び低温流体出口管(何れも
図示省略)が接続されている。又、熱交換室(11)には、
両仕切板(2)(3)の間に、入口室(12)及び出口室(13)に
連通する複数本の伝熱管(6)(7)が架設されている。こ
こで、熱交換室(11)の下部に設置された複数本の伝熱管
(6)は、後述する表面処理の施された沸騰促進管によっ
て構成され、熱交換室(11)の上部に設置された複数本の
伝熱管(7)は表面が滑らかな裸管によって構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention applied to a low-temperature regenerator of a double-effect absorption refrigerator will be specifically described below with reference to the drawings. The low-temperature regenerator shown in FIG. 3 has two partition plates (2) and (3) installed inside a container (1) serving as a body thereof, and a heat exchange chamber (11), an inlet chamber (12), and An outlet chamber (13) is formed, and the inlet chamber (12) has a hot fluid inlet pipe (4) and an outlet chamber (1).
A high temperature fluid outlet pipe (41) is connected to 3), and a low temperature fluid inlet pipe and a low temperature fluid outlet pipe (both not shown) are connected to the heat exchange chamber (11). In the heat exchange chamber (11),
A plurality of heat transfer tubes (6) (7) communicating with the inlet chamber (12) and the outlet chamber (13) are provided between the two partition plates (2) and (3). Here, a plurality of heat transfer tubes installed in the lower part of the heat exchange chamber (11)
(6) is constituted by a boiling accelerating tube subjected to a surface treatment described later, and a plurality of heat transfer tubes (7) installed at the upper part of the heat exchange chamber (11) are constituted by bare tubes having a smooth surface. ing.

【0015】高温流体入口管(4)から容器(1)の入口室
(12)へ流入した水蒸気Sは、熱交換室(11)の複数本の伝
熱管(6)(7)を通過した後、出口室(13)から高温流体出
口管(41)へ流出する。又、容器(1)の熱交換室(11)へ流
入した臭化リチウム水溶液Aは、熱交換室(11)の内部を
水蒸気の流れとは逆方向に流れた後、外部へ流出する。
この過程で、複数本の伝熱管(6)(7)の外周面が伝熱面
となって、水蒸気と臭化リチウム水溶液の間で熱交換が
行なわれるのである。
[0015] From the hot fluid inlet pipe (4) to the inlet chamber of the vessel (1)
The steam S flowing into (12) passes through the plurality of heat transfer tubes (6) and (7) of the heat exchange chamber (11), and then flows out of the outlet chamber (13) to the high-temperature fluid outlet pipe (41). The aqueous solution of lithium bromide A that has flowed into the heat exchange chamber (11) of the container (1) flows in the heat exchange chamber (11) in a direction opposite to the flow of steam, and then flows out.
In this process, the outer peripheral surfaces of the plurality of heat transfer tubes (6) and (7) become heat transfer surfaces, and heat exchange is performed between steam and the aqueous solution of lithium bromide.

【0016】熱交換室(11)下部に設置された複数本の伝
熱管(6)は、例えば図5に示す如く、管表面に、奥が拡
大した微細な溝(61)が縦横に凹設されており、これによ
って管表面での沸騰を促進するものである(例えば商品
名「沸騰用エバーフィンΔ」(米国特許第4216826号))。
又、伝熱管(6)を焼結金属によって作製することによ
り、管表面に微細な凹凸面を形成して、同様の沸騰促進
管を構成することも可能である。
As shown in FIG. 5, for example, as shown in FIG. 5, the plurality of heat transfer tubes (6) installed at the lower part of the heat exchange chamber (11) are provided with fine grooves (61) having an enlarged depth in the tube surface. This promotes boiling on the tube surface (for example, trade name “Everfin for boiling Δ” (US Pat. No. 4,216,826)).
Further, by forming the heat transfer tube (6) from a sintered metal, it is also possible to form a fine uneven surface on the surface of the tube, thereby forming a similar boiling promoting tube.

【0017】上記低温再生器においては、図1に示す如
く、複数本の伝熱管(6)(7)へ高温の水蒸気Sが流入す
ることによって、沸騰促進管たる伝熱管(6)の周囲で
は、臭化リチウム水溶液Aが核沸騰を起こし、これによ
って連続的に発生する気泡Bは、熱交換室(11)上部の伝
熱管(7)の間を縫って浮上することになる。この臭化リ
チウム水溶液の沸騰によって、熱交換室(11)の下部で
は、核沸騰固有の伝熱特性により、熱交換が促進され
る。
In the above low-temperature regenerator, as shown in FIG. 1, high-temperature steam S flows into the plurality of heat transfer tubes 6 and 7, so that the heat is generated around the heat transfer tube 6 serving as a boiling promoting tube. The aqueous solution A of lithium bromide causes nucleate boiling, and the bubbles B continuously generated by the nucleation float between the heat transfer tubes 7 above the heat exchange chamber 11. Due to the boiling of the lithium bromide aqueous solution, heat exchange is promoted in the lower part of the heat exchange chamber (11) by the heat transfer characteristic inherent in nucleate boiling.

【0018】一方、熱交換室(11)上部の伝熱管(7)の周
囲には、沸騰の発生しない領域が存在するが、この領域
においては、上記気泡Bの浮上によって臭化リチウム水
溶液が掻き乱され、対流熱伝達による熱交換が促進され
る。この結果、低温再生器全体としての熱交換性能が従
来の低温再生器よりも向上することになる。
On the other hand, there is a region where boiling does not occur around the heat transfer tube (7) above the heat exchange chamber (11). In this region, the floating of the bubble B causes the aqueous solution of lithium bromide to be scratched. Disturbed and promotes heat exchange by convective heat transfer. As a result, the heat exchange performance of the entire low-temperature regenerator is improved as compared with the conventional low-temperature regenerator.

【0019】図2に示す低温再生器は、熱交換室(11)の
下部に沸騰促進管たる伝熱管(6)を配置する点は上記低
温再生器と同じであるが、熱交換室(11)上部には、対流
促進効果を有する伝熱管(71)を設置している。対流促進
効果を有する伝熱管(71)は、例えば図6に示す如く、外
周面に複数枚のフィン(72)を突設した所謂ミドルフィン
管或いはハイフィン管によって構成することが出来る。
ここで、伝熱管(71)は例えばりん脱酸銅からなり、内径
約15mmの管本体に対し、フィン(72)の高さは2〜数
mmに形成される。これによって、熱交換室(11)上部に
おける対流熱伝達による熱交換が更に促進される。
The low-temperature regenerator shown in FIG. 2 is the same as the low-temperature regenerator in that a heat transfer tube (6) serving as a boiling accelerating tube is arranged below the heat exchange chamber (11). A heat transfer tube (71) having a convection promoting effect is installed at the upper part. The heat transfer tube (71) having a convection promoting effect can be constituted by a so-called middle fin tube or high fin tube having a plurality of fins (72) projecting from the outer peripheral surface as shown in FIG. 6, for example.
Here, the heat transfer tube (71) is made of, for example, phosphorous deoxidized copper, and the height of the fin (72) is formed in a range of 2 to several mm for a tube main body having an inner diameter of about 15 mm. This further promotes heat exchange by convective heat transfer in the upper part of the heat exchange chamber (11).

【0020】又、図3に示す低温再生器は、容器(1)の
熱交換室(11)に設置すべき伝熱管(6)(7)を全て、表面
の滑らかな裸管によって構成するべく、容器(1)内の左
側の仕切板(2)によって形成した部屋を、更に水平の仕
切板(8)によって上下に仕切り、入口室(12)と出口室(1
3)を隣接して形成すると共に、容器(1)内の右側の仕切
板(3)によって中継室(14)を形成し、入口室(12)には高
温流体入口管(4)、出口室(13)には高温流体出口管(41)
を接続したものである。仕切板(3)には、中継室(14)に
突出する邪魔板(81)が設けられる。高温再生器からの水
蒸気は高温流体入口管(4)から入口室(12)へ流入し、更
に熱交換室(11)下部の伝熱管(6)に流れ込んで、伝熱管
(6)を通過した後、中継室(14)へ流出する。この水蒸気
は邪魔板(81)に導かれて中継室(14)内を上昇し、熱交換
室(11)上部の伝熱管(7)へ流れ込んで、伝熱管(7)を通
過した後、出口室(13)から高温流体出口管(41)へ流出す
る。
In the low-temperature regenerator shown in FIG. 3, the heat transfer tubes 6 and 7 to be installed in the heat exchange chamber 11 of the container 1 are all constituted by bare tubes having a smooth surface. The room formed by the left partition plate (2) in the container (1) is further divided vertically by a horizontal partition plate (8), and the inlet chamber (12) and the outlet chamber (1) are separated.
3) are formed adjacent to each other, a relay chamber (14) is formed by the right partition plate (3) in the container (1), and the inlet chamber (12) has a high-temperature fluid inlet pipe (4) and an outlet chamber. (13) has a high temperature fluid outlet pipe (41)
Are connected. The partition plate (3) is provided with a baffle plate (81) projecting into the relay room (14). The steam from the high-temperature regenerator flows into the inlet chamber (12) from the high-temperature fluid inlet pipe (4), and further flows into the heat transfer pipe (6) below the heat exchange chamber (11).
After passing through (6), it flows out to the relay room (14). This water vapor is guided by the baffle plate (81), rises in the relay chamber (14), flows into the heat transfer pipe (7) above the heat exchange chamber (11), passes through the heat transfer pipe (7), and then exits. It flows out of the chamber (13) to the hot fluid outlet pipe (41).

【0021】従って、熱交換室(11)下部の伝熱管(6)に
はその入口から出口に亘って高温の水蒸気が流れること
となり、その周囲の臭化リチウム水溶液は、伝熱管(6)
から十分な熱を受けて、沸騰することになる。この様に
して、熱交換室(11)下部の伝熱管(6)は、沸騰促進管と
しての機能を発揮するのである。これに対し、熱交換室
(11)上部の伝熱管(7)は、下部の伝熱管(6)を通過して
温度の低下した水蒸気が流れるため、その周囲の臭化リ
チウム水溶液には、沸騰しない領域が生じるが、この領
域では、熱交換室(11)下部の伝熱管(6)から発生した気
泡が対流熱伝達による熱交換を促進する。尚、図4に示
す構成において、熱交換室(11)下部の伝熱管(6)とし
て、図5に示す如き沸騰促進管を配置すれば、更に高い
沸騰促進効果が得られるのは言うまでもない。
Accordingly, high-temperature steam flows from the inlet to the outlet of the heat transfer tube (6) at the lower part of the heat exchange chamber (11), and the surrounding lithium bromide aqueous solution flows through the heat transfer tube (6).
Will receive enough heat to boil. Thus, the heat transfer tube (6) below the heat exchange chamber (11) functions as a boiling promoting tube. In contrast, the heat exchange chamber
(11) The upper heat transfer tube (7) passes through the lower heat transfer tube (6), and the steam whose temperature has decreased flows through the lower heat transfer tube (6). In the region, bubbles generated from the heat transfer tube (6) below the heat exchange chamber (11) promote heat exchange by convective heat transfer. In the structure shown in FIG. 4, it is needless to say that a higher boiling promoting effect can be obtained by disposing a boiling promoting tube as shown in FIG. 5 as the heat transfer tube (6) below the heat exchange chamber (11).

【0022】図7〜図9は、上記低温再生器における熱
交換性能を実証するべく行なった実験の結果を、沸騰曲
線としてグラフ化したものである。実験は、これらの図
中に表わす如く、臭化リチウム水溶液中に、ヒータを内
蔵した伝熱管S4、S2、S3を上下3段に配置し、ヒ
ータによって伝熱管表面に与える熱流束q(W/m2)を
測定しつつ、臭化リチウム水溶液の温度(飽和温度)と伝
熱管表面との温度差ΔTsat(K)を測定するものであっ
て、沸騰促進管を具えた本発明の装置を模擬するため
に、3本の伝熱管の中で、何れか1本には、強制的に沸
騰を起こすのに十分な40kW/m2の熱量を与えてこ
れを沸騰促進管とし、他の2本の伝熱管の熱流束を変化
させる実験系(以下、管群系という)を構成した。又、沸
騰促進管を具えない従来装置を模擬するために、上段及
び下段の伝熱管には熱を与えず、中段の伝熱管のみを対
象として熱流束を変化させる実験系(以下、単管系とい
う)を構成した。
FIGS. 7 to 9 are graphs showing the results of experiments conducted to verify the heat exchange performance of the low-temperature regenerator as boiling curves. In the experiment, as shown in these figures, heat transfer tubes S4, S2, and S3 each containing a heater were arranged in upper and lower three stages in an aqueous solution of lithium bromide, and the heat flux q (W / W / m 2 ) while measuring the temperature difference ΔTsat (K) between the temperature (saturation temperature) of the aqueous solution of lithium bromide and the surface of the heat transfer tube, and simulates the apparatus of the present invention having a boiling promoting tube. In order to do this, one of the three heat transfer tubes is given a heat quantity of 40 kW / m 2 sufficient to forcibly cause boiling, and this is used as a boiling accelerating tube, and the other two tubes An experimental system for changing the heat flux of the heat transfer tubes (hereinafter referred to as tube group system) was constructed. In addition, in order to simulate a conventional apparatus without a boiling accelerating tube, heat was not applied to the upper and lower heat transfer tubes, and an experimental system in which the heat flux was changed only for the middle heat transfer tube (hereinafter referred to as a single tube system) ).

【0023】図7は、下段の伝熱管S3を沸騰促進管と
した管群系における中段及び上段の伝熱管S2、S4に
ついての沸騰曲線を、単管系における沸騰曲線と比較し
たものである。管群系、単管系の何れの伝熱管において
も、沸騰曲線の傾斜が途中で大きくなっており、この点
で沸騰が起こっていることがわかる。又、管群系の中段
及び上段の何れの伝熱管についても、単管系よりも高い
熱流束が得られており、熱交換性能が大幅に向上してい
ることがわかる。これは、上述の如く、下段の沸騰促進
管の周囲から気泡が連続的に発生し、これらの気泡が中
段及び上段の伝熱管の対流熱伝達による熱交換を促進す
るからである。又、管群系の中段及び上段の伝熱管の外
部で沸騰が発生した後においても、これらの伝熱管で
は、単管系よりも大きな熱流束が得られており、沸騰熱
伝達による熱交換も促進されていることがわかる。
FIG. 7 compares the boiling curves of the middle and upper heat transfer tubes S2 and S4 in the tube bundle system in which the lower heat transfer tube S3 is a boiling accelerating tube with the boiling curves of the single tube system. In any of the heat transfer tubes of the tube group system and the single tube system, the slope of the boiling curve becomes large on the way, and it is understood that boiling occurs at this point. In addition, in both the middle and upper heat transfer tubes in the tube bank system, a higher heat flux was obtained than in the single tube system, and it can be seen that the heat exchange performance was significantly improved. This is because, as described above, air bubbles are continuously generated around the lower boiling accelerating tube, and these air bubbles promote heat exchange by convective heat transfer of the middle and upper heat transfer tubes. Also, even after boiling occurs outside the middle and upper heat transfer tubes in the tube bundle system, these heat transfer tubes have a larger heat flux than the single tube system, and heat exchange by boiling heat transfer is also difficult. You can see that it is promoted.

【0024】図8は、中段の伝熱管S2を沸騰促進管と
した管群系における下段及び上段の伝熱管S3、S4に
ついての沸騰曲線を、単管系における沸騰曲線と比較し
たものである。管群系の下段及び上段の何れの伝熱管に
ついても、単管系よりも高い熱流束が得られており、熱
交換性能が向上している。この結果から、沸騰促進管の
周囲から発生する気泡によって、その上段の伝熱管のみ
ならず、下段の伝熱管についても、対流熱伝達による熱
交換が促進されることがわかる。但し、沸騰促進管の効
果は、その下段の伝熱管よりも上段の伝熱管に顕著に現
われる。これは、沸騰促進管の周囲から発生した気泡の
影響が、下段の伝熱管に対しては比較的弱いからであ
る。
FIG. 8 shows a comparison between the boiling curves of the lower and upper heat transfer tubes S3 and S4 in the tube bank system in which the middle heat transfer tube S2 is a boiling accelerating tube, and the boiling curve in the single tube system. In both the lower and upper heat transfer tubes of the tube bank system, a higher heat flux is obtained than in the single tube system, and the heat exchange performance is improved. From this result, it is understood that the air bubbles generated from the periphery of the boiling promotion tube promote heat exchange by convective heat transfer not only in the upper stage heat transfer tube but also in the lower stage heat transfer tube. However, the effect of the boiling accelerating tube is more conspicuous in the upper heat transfer tube than in the lower heat transfer tube. This is because the influence of bubbles generated from around the boiling accelerating tube is relatively weak for the lower heat transfer tube.

【0025】更に図9は、上段の伝熱管S4を沸騰促進
管とした管群系における中段及び下段の伝熱管S2、S
3についての沸騰曲線を、単管系における沸騰曲線と比
較したものである。管群系の中段及び下段の何れの伝熱
管についても、単管系よりも高い熱流束が得られてお
り、熱交換性能が向上している。この結果から、沸騰促
進管の周囲から発生する気泡によって、その下方に配置
された中段及び下段の2本の伝熱管についても、対流熱
伝達による熱交換が促進されることがわかる。但し、上
段の沸騰促進管の効果は、下段の伝熱管には然程大きく
は現われない。
FIG. 9 shows middle and lower heat transfer tubes S2, S in a tube bank system in which the upper heat transfer tube S4 is a boiling accelerating tube.
3 compares the boiling curve for 3 with the boiling curve in a single tube system. Regarding any of the middle and lower heat transfer tubes in the tube bank system, a higher heat flux is obtained than in the single tube system, and the heat exchange performance is improved. From this result, it is understood that the bubbles generated from the periphery of the boiling promoting tube promote heat exchange by convective heat transfer also in the two middle and lower heat transfer tubes disposed below the boiling promoting tube. However, the effect of the upper boiling tube is not so large in the lower heat transfer tube.

【0026】図7〜図9の沸騰曲線の比較から明らかな
ように、沸騰促進管を下段に配置した図7の管群系にお
いても最も高い熱交換性能が得られており、この結果か
ら、図1〜図4に示す如く熱交換室(11)の下部に沸騰促
進管を配置した本発明の低温再生器の効果が実証され
る。
As is clear from the comparison of the boiling curves in FIGS. 7 to 9, the highest heat exchange performance was obtained also in the tube bank shown in FIG. 7 in which the boiling accelerating tube was arranged in the lower stage. As shown in FIGS. 1 to 4, the effect of the low-temperature regenerator of the present invention in which a boiling accelerating tube is arranged below the heat exchange chamber (11) is demonstrated.

【0027】上記実施の形態の説明は、本発明を説明す
るためのものであって、特許請求の範囲に記載の発明を
限定し、或は範囲を減縮する様に解すべきではない。
又、本発明の各部構成は上記実施の形態に限らず、特許
請求の範囲に記載の技術的範囲内で種々の変形が可能で
ある。例えば、本発明は、二重効用型吸収式冷凍機の低
温再生器に限らず、あらゆる管外沸騰型熱交換器に実施
できるのは勿論である。
The description of the above embodiment is for the purpose of describing the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof.
Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, the present invention is not limited to the low-temperature regenerator of the double effect absorption refrigerator, but can be of course applied to any extra-boiling heat exchanger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る管外沸騰型熱交換器の一実施例の
断面図である。
FIG. 1 is a sectional view of an embodiment of an extra-boiling boiling heat exchanger according to the present invention.

【図2】他の実施例を表わす断面図である。FIG. 2 is a sectional view showing another embodiment.

【図3】図1とは直交する向きの断面図である。FIG. 3 is a cross-sectional view in a direction orthogonal to FIG.

【図4】更に他の実施例を表わす断面図である。FIG. 4 is a sectional view showing still another embodiment.

【図5】沸騰促進管の表面の一部を拡大して表わす斜視
図である。
FIG. 5 is an enlarged perspective view showing a part of the surface of the boiling promoting tube.

【図6】フィンを突設した伝熱管の断面図である。FIG. 6 is a cross-sectional view of a heat transfer tube on which fins are protruded.

【図7】沸騰促進管を下段に配置した場合の沸騰曲線を
表わすグラフである。
FIG. 7 is a graph showing a boiling curve when a boiling accelerating tube is arranged in a lower stage.

【図8】沸騰促進管を中段に配置した場合の沸騰曲線を
表わすグラフである。
FIG. 8 is a graph showing a boiling curve when a boiling accelerating tube is arranged in a middle stage.

【図9】沸騰促進管を上段に配置した場合の沸騰曲線を
表わすグラフである。
FIG. 9 is a graph showing a boiling curve when a boiling accelerating tube is arranged in an upper stage.

【図10】隔壁型熱交換器の一部破断斜視図である。FIG. 10 is a partially cutaway perspective view of a partition type heat exchanger.

【符号の説明】[Explanation of symbols]

(1) 容器 (11) 熱交換室 (6) 伝熱管(沸騰促進管) (7) 伝熱管 (71) 伝熱管 A 低温流体(臭化リチウム水溶液) S 高温流体(水蒸気) B 気泡 (1) Vessel (11) Heat exchange chamber (6) Heat transfer tube (boiling accelerating tube) (7) Heat transfer tube (71) Heat transfer tube A Low temperature fluid (lithium bromide aqueous solution) S High temperature fluid (steam) B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 容器の内部に、横方向に伸びる複数本の
伝熱管が上下複数段に配置され、容器の内部を流れる低
温流体と伝熱管を流れる高温流体との熱交換によって、
伝熱管の外部に、低温流体の沸騰領域が形成される管外
沸騰型熱交換器において、前記複数本の伝熱管の内、容
器の下部に配置された1或いは複数本の伝熱管は、容器
の上部に配置された複数本の伝熱管よりも低い温度で管
外沸騰を起こす沸騰促進管であることを特徴とする管外
沸騰型熱交換器。
A plurality of heat transfer tubes extending in a lateral direction are arranged in a plurality of upper and lower stages inside a container, and heat exchange between a low-temperature fluid flowing inside the container and a high-temperature fluid flowing through the heat transfer tubes is performed.
In an extra-boiling boiling heat exchanger in which a boiling region of a low-temperature fluid is formed outside a heat transfer tube, one or more of the plurality of heat transfer tubes disposed at a lower portion of the container are a container, An extra-boiling heat exchanger characterized in that it is a boiling accelerating tube that causes extra-boiling at a lower temperature than a plurality of heat transfer tubes arranged above the heat transfer tube.
【請求項2】 容器の内部に配置された複数本の伝熱管
は、容器の下部に配置されて高温流体が最初に流れ込む
べき1或いは複数本の第1伝熱管と、容器の上部に配置
されて第1伝熱管を通過した高温流体が次に流れ込むべ
き複数本の第2伝熱管とを具え、第1伝熱管が沸騰促進
管を構成している請求項1に記載の管外沸騰型熱交換
器。
2. A plurality of heat transfer tubes disposed inside the container, one or more first heat transfer tubes which are disposed at a lower portion of the container and into which a high-temperature fluid is to flow first, and are disposed at an upper portion of the container. 2. The outside-tube boiling heat according to claim 1, further comprising a plurality of second heat transfer tubes into which the high-temperature fluid that has passed through the first heat transfer tubes flows into next, wherein the first heat transfer tubes constitute a boiling promoting tube. 3. Exchanger.
【請求項3】 容器の下部に配置された1或いは複数本
の伝熱管には、沸騰を促進するための表面処理が施さ
れ、該伝熱管が沸騰促進管を構成している請求項1に記
載の管外沸騰型熱交換器。
3. The method according to claim 1, wherein one or a plurality of heat transfer tubes disposed at a lower portion of the container are subjected to a surface treatment for promoting boiling, and the heat transfer tubes constitute a boiling promotion tube. An extra-tube boiling heat exchanger as described.
【請求項4】 容器の上部に配置された複数本の伝熱管
は、容器の下部に配置された沸騰促進管よりも対流熱伝
達特性の良好な対流促進管によって構成されている請求
項1乃至請求項3の何れかに記載の管外沸騰型熱交換
器。
4. The plurality of heat transfer tubes arranged at the upper part of the container are constituted by convection enhancer tubes having better convection heat transfer characteristics than the boiling enhancer tubes arranged at the lower part of the container. The outside-tube boiling heat exchanger according to claim 3.
【請求項5】 対流促進管は、その外周面に、対流熱伝
達を促進するためのフィンを具えている請求項4に記載
の管外沸騰型熱交換器。
5. The outside-tube boiling heat exchanger according to claim 4, wherein the convection promoting tube has fins on its outer peripheral surface for promoting convective heat transfer.
【請求項6】 請求項1乃至請求項5の何れかに記載の
管外沸騰型熱交換器を低温再生器として具えた二重効用
型の吸収式冷凍機。
6. A double-effect absorption refrigerator comprising the extra-boiling boiling heat exchanger according to claim 1 as a low-temperature regenerator.
JP23887796A 1996-09-10 1996-09-10 Out-tube boiling type heat exchanger and absorption refrigerator with this heat exchanger Pending JPH1089804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23887796A JPH1089804A (en) 1996-09-10 1996-09-10 Out-tube boiling type heat exchanger and absorption refrigerator with this heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23887796A JPH1089804A (en) 1996-09-10 1996-09-10 Out-tube boiling type heat exchanger and absorption refrigerator with this heat exchanger

Publications (1)

Publication Number Publication Date
JPH1089804A true JPH1089804A (en) 1998-04-10

Family

ID=17036600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23887796A Pending JPH1089804A (en) 1996-09-10 1996-09-10 Out-tube boiling type heat exchanger and absorption refrigerator with this heat exchanger

Country Status (1)

Country Link
JP (1) JPH1089804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110595233A (en) * 2019-09-30 2019-12-20 郑州大学 Tube box coupling U-shaped heat exchange tube type multi-tube pass heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110595233A (en) * 2019-09-30 2019-12-20 郑州大学 Tube box coupling U-shaped heat exchange tube type multi-tube pass heat exchanger

Similar Documents

Publication Publication Date Title
US5181560A (en) Baffleless tube and shell heat exchanger having fluted tubes
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
CN106870938A (en) A kind of fin-tube type intermediate medium gasifier
JPS6342291Y2 (en)
JP2810558B2 (en) Regenerator
JPH1089804A (en) Out-tube boiling type heat exchanger and absorption refrigerator with this heat exchanger
JP3712775B2 (en) Plate evaporator / absorber for absorption refrigerator
JP2000205787A (en) Water heat exchanger
JP4313605B2 (en) Fluid cooler
JP3475003B2 (en) Plate evaporator for absorption refrigerator
JP3547883B2 (en) Absorption chiller / heater
US2690058A (en) Condenser arrangement for absorption refrigeration apparatus
JP2573806Y2 (en) Shell and tube absorption condenser
CN212362924U (en) Supercooling device with high supercooling efficiency and heat exchanger
JPH0776653B2 (en) Direct contact type condenser and heat cycle device using the same
JP2000111291A (en) Heat transfer pipe
JPS593262Y2 (en) water heater
JP3756980B2 (en) Plate type absorber for absorption refrigerator
JPH01121689A (en) Heat transfer device
KR0143852B1 (en) Evaporator for absorptive airconditioner
JPH0278871A (en) Flush evaporator
JPS6135903Y2 (en)
JP3236721B2 (en) Regenerator for absorption refrigerator
KR200221381Y1 (en) Structure of generator in an absorption chiller
JPH05312434A (en) Low temperature regenerator of absorption water cooling/heating device