JPH0278871A - Flush evaporator - Google Patents

Flush evaporator

Info

Publication number
JPH0278871A
JPH0278871A JP22872588A JP22872588A JPH0278871A JP H0278871 A JPH0278871 A JP H0278871A JP 22872588 A JP22872588 A JP 22872588A JP 22872588 A JP22872588 A JP 22872588A JP H0278871 A JPH0278871 A JP H0278871A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
flash evaporator
vapor
communicating pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22872588A
Other languages
Japanese (ja)
Inventor
Tamio Shimizu
清水 民男
Chihiro Miyajima
宮島 千広
Tomihisa Ouchi
大内 富久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22872588A priority Critical patent/JPH0278871A/en
Publication of JPH0278871A publication Critical patent/JPH0278871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To prevent the generation of the phenomenon of accompanying vapor by narrowing the arranging spaces of receiving pans sequentially from an upper stage toward a lower stage. CONSTITUTION:An evaporator 1 is constituted of a sealed box body 2, a plurality of refrigerant receiving pans 3a, 3b, 3c, 3d, 3e, a refrigerant communicating pipe 4, through which liquid refrigerant passes, a refrigerant inflow port 5 connected to the communicating pipe 4, the refrigerant communicating pipe 6, a refrigerant outflow port 7 connected to the communicating pipe 6 and a refrigerant vapor communicating pipe 8, through which refrigerant vapor passes, while the communicating pipe 8 is communicated with an absorber. Spaces between said refrigerant receiving pans in an upper stage are large and the mutual spaces are narrowed from the upper stage toward a lower stage. The mutual spaces between the refrigerant receiving pans 3a-3e are arranged so that refrigerant passages 9a, 9b, 9c, 9d, 9e are narrowed gradually from the upper stage toward the lower stage, however, it is preferable to slant the pans slightly so as to facilitate the flowing of the refrigerant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱媒体が直接し、蒸発器内で自己蒸発し、そ
のときの蒸発熱によって熱媒体を自己冷却するフラッシ
ュ蒸発器に係り、特に吸収式冷温水機もしくは吸収式冷
温風機に好適なフラッシュ蒸発器に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a flash evaporator in which a heat medium directly evaporates within the evaporator, and the heat medium is self-cooled by the heat of evaporation at that time. In particular, the present invention relates to a flash evaporator suitable for absorption type cold/hot water machines or absorption type cold/hot air machines.

〔従来の技術〕     □ 従来のフラッシュ蒸発器には1例えば特開昭58−21
4760号に開示されるようにスプレーを利用して熱媒
体(以下液冷媒という)を滴下するフラッシュ蒸発器が
ある。
[Prior art] □ Conventional flash evaporators include
As disclosed in Japanese Patent No. 4760, there is a flash evaporator that drips a heat medium (hereinafter referred to as liquid refrigerant) using a spray.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

流入液冷媒の温度と蒸発器の器内蒸発圧力との平衡温度
差が大きい液冷媒流入口では液が沸騰し、冷媒蒸気の発
生量が多い、このため、過流速になると液冷媒の蒸気随
伴現象が発生する。
At the liquid refrigerant inlet where there is a large equilibrium temperature difference between the temperature of the incoming liquid refrigerant and the evaporation pressure inside the evaporator, the liquid boils and a large amount of refrigerant vapor is generated.For this reason, when the flow rate becomes excessive, the liquid refrigerant vapor entrains. A phenomenon occurs.

本発明の目的は上記問題点を解決し蒸気随伴現象の発生
しないフラッシュ蒸発器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a flash evaporator that does not cause vapor entrainment phenomena.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、互い違い(スタガー状)に複数段に受皿を
配置し、上段から下段へ液冷媒を流下させて自己蒸発さ
せるフラッシュ蒸発器において、上段から下段に向うに
従って受皿の配置間隔を狭くすることによって、達成さ
れる。
The above purpose is to narrow the spacing between the trays from the top to the bottom in a flash evaporator in which saucers are arranged in multiple stages in a staggered manner and the liquid refrigerant flows down from the top to the bottom for self-evaporation. achieved by.

又、上記目的は、受皿を螺旋状に形成し、上方から下方
へ液冷媒を流下させて自己蒸発させるフラッシュ蒸発器
において、上方から下方へ向うに従って受皿の間隔を狭
くすることによって、達成される。
Further, the above object is achieved in a flash evaporator in which the saucers are formed in a spiral shape and the liquid refrigerant flows downward from above to self-evaporate, and the spacing between the saucers is narrowed from the top to the bottom. .

〔作用〕[Effect]

互い違いに複数段に配置した受皿のうち、上段に配置す
る受皿の間隔を下段に配置する受皿の間隔より大きくす
ることKよって、上段の受皿に多量の冷媒蒸気が発生し
ても蒸気随伴現象を伴うことなく冷媒蒸気は容易に冷媒
蒸気通路に流れることができる。
Of the saucers arranged in multiple stages alternately, the interval between the saucers arranged in the upper stage is made larger than the interval between the saucers arranged in the lower stage.Therefore, even if a large amount of refrigerant vapor is generated in the upper stage saucers, the vapor accompanying phenomenon can be prevented. Refrigerant vapor can easily flow into the refrigerant vapor path without entrainment.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はフラッシュ蒸発器の縦断面図、第2図は第1図
のx−X線に沿う横断面図である。蒸発器1は密閉され
た箱体2、この箱体2に互い違いに取付けられた複数の
冷媒受皿3a、3b、3c。
FIG. 1 is a longitudinal cross-sectional view of the flash evaporator, and FIG. 2 is a cross-sectional view taken along line XX in FIG. 1. The evaporator 1 includes a sealed box 2 and a plurality of refrigerant trays 3a, 3b, and 3c attached alternately to the box 2.

3d、3e、液冷媒が通る冷媒連絡管4、この連絡管4
に結合される冷媒流入口5、冷媒連絡管6、この連絡管
6に結合された冷媒流出ロア、冷媒蒸気が通る冷媒蒸気
連絡管8から構成さ九、この連絡管8は吸収器(図示せ
ず)に通じている。前述の冷媒受皿3a〜3eは上段に
おいて互いの間隔は大きく、下段になるに従って互いの
間隔が小さく、即ち冷媒受皿48〜4eの互いの間隔は
上段から下段になるに従って冷媒蒸気通路9a、9b。
3d, 3e, refrigerant communication pipe 4 through which liquid refrigerant passes, this communication pipe 4
It consists of a refrigerant inlet 5 connected to the refrigerant, a refrigerant communication pipe 6, a refrigerant outflow lower connected to the connection pipe 6, and a refrigerant vapor communication pipe 8 through which refrigerant vapor passes. ). The above-mentioned refrigerant trays 3a to 3e are spaced apart from each other in the upper stage, and the distance between them becomes smaller as they move toward the lower stage.In other words, the distance between the refrigerant trays 48 to 4e decreases from the upper stage to the lower stage.

9c、9d、9eが徐々に狭くなるよう配置されるが、
冷媒が流れ易いように若干斜むけることが好ましい。
9c, 9d, and 9e are arranged so that they become gradually narrower,
It is preferable to angle it slightly so that the refrigerant can flow easily.

上記構成において、例えば案内のファンコイルユニット
で熱交換して加熱された冷媒は、冷媒連絡管4から流入
口5へ入るが、冷媒受皿38〜38を流れ、流下する過
程で高真空に保たれた蒸発器1内の圧力に相当する飽和
圧力まで液冷媒の一部が蒸発し、液冷媒は自己冷却して
液温か低下する。冷媒蒸気の通路98〜9eは上段に大
きく。
In the above configuration, the refrigerant heated by heat exchange with the guide fan coil unit, for example, enters the inlet 5 from the refrigerant communication pipe 4, but flows through the refrigerant trays 38 to 38, and is maintained at a high vacuum during the process of flowing down. A portion of the liquid refrigerant evaporates to a saturation pressure corresponding to the pressure inside the evaporator 1, and the liquid refrigerant self-cools and its temperature drops. The refrigerant vapor passages 98 to 9e are large in the upper stage.

下段になるに従って小さくなるよう配置されているため
、上段から下段の全てにおいて均一に蒸発し、効率的に
液冷媒の自己冷却作用がなされる。
Since the refrigerant is arranged so that it becomes smaller toward the lower stage, it evaporates uniformly from the upper stage to the lower stage, and the self-cooling effect of the liquid refrigerant is efficiently performed.

自己冷却した液冷媒は流出ロア、連絡管6を経て再び前
述のファンコイルユニットへ導かれて室内の空気と熱交
換する。
The self-cooled liquid refrigerant is led back to the aforementioned fan coil unit via the outflow lower and the connecting pipe 6, where it exchanges heat with the indoor air.

蒸発する冷媒蒸気の発生量は、液冷媒温度と蒸発器内の
蒸発圧′力との平衡温度差が大きい上段受皿3aの方が
多く、下段3e方にいくほど少なくなる。上述したよう
に本実施例によれば、上段受皿の冷媒蒸気通路を冷媒蒸
気発生量に応じて広くし、蒸気発生量の少ない下段受皿
の冷媒蒸気通路を狭く取っているため、蒸発した冷媒蒸
気流速が均一化でき、過流速による液冷媒の蒸気随伴現
象(未蒸発冷媒液滴が冷媒蒸気の流動に随伴する現象)
を防止し、蒸発器の効率低下防止と蒸発器の小形化に効
果がある。
The amount of evaporated refrigerant vapor generated is greater in the upper tray 3a where the equilibrium temperature difference between the liquid refrigerant temperature and the evaporation pressure in the evaporator is large, and decreases toward the lower tray 3e. As described above, according to this embodiment, the refrigerant vapor passage in the upper tray is widened according to the amount of generated refrigerant vapor, and the refrigerant vapor passage in the lower tray, where the amount of vapor generated is small, is narrowed, so that the evaporated refrigerant vapor is The flow rate can be made uniform, and the liquid refrigerant vapor accompanying phenomenon due to excessive flow rate (a phenomenon in which unevaporated refrigerant droplets accompany the flow of refrigerant vapor)
This is effective in preventing a decrease in evaporator efficiency and downsizing the evaporator.

又、冷媒蒸気を吸収器へ導く吸収式冷凍機の場合に、蒸
気随伴現象によって冷媒液滴が吸収器へ流入すると吸収
器の溶液が液冷媒で直接希釈され、このために、吸収器
の冷媒蒸気吸収能力が低下する。また蒸発器では冷媒の
蒸発潜熱を有効利用できないため、冷房能力が低下する
。この結果、冷房サイクルのcop (冷凍効率)が低
下する。
In addition, in the case of an absorption refrigerator that introduces refrigerant vapor to an absorber, when refrigerant droplets flow into the absorber due to vapor entrainment phenomenon, the solution in the absorber is directly diluted with liquid refrigerant, and for this reason, the refrigerant in the absorber Vapor absorption capacity is reduced. Furthermore, since the evaporator cannot effectively utilize the latent heat of vaporization of the refrigerant, the cooling capacity decreases. As a result, the cop (refrigeration efficiency) of the cooling cycle decreases.

第3図はフラッシュ蒸発器の他の実施例で、冷媒受皿を
螺旋状に形成したものである。
FIG. 3 shows another embodiment of the flash evaporator, in which the refrigerant tray is formed in a spiral shape.

フラッシュ蒸発器11は密閉された箱体12と、螺旋状
に形成された冷媒受皿13.冷媒連絡管14、流入口1
5.冷媒連絡管16.流出口17゜冷媒蒸気18から構
成され、冷媒蒸気通路19a。
The flash evaporator 11 includes a sealed box 12 and a refrigerant tray 13 formed in a spiral shape. Refrigerant communication pipe 14, inlet 1
5. Refrigerant communication pipe 16. Outlet 17° consists of refrigerant vapor 18 and refrigerant vapor passage 19a.

19b、19c、19d、19sは上段から下段になる
に従って間隔が徐々に狭くなっている。
The spacing between 19b, 19c, 19d, and 19s gradually narrows from the top to the bottom.

上記構成において、液冷媒が連絡管14.流入口15を
経て冷媒受皿13に流入し、流下して流出口16から蒸
発器外へ出る過程で高真空に保たれた蒸発器1内で冷媒
が蒸発し、冷媒蒸気が冷媒蒸気連絡管18から例えばフ
ァンコイルユニットもしくは吸収器へ導かれることは前
述の実施例と同様である。又、この実施例においても蒸
気随伴現象を伴うことなく冷媒蒸気が発生するという効
果があるが、受皿13が連続しており、前述の実施例の
ように前段の受皿から次段の受皿へ冷媒が流れる際に液
冷媒が落下するという過程がないので、冷媒液滴の発生
は一層防止できる。
In the above configuration, the liquid refrigerant is connected to the connecting pipe 14. The refrigerant flows into the refrigerant tray 13 through the inlet 15, flows down, and exits the evaporator through the outlet 16. During the process, the refrigerant evaporates in the evaporator 1, which is maintained at a high vacuum, and refrigerant vapor flows into the refrigerant vapor communication pipe 18. It is the same as in the previous embodiment that the air is guided from the air to, for example, a fan coil unit or an absorber. In addition, this embodiment also has the effect of generating refrigerant vapor without vapor entrainment, but the trays 13 are continuous, and the refrigerant flows from the previous tray to the next tray as in the previous embodiment. Since there is no process in which the liquid refrigerant falls when it flows, the generation of refrigerant droplets can be further prevented.

〔発明の効果〕〔Effect of the invention〕

流入液冷媒の温度と器内蒸気圧力との平衡温度差が大き
い冷媒液流入部では沸騰して自己蒸発するが、その後の
下段の方では沸騰しにくくなるが、本発明は蒸発面積を
大きくとれるため十分に低温になる。その時蒸発器から
流出する冷媒蒸気流速は受皿上段も下段も均一になり、
冷媒液の蒸気随伴を防止する効果がある。
At the refrigerant liquid inlet where there is a large equilibrium temperature difference between the temperature of the inflow liquid refrigerant and the steam pressure inside the vessel, it boils and self-evaporates, but boiling becomes difficult in the lower stages after that, but the present invention allows a large evaporation area. Therefore, the temperature becomes sufficiently low. At that time, the flow rate of refrigerant vapor flowing out from the evaporator becomes uniform in both the upper and lower trays.
This has the effect of preventing vapor entrainment of the refrigerant liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係るフラッシュ蒸発器の説明図で、第1
図は実施例の縦断面図、第2図は第1図のx−xiに沿
う横断面図、第3図は他の実施例の縦断面図、第4図は
第3図のx−X線に沿う横断面図である。 1.11・・・フラッシュ蒸発器、2,12・・・箱体
、3a〜3e、13a〜13e・・・冷媒受皿、4,6
゜14.16・・・冷媒連絡管、5,15・・・冷媒流
入口。 7.17・・・冷媒流出0.8.18・・・冷媒蒸気連
絡管、9a〜9e、19a〜19e・・・冷媒蒸気通路
。 毛 11!] 第 2 囚 第3 囚 !44 記
The drawing is an explanatory diagram of the flash evaporator according to the present invention, and the first
The figure is a vertical cross-sectional view of the embodiment, FIG. 2 is a cross-sectional view taken along x-xi in FIG. 1, FIG. 3 is a vertical cross-sectional view of another embodiment, and FIG. FIG. 1.11... Flash evaporator, 2, 12... Box, 3a to 3e, 13a to 13e... Refrigerant tray, 4, 6
゜14.16... Refrigerant communication pipe, 5, 15... Refrigerant inlet. 7.17... Refrigerant outflow 0.8.18... Refrigerant vapor communication pipe, 9a to 9e, 19a to 19e... Refrigerant vapor passage. Hair 11! ] 2nd prisoner 3rd prisoner! 44 notes

Claims (1)

【特許請求の範囲】 1、互い違いに複数段に冷媒受皿を配置し、上段から下
段へ熱媒体を流下させて自己蒸発させるフラッシュ蒸発
器において、上段から下段に向うに従つて受皿の配置間
隔を狭くすることを特徴とするフラッシュ蒸発器。 2、吸収式冷温水機に用いることを特徴とする請求項1
記載のフラッシュ蒸発器。 3、吸収式冷温風機に用いることを特徴とする請求項1
記載のフラッシュ蒸発器。 4、受皿に繊維を充填することを特徴とする請求項1記
載のフラッシュ蒸発器。 5、冷媒受皿を螺旋状に形成し、上方から下方へ熱媒体
を流下させて自己蒸発させるフラッシュ蒸発器において
、上方から下方へ向うに従つて受皿の間隔を狭く配置す
ることを特徴とするフラッシュ蒸発器。 6、吸収式冷温水機に用いることを特徴とする請求項5
記載のフラッシュ蒸発器。 7、吸収式冷温風機に用いることを特徴とする請求項5
記載のフラッシュ蒸発器。
[Claims] 1. In a flash evaporator in which refrigerant trays are alternately arranged in a plurality of stages and the heat medium flows down from the upper stage to the lower stage to self-evaporate, the interval between the trays is changed from the upper stage to the lower stage. Flash evaporator characterized by narrowing. 2. Claim 1 characterized in that it is used for an absorption type water cooler/heater.
Flash evaporator as described. 3. Claim 1 characterized in that it is used for an absorption type cold/hot air fan.
Flash evaporator as described. 4. The flash evaporator according to claim 1, wherein the tray is filled with fibers. 5. A flash evaporator in which the refrigerant tray is spirally formed and the heat medium flows downward from above to self-evaporate, characterized in that the spacing between the trays becomes narrower from the top to the bottom. Evaporator. 6. Claim 5 characterized in that it is used for an absorption type water chiller/heater.
Flash evaporator as described. 7. Claim 5 characterized in that it is used for an absorption type cold/hot air fan.
Flash evaporator as described.
JP22872588A 1988-09-14 1988-09-14 Flush evaporator Pending JPH0278871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22872588A JPH0278871A (en) 1988-09-14 1988-09-14 Flush evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22872588A JPH0278871A (en) 1988-09-14 1988-09-14 Flush evaporator

Publications (1)

Publication Number Publication Date
JPH0278871A true JPH0278871A (en) 1990-03-19

Family

ID=16880837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22872588A Pending JPH0278871A (en) 1988-09-14 1988-09-14 Flush evaporator

Country Status (1)

Country Link
JP (1) JPH0278871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198031A1 (en) * 2013-06-13 2014-12-18 Trane International Inc. Methods and systems of streaming refrigerant in a heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198031A1 (en) * 2013-06-13 2014-12-18 Trane International Inc. Methods and systems of streaming refrigerant in a heat exchanger
US10317114B2 (en) 2013-06-13 2019-06-11 Trane International Inc. Methods and systems of streaming refrigerant in a heat exchanger
US11092365B2 (en) 2013-06-13 2021-08-17 Trane International Inc. Methods and systems of streaming refrigerant in a heat exchanger

Similar Documents

Publication Publication Date Title
US4201263A (en) Refrigerant evaporator
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
JPS6342291Y2 (en)
JP3102483B2 (en) Absorption refrigerator
JPH0278871A (en) Flush evaporator
KR890004392B1 (en) Air cooled absorption refrigeration system
JP2568769B2 (en) Absorption refrigerator
US3550394A (en) Condensate heating of intermediate strength solution in two-stage absorption machine
JP2881593B2 (en) Absorption heat pump
CN108827027B (en) Pipe heat exchanger and downward film evaporator
JP6805473B2 (en) Absorption chiller
US2164045A (en) Refrigeration
JPH05118708A (en) Absorving/evaporating device
US2323186A (en) Refrigeration
JPS6133483Y2 (en)
JP2779565B2 (en) Absorption refrigerator
JP7080001B2 (en) Absorption chiller
US1993379A (en) Absorption refrigerating apparatus
US3520144A (en) Absorption refrigeration system
KR0143852B1 (en) Evaporator for absorptive airconditioner
JP2973653B2 (en) Absorption refrigerator
JP3852891B2 (en) Solution heat exchanger for absorption refrigerator
JPS5933963Y2 (en) Absorption chiller regenerator
JP3027646B2 (en) Absorption chiller / heater
JP4004019B2 (en) Absorption refrigerator