JPH1088242A - Magnesium oxide powder for separation agent at annealing used manufacture of grain oriented silicon steel sheet - Google Patents
Magnesium oxide powder for separation agent at annealing used manufacture of grain oriented silicon steel sheetInfo
- Publication number
- JPH1088242A JPH1088242A JP24045396A JP24045396A JPH1088242A JP H1088242 A JPH1088242 A JP H1088242A JP 24045396 A JP24045396 A JP 24045396A JP 24045396 A JP24045396 A JP 24045396A JP H1088242 A JPH1088242 A JP H1088242A
- Authority
- JP
- Japan
- Prior art keywords
- mgo
- slurry
- annealing
- steel sheet
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、方向性電磁鋼板
の製造工程中とくに最終仕上げ焼鈍工程において、均一
で優れた被膜特性を有するフォルステライト質グラス被
膜を形成すると共に、優れた磁気特性を得るために用い
られる焼鈍分離剤用のMgO粉に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to form a forsterite glass coating having uniform and excellent coating properties and to obtain excellent magnetic properties during the manufacturing process of grain-oriented electrical steel sheets, especially in the final finishing annealing step. For MgO powder for an annealing separator used for this purpose.
【0002】[0002]
【従来の技術】方向性電磁鋼板は、軟磁性材料として、
主に変圧器または回転機などの鉄心材料として使用さ
れ、特性的には磁束密度が高く、かつ鉄損、磁歪が小さ
いことが要求される。かような方向性電磁鋼板の表面に
は、特殊な場合を除いて、フォルステライト(Mg2SiO4)
質グラス被膜が形成されているのが一般的である。この
被膜は、表面の電気的絶縁だけでなく、その低熱膨張性
に起因した引張張力を鋼板に付与することにより、鉄損
さらには磁歪の改善にも寄与している。2. Description of the Related Art Grain-oriented electrical steel sheets are used as soft magnetic materials.
It is mainly used as an iron core material for transformers or rotating machines, and is required to have high magnetic flux density and small iron loss and magnetostriction in terms of characteristics. Except for special cases, forsterite (Mg 2 SiO 4 )
Generally, a glassy coating is formed. This coating contributes not only to the electrical insulation of the surface but also to the improvement of iron loss and magnetostriction by imparting tensile strength to the steel sheet due to its low thermal expansion property.
【0003】形成されたグラス被膜は、当然のことなが
ら、均一かつ欠陥がなく、しかもせん断、打ち抜きおよ
び曲げ加工などに耐える密着性の優れたものでなければ
ならない。また、平滑で、鉄心に積層したときに高い占
積率を有するものでなければならない。[0003] The formed glass coating must, of course, be uniform and defect-free and have excellent adhesion to withstand shearing, punching and bending. Further, it must be smooth and have a high space factor when laminated on an iron core.
【0004】方向性電磁鋼板の表面にグラス被膜を形成
させるには、所定の最終板厚に冷間圧延した後、脱炭・
1次再結晶焼鈍、すなわち湿水素中で 700〜900 ℃の温
度での連続焼鈍によって、冷間圧延後の組織を1次再結
晶させると共に、磁気余効の原因となるCをできる限り
減少させ、また同時に酸化によりシリカを主成分とする
サブスケールを鋼板表面に生成させ、その後、MgOを主
成分とする焼鈍分離剤を鋼板上に塗布してから、コイル
に巻き取り、還元または非酸化性雰囲気中にて1000℃か
ら1200℃程度の温度での高温仕上げ焼鈍を施すことによ
り行われる。かくして、次式で示される反応が生じて、
フォルステライト質絶縁被膜が形成される。 2MgO + SiO2 → Mg2SiO4 [0004] In order to form a glass coating on the surface of a grain-oriented electrical steel sheet, cold rolling is performed to a predetermined final sheet thickness, followed by decarburization.
Primary recrystallization annealing, that is, continuous annealing at a temperature of 700 to 900 ° C. in wet hydrogen makes the structure after cold rolling primary recrystallized and also reduces C which causes magnetic after-effect as much as possible. At the same time, a sub-scale mainly composed of silica is formed on the surface of the steel sheet by oxidation, and then an annealing separator mainly composed of MgO is applied onto the steel sheet, and then wound around a coil, and then reduced or non-oxidized. This is performed by performing high-temperature finish annealing at a temperature of about 1000 ° C. to 1200 ° C. in an atmosphere. Thus, a reaction represented by the following formula occurs,
A forsterite insulating coating is formed. 2MgO + SiO 2 → Mg 2 SiO 4
【0005】このグラス被膜は、上述したとおり、仕上
げ焼鈍時に形成されるが、その形成挙動は、鋼中のイン
ヒビター成分であるMnS, MnSe, AlNなどの挙動に影響
を与えるため、優れた磁気特性を得るための必須の過程
である2次再結晶そのものにも影響を及ぼす。すなわ
ち、仕上げ焼鈍途中の昇温過程およそ 900℃あたりの温
度域において、被膜形成反応の遅れや不均一な進行が生
じた場合、あるいは形成した被膜がポーラスな構造を呈
した場合には、焼鈍雰囲気からOやNが鋼中に侵入し易
くなるため、鋼中のインヒビターが分解したり、粗大化
または過剰化する。また、被膜形成反応が低温域から進
行すると、被膜へのインヒビターの吸い上げも低温から
生じ、その結果、鋼中のインヒビター不足をきたす。以
上のような現象が生じると、2次再結晶組織のゴス方位
への集積度は低くなり、磁気特性が劣化する。[0005] As described above, this glass film is formed at the time of finish annealing, and its formation behavior affects the behavior of MnS, MnSe, AlN and the like, which are inhibitor components in steel. Also affects the secondary recrystallization itself, which is an essential process for obtaining the recrystallization. In other words, if the film formation reaction is delayed or uneven in the temperature range around 900 ° C during the finish annealing, or if the formed film has a porous structure, the annealing atmosphere Therefore, O and N easily enter the steel, so that the inhibitors in the steel are decomposed, coarsened, or excessively increased. Further, when the film forming reaction proceeds from a low temperature range, the inhibitor is sucked into the film at a low temperature, resulting in a shortage of the inhibitor in the steel. When such a phenomenon occurs, the degree of integration of the secondary recrystallized structure in the Goss orientation decreases, and the magnetic characteristics deteriorate.
【0006】さらに、形成されたグラス被膜は、2次再
結晶が完了して不要となったインヒビター成分をグラス
被膜中に吸い上げ、鋼を純化する働きがあり、鋼板のヒ
ステリシス損の低減に役立つ。従って、このグラス被膜
を均一に形成することは、方向性電磁鋼板の製品品質を
左右する重要なポイントの一つである。Further, the formed glass coating has a function of absorbing unnecessary inhibitor components after the completion of the secondary recrystallization into the glass coating and purifying the steel, thereby helping to reduce the hysteresis loss of the steel plate. Therefore, forming the glass coating uniformly is one of the important points that affect the product quality of the grain-oriented electrical steel sheet.
【0007】仕上げ焼鈍におけるインヒビターの安定性
は、脱炭焼鈍で鋼板表面に形成されたサブスケール、焼
鈍分離剤および仕上げ焼鈍時の熱サイクルや雰囲気条件
等の影響を受ける。これらの中でとりわけ焼鈍分離剤用
の主剤として用いられるMgOの性状は、グラス被膜形成
速度、形成開始温度、形成量、被膜の均一性、被膜密着
性およびコイル層間の雰囲気酸化度などに多大な影響を
及ぼし、グラス被膜の形成を介して鋼中インヒビターの
安定性に影響を与える。[0007] The stability of the inhibitor in the finish annealing is affected by the subscale formed on the steel sheet surface by the decarburizing annealing, the annealing separator, the thermal cycle during the finish annealing, the atmospheric conditions, and the like. Among these, the properties of MgO used as the main agent for the annealing separator have a great effect on the glass film formation speed, formation start temperature, formation amount, film uniformity, film adhesion, and the degree of atmospheric oxidation between coil layers. Affects and affects the stability of inhibitors in steel through the formation of a glass coating.
【0008】このようなグラス被膜形成において、MgO
性状として特に粒度、純度および活性度の他、鋼板への
塗布時における水和量、焼鈍分離剤の塗布量、焼鈍分離
剤塗布膜の均一性、焼鈍分離剤と脱炭焼鈍板との密着性
などの影響が大きく、さらにグラス被膜形成促進などを
目的として添加される添加剤の種類、添加量および鋼板
表面での分散状態が、グラス被膜の形成速度、形成開始
温度、形成量、被膜の均一性および被膜密着性に影響を
及ぼす。このように、方向性電磁鋼板の製品品質を決定
する上で重要なグラス被膜と磁気特性に対して、MgOの
性状や鋼板面上での焼鈍分離剤の塗布状態を制御するこ
とが重要であり、現在、これらの技術開発が重要な課題
となっている。また、昨今は、大量生産するために製造
ラインの通板速度が高速化されており、その意味でも焼
鈍分離剤の塗布状態の制御が重要な課題となっている。In forming such a glass film, MgO
In addition to properties such as particle size, purity and activity, the amount of hydration during application to steel sheet, the amount of annealed separating agent applied, the uniformity of annealed separating agent coated film, the adhesion between annealed separating agent and decarburized annealed sheet In addition, the type and amount of additives added for the purpose of accelerating the formation of the glass film and the state of dispersion on the steel sheet surface depend on the glass film formation speed, formation start temperature, formation amount, and uniformity of the film. Affects the properties and coating adhesion. As described above, it is important to control the properties of MgO and the application state of the annealing separator on the steel sheet surface for the glass coating and magnetic properties that are important in determining the product quality of grain-oriented electrical steel sheets. Currently, the development of these technologies is an important issue. In recent years, the passing speed of a production line has been increased for mass production, and in that sense, control of the application state of an annealing separating agent has become an important issue.
【0009】方向性電磁鋼板の焼鈍分離剤は、MgOとフ
ォルステライト質グラス被膜形成促進を目的とした添加
剤やインヒビター補強を目的とした添加物などを各種添
加・配合し、水と懸濁させてスラリーとしたのち、シェ
アーインペラなどの攪拌装置を備えたタンク内で攪拌分
散させたあと、ゴムロールなどの塗布装置により鋼板表
面上に塗布され、引き続き乾燥される。この場合、MgO
表面には、乾燥された後も物理的に表面吸着したH2Oが
存在する他、一部が水和して Mg(OH)2に変化する。これ
らのH2Oは、仕上げ焼鈍中 800℃あたりまで少量ながら
放出し続けるため、鋼板表面は酸化される。このような
酸化現象は、追加酸化と呼ばれ、フォルステライトの生
成挙動に影響を及ぼすと共に、インヒビターの酸化・分
解につながることから、これが多いと磁気特性の劣化を
招く。As an annealing separator for grain-oriented electrical steel sheets, various additives such as MgO and an additive for promoting the formation of a forsterite glass film or an additive for reinforcing an inhibitor are added and blended, and suspended in water. The slurry is stirred and dispersed in a tank equipped with a stirring device such as a shear impeller, and then applied onto the surface of the steel sheet by a coating device such as a rubber roll, and subsequently dried. In this case, MgO
Even after drying, H 2 O physically adsorbed on the surface is present on the surface, and a part of the H 2 O is hydrated and changed to Mg (OH) 2 . Since H 2 O continues to be released in a small amount up to around 800 ° C. during the finish annealing, the steel sheet surface is oxidized. Such an oxidation phenomenon is called additional oxidation, which affects the formation behavior of forsterite, and also leads to oxidation and decomposition of the inhibitor.
【0010】低水和なMgOを用いて上記した追加酸化を
抑制する場合は、MgO製造工程において高温焼成したMg
Oが採用される。しかしながら、高温焼成した場合は、
MgO粒子内の微細結晶が焼結し、さらにはMgO粒子同士
が凝集・焼結する傾向が強く、焼鈍分離剤塗布後の鋼板
表面において、鋼板とMgOの接触面積低下に起因する焼
鈍分離剤の密着性の低下を招くだけでなく、焼鈍分離剤
を塗布した場合の膜厚および密度に不均一が生じる。加
えて、このような場合は、スラリー粘度が過度に低下
し、乾燥中に鋼板上のスラリーが乾燥炉内の気流に流さ
れて非常に不均一な模様を呈するようになり、高速塗布
性が劣化する。In the case where the above-mentioned additional oxidation is suppressed by using low-hydration MgO, Mg which has been sintered at a high temperature in the MgO production process is used.
O is adopted. However, when firing at high temperature,
The fine crystals in the MgO particles tend to sinter, and the MgO particles tend to agglomerate and sinter together.On the steel sheet surface after the application of the annealing separator, the annealing separator due to the reduced contact area between the steel sheet and MgO Not only does the adhesion decrease, but also the film thickness and density when the annealing separator is applied become non-uniform. In addition, in such a case, the viscosity of the slurry is excessively reduced, and the slurry on the steel sheet is caused to flow into the airflow in the drying furnace during drying, so that a very non-uniform pattern is exhibited, and high-speed coating property is reduced. to degrade.
【0011】また、MgO本来の固相反応性を高めるた
め、1.0 μm 以下の含有率が70%以上(レーザー回折式
粒度分析計による測定)の微細なMgOを用いた場合は、
MgO粒子同士の凝集が起こり易く、水に懸濁させた際
に、粗大粒子を形成し、焼鈍分離剤塗布表面の均一性が
損なわれるだけでなく、MgO粗大凝集粒中における焼鈍
分離剤の添加物濃度が低下するため、焼鈍分離剤添加物
の均一分散を阻害することになり、鋼板表面に対して焼
鈍分離剤添加物を均一に分散した状態で塗布できなくな
る。In order to enhance the intrinsic solid phase reactivity of MgO, when fine MgO having a content of 1.0 μm or less and 70% or more (measured by a laser diffraction particle size analyzer) is used,
Agglomeration between MgO particles is easy to occur, and when suspended in water, coarse particles are formed and the uniformity of the surface of the coated annealing separator is not only impaired, but also the addition of the annealing separator in the coarse aggregated MgO particles Since the material concentration decreases, the uniform dispersion of the annealing separator additive is hindered, and it becomes impossible to apply the annealing separator additive to the steel sheet surface in a uniformly dispersed state.
【0012】このようなMgOの過焼結やMgOスラリー中
での凝集による、被膜形成反応の不均一および反応性の
低下や焼鈍分離剤と鋼板の密着性の低下による問題を解
決する手段として、従来は、MgO自体の水和性を適当に
調整する方法やMgO物性値をMgO製造工程で制御して凝
集を防止する方法などが提案されているが、十分な効果
が得られているとは言いがたい。例えば、特公昭60-338
96号公報には、MgOの不純物を高温焼成により排除し、
かつMgOスラリー調合工程にてMgOの最表面のみを活性
化させ、持ち込み水分(MgO水和量)を低減させる方法
が、また特開昭62−156226号公報には、比較的高温で焼
成した低水和MgOのごく表面層のみに所定量の水和層を
形成させ、活性化したMgOを使用する方法が開示されて
いる。さらに、特開平2−267278号公報には、MgOを 1
00℃水蒸気含有気相中で処理して、OH化学吸着層をH2
O換算でMgO重量に基づいて 0.8〜2.5 %の範囲で形成
させる方法が開示されている。As means for solving the problems caused by the non-uniformity of the film formation reaction and the decrease in reactivity due to the over-sintering of MgO and the agglomeration in the MgO slurry and the decrease in adhesion between the annealing separator and the steel sheet, Conventionally, a method of appropriately adjusting the hydration property of MgO itself and a method of controlling the MgO physical property value in the MgO manufacturing process to prevent agglomeration have been proposed, but it is said that a sufficient effect has been obtained. It's hard to say. For example, Japanese Patent Publication No. 60-338
No. 96 discloses that MgO impurities are eliminated by high-temperature firing,
In addition, a method of activating only the outermost surface of MgO in the MgO slurry preparation step to reduce the amount of water carried in (the amount of hydrated MgO) is disclosed in JP-A-62-156226. A method is disclosed in which a predetermined amount of a hydrated layer is formed only on a very surface layer of hydrated MgO and activated MgO is used. Further, JP-A-2-267278 discloses that MgO is 1
Was treated with 00 ° C. water vapor-containing gas phase, the OH chemical adsorption layer H 2
A method is disclosed in which O is formed in the range of 0.8 to 2.5% based on the weight of MgO in terms of O.
【0013】これらは、焼鈍分離剤スラリーを鋼板表面
に塗布する際、MgO粒子表面を高温にて特殊な処理を施
すことにより、MgOの表面エネルギーを低下させて、Mg
O同士の凝集を低減させる技術である。MgOの最表面層
は Mg(OH)2化しており、表面層の Mg(OH)2が仕上げ焼鈍
の途中でMgO化することで被膜形成を確保しようとする
ものである。しかしながら、MgO粒子内部はMgO製造時
に高温焼成されているため、MgO内部の固相反応性は低
いことから、反応促進を目的とした添加剤を必要以上に
添加することが不可欠なだけでなく、MgOのフォルステ
ライト質グラス被膜の形成能が不十分な場合がある。[0013] When applying an annealing separator slurry to the surface of a steel sheet, the surface energy of MgO is reduced by performing a special treatment on the surface of the MgO particles at a high temperature.
This is a technique for reducing aggregation between Os. Outermost surface layer of MgO is intended to secure a film formed by MgO of in the middle of the Mg (OH) 2 turned into and, finishing Mg (OH) 2 the surface layer annealing. However, since the inside of the MgO particles is fired at a high temperature during the production of MgO, the solid phase reactivity inside the MgO is low, so it is not only indispensable to add an additive more than necessary for the purpose of accelerating the reaction, In some cases, the ability to form a forsterite glass coating of MgO is insufficient.
【0014】その他、特開平5−295423号公報には、低
水和のMgOを用い、MgOを水に懸濁させたスラリーを鋼
板に塗布するに際し、スラリー調整から鋼板塗布までの
過程で超微細粉装置により微細化と活性化を行うことに
より、グラス被膜を均一に形成し、優れた磁気特性を得
る方法が開示されている。この方法によれば、スラリー
調整から鋼板塗布までの間に焼鈍分離剤塗布液を機械的
に破壊することによって、鋼板表面の塗布均一性は確保
できるものの、MgOスラリーは沈降堆積し固結し易い性
質があるため、破砕機の狭い間隔が閉塞する危険性があ
る。また、メンテナンスが煩雑なので、大量生産ライン
には不向きという不利もある。In addition, Japanese Patent Application Laid-Open No. 5-295423 discloses that when a low hydration MgO is used and a slurry in which MgO is suspended in water is applied to a steel sheet, ultra-fine particles are formed in the process from the slurry adjustment to the application of the steel sheet. A method is disclosed in which a glass film is formed uniformly by performing fineness and activation with a powder device, and excellent magnetic properties are obtained. According to this method, by uniformly breaking the annealing separator coating liquid between the slurry adjustment and the steel sheet coating, the coating uniformity of the steel sheet surface can be ensured, but the MgO slurry is easily settled and solidified. Due to the nature, there is a risk that the narrow gap of the crusher will be blocked. In addition, since maintenance is complicated, there is a disadvantage that it is not suitable for mass production lines.
【0015】[0015]
【発明が解決しようとする課題】この発明は、方向性電
磁鋼板製造時における焼鈍分離剤の塗布に際し、下記の
課題を解決しようとするものである。 課題1 高温焼成されたMgOを使用した場合、MgO粒子内の微細
結晶が焼結し、さらにはMgO粒子同士が凝集・焼結する
傾向が強く、焼鈍分離剤塗布後の鋼板表面において、鋼
板とMgOの接触面積低下に起因する焼鈍分離剤の密着性
の低下、焼鈍分離剤塗布層の膜厚および密度に不均一を
生じる。加えて、このような場合はスラリー粘度が過度
に低下し、乾燥中に鋼板上のスラリーが乾燥炉内の気流
に流されて非常に不均一な模様が発生し、高速塗布性が
劣化する。SUMMARY OF THE INVENTION The present invention is intended to solve the following problems when applying an annealing separator during the production of grain-oriented electrical steel sheets. Problem 1 When MgO fired at a high temperature is used, the fine crystals in the MgO particles tend to sinter, and the MgO particles tend to agglomerate and sinter together. A decrease in the adhesion of the annealing separator due to a decrease in the contact area of MgO, and an unevenness in the thickness and density of the coating layer of the annealing separator occur. In addition, in such a case, the viscosity of the slurry is excessively reduced, and the slurry on the steel plate is caused to flow into the airflow in the drying furnace during drying, so that a very uneven pattern is generated and the high-speed coating property is deteriorated.
【0016】課題2 MgO本来の固相反応性を高めるため、1.0 μm 以下の含
有率が70%以上(レーザー回折式粒度分析計による測
定)の微細なMgOを用いた場合は、MgO粒子同士の凝集
が起こり易く、水に懸濁させた際に、粗大粒子を形成
し、焼鈍分離剤塗布表面の均一性が損なわれるだけでは
なく、MgO粗大凝集粒中における焼鈍分離剤の添加物濃
度が低下するため、焼鈍分離剤添加物の均一分散を阻害
することになり、鋼板表面に対する焼鈍分離剤添加物の
均一分散が阻害される。Problem 2 In order to increase the intrinsic solid phase reactivity of MgO, when fine MgO having a content of 1.0 μm or less and a content of 70% or more (measured by a laser diffraction type particle size analyzer) is used, the MgO particle Agglomeration easily occurs, and when suspended in water, coarse particles are formed, which not only impairs the uniformity of the surface coated with the annealing separator, but also decreases the additive concentration of the annealing separator in the MgO coarse aggregates. Therefore, the uniform dispersion of the annealing separator additive is hindered, and the uniform dispersion of the annealing separator additive on the steel sheet surface is hindered.
【0017】この発明では、上記の問題を有利に解決す
るもので、方向性電磁鋼板製造時における焼鈍分離剤の
塗布に際し、高速塗布性に優れ、しかもMgOスラリーの
凝集体形成による問題が生じない焼鈍分離剤用のMgO粉
を提供し、ひいては方向性電磁鋼板の製造に際し、最終
仕上げ焼鈍工程において、均一で優れた被膜特性を有す
るフォルステライト質グラス被膜を形成すると共に、優
れた磁気特性を得ることを目的とする。According to the present invention, the above-mentioned problem is advantageously solved, and when the annealing separator is applied during the production of a grain-oriented electrical steel sheet, the high-speed applicability is excellent and the problem due to the formation of the aggregate of the MgO slurry does not occur. Providing MgO powder for an annealing separator, and in the final finishing annealing process in the production of grain-oriented electrical steel sheets, form a forsterite-like glass coating with uniform and excellent coating properties and obtain excellent magnetic properties The purpose is to:
【0018】[0018]
【課題を解決するための手段】さて、発明者らは、方向
性電磁鋼板の脱炭焼鈍から仕上げ焼鈍までのフォルステ
ライト質グラス被膜形成過程において、均一なグラス被
膜を形成し、かつ優れた磁気特性が得られる製造方法に
ついて検討した。特に焼鈍分離剤用のMgOの性状がスラ
リー時の凝集体生成に及ぼす影響について検討した結
果、MgOスラリーの凝集特性が特定の範囲にあるMgO粉
を用いることにより、所期した目的が達成されることの
知見を得た。この発明は、上記の知見に立脚するもので
ある。Means for Solving the Problems In the process of forming a forsterite glass coating from decarburizing annealing to finish annealing of grain-oriented electrical steel sheets, the present inventors have formed a uniform glass coating and obtained excellent magnetic properties. The manufacturing method which can obtain the characteristic was examined. In particular, as a result of examining the effect of the properties of MgO for the annealing separator on the formation of agglomerates in the slurry, the intended purpose is achieved by using the MgO powder in which the agglomeration characteristics of the MgO slurry are within a specific range. I got the knowledge of that. The present invention is based on the above findings.
【0019】すなわち、この発明は、焼鈍分離剤用のMg
O粉であって、このMgO粉を水に懸濁させてMgOスラリ
ーとした際、該MgOスラリーの粒度分布をレーザー回折
式粒度分布計で測定した時の累積90%径が図1の点A,
B,C,D,EおよびFで囲まれる範囲を満足すること
を特徴とする、方向性電磁鋼板製造時における焼鈍分離
剤用のMgO粉である。ここに、図1中における各点の座
標(攪拌速度;rpm , 累積90%径;μm)は、次のとおり
である。 点A=( 400, 20)、 点B=(1000, 3.5 )、 点C
=(1500, 2.5 )、点D=(1500, 8.0 )、点E=(10
00, 10 )、 点F=( 400, 90 )。That is, the present invention provides a method for producing Mg for an annealing separator.
O powder, when the MgO powder was suspended in water to form an MgO slurry, the cumulative 90% diameter of the MgO slurry measured by a laser diffraction type particle size distribution analyzer was the point A in FIG. ,
An MgO powder for an annealing separator in the production of grain-oriented electrical steel sheets, characterized by satisfying a range surrounded by B, C, D, E and F. Here, the coordinates of each point in FIG. 1 (stirring speed; rpm, cumulative 90% diameter; μm) are as follows. Point A = (400, 20), Point B = (1000, 3.5), Point C
= (1500, 2.5), point D = (1500, 8.0), point E = (10
00, 10), point F = (400, 90).
【0020】また、この発明において、MgO粉として
は、バッチ炉またはロータリーキルン焼成により得られ
たMgOを攪拌処理または混合処理したものがとりわけ有
利に適合する。In the present invention, MgO powder obtained by stirring or mixing MgO obtained by batch furnace or rotary kiln firing is particularly advantageously applicable.
【0021】[0021]
【発明の実施の形態】まず、MgOを水に懸濁させた場合
に生成する凝集粒子の粒度分布を、レーザー回折式粒度
分析計にて測定するMgOの凝集性テストの手順について
説明する。 手順1) 容量:1000mlのトールビーカー(JIS R 3503に準拠)に
入れた液温:20℃の水:500 ccに対してMgO:80gを混
合し、MgOスラリーとする。この時、4枚羽(羽の長
さ:25mm) のかい十字型の攪拌機を用い、羽をトールビ
ーカーの中央部でかつビーカー底から高さ:30mmの位置
にセットし、所定の攪拌速度で5分間の攪拌処理を施
す。なお、攪拌時はスラリー液温を20℃に保つ。 手順2)5分間のMgOスラリー攪拌処理が終了したら、
直ちにスラリー液を採取し、レーザー回折式の粒度分布
計にて粒度分布を測定する。この時、粒度分布計の分散
媒としては水を使用し、水の液温は室温(15〜25℃) と
する。 手順3)スラリー攪拌速度を変化させて、手順1)、
2)を繰り返す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the procedure of a MgO cohesion test for measuring the particle size distribution of aggregated particles generated when MgO is suspended in water with a laser diffraction type particle size analyzer will be described. Procedure 1) 80 g of MgO is mixed with 500 cc of water at 20 ° C. in a 1000 ml tall beaker (based on JIS R 3503) to form an MgO slurry. At this time, using a paddle-shaped stirrer with four blades (wing length: 25 mm), set the blades at the center of the tall beaker and at a height of 30 mm from the bottom of the beaker, and at a predetermined stirring speed. Stir for 5 minutes. During the stirring, the temperature of the slurry is kept at 20 ° C. Procedure 2) When the MgO slurry stirring process for 5 minutes is completed,
The slurry liquid is immediately collected, and the particle size distribution is measured with a laser diffraction type particle size distribution meter. At this time, water is used as a dispersion medium of the particle size distribution meter, and the liquid temperature of the water is room temperature (15 to 25 ° C.). Procedure 3) Change the slurry stirring speed, and
Repeat 2).
【0022】さて、水酸化マグネシウムをロータリキル
ン焼成し、表1および図2に示す粉体特性に示すMgO粉
について、MgOスラリーの凝集粒分布について調査した
結果を、図3および図4に示す。Now, the results of investigating the agglomerated particle distribution of the MgO slurry with respect to the MgO powder having the powder characteristics shown in Table 1 and FIG. 2 are shown in FIGS. 3 and 4.
【0023】[0023]
【表1】 [Table 1]
【0024】図2は、MgO粉No.1の粉体について、その
平均粒子径を超音波ホモジナイザーを用いて、レーザー
回折式粒度分布計により求めた結果を示したものであ
る。図3は、No.1のMgO粉をスラリー化した際に生成す
る凝集粒の粒度分布を示しており、この時のスラリー攪
拌速度は1000 rpmである。図2に示したように、No.1の
粒子は平均粒子径:0.59μm と小さく、かつ1μm 以下
の粒子の占める割合は86%と細粒であるが、ライン設備
に近い調合を実施すると、図3に示したように、50μm
前後の粗大な凝集粒が生成し、累積90%径は49.4μm と
なる。FIG. 2 shows the results of measuring the average particle size of the MgO powder No. 1 by a laser diffraction particle size distribution analyzer using an ultrasonic homogenizer. FIG. 3 shows the particle size distribution of the aggregated particles generated when the No. 1 MgO powder is slurried, and the slurry stirring speed at this time is 1000 rpm. As shown in FIG. 2, the average particle size of the No. 1 particles is as small as 0.59 μm, and the ratio of the particles having a particle size of 1 μm or less is as small as 86%. As shown in FIG.
The coarse aggregates before and after are generated, and the cumulative 90% diameter is 49.4 μm.
【0025】図4は、No.1のMgOのスラリー凝集特性を
示し、スラリー攪拌速度を変化させてMgOスラリーの粒
度分布を測定して累積90%径の変化を測定したもので
あ。同図より明らかなように、MgOスラリー調合時にお
ける攪拌速度が速いほど累積90%径が低下し、凝集粒サ
イズが低下していくことが判る。なお、凝集粒生成挙動
は累積90%径を評価する以外に、例えば、10, 20μm 以
上の粒子含有率や累積80%径、また分散粒の重量と凝集
粒の重量比率でも評価可能である。上記した凝集性テス
トにより、MgOをスラリー化した際に生成する凝集粒の
サイズおよび量を定量的に評価することができる。FIG. 4 shows the slurry aggregating characteristics of No. 1 MgO, in which the particle size distribution of the MgO slurry was measured by changing the slurry stirring speed, and the change of the 90% cumulative diameter was measured. As is clear from the figure, it can be seen that the higher the stirring speed at the time of preparing the MgO slurry, the smaller the cumulative 90% diameter becomes, and the smaller the agglomerated particle size becomes. In addition, besides evaluating the cumulative 90% diameter, the aggregated particle generation behavior can be evaluated, for example, by the particle content of 10, 20 μm or more, the cumulative 80% diameter, and the weight ratio of the dispersed particles to the aggregated particles. The size and amount of agglomerated particles generated when MgO is slurried can be quantitatively evaluated by the aggregability test described above.
【0026】次に、MgO粉No.1の凝集粒の構造について
詳細な調査を実施した結果、凝集粒は細長い10〜20μm
長の低次の凝集体がネットワークを形成しており、粗大
な凝集体は低次凝集体がフロキュレートした高次凝集体
となっていることが判明した。そこで、発明者らは、次
に、かかる高次凝集体の形成に関わるMgO粉体特性の影
響および高次凝集体の形成を防止する方法について鋭意
検討した結果、以下に述べる知見を得た。Next, a detailed investigation was conducted on the structure of the aggregated particles of the MgO powder No. 1. As a result, the aggregated particles were elongated to 10 to 20 μm.
It was found that long low-order aggregates formed a network, and coarse aggregates were high-order aggregates obtained by flocculating the low-order aggregates. Then, the present inventors have next thoroughly studied the influence of the MgO powder characteristics on the formation of such higher-order aggregates and a method for preventing the formation of higher-order aggregates, and have obtained the following findings.
【0027】高次凝集体の形成に関わるMgO粉体特性の
影響 (1) 高次凝集体の形成は、1μm 以下の粒子の含有率
(レーザー回折式粒度分析計によるMgO粒度分布結果)
が50%以上になると顕在化してくる。 (2) MgO粒度分布およびクエン酸活性度分布が比較的シ
ャープな場合に高次凝集体が形成され易い。 (3) 高次凝集体の形成が顕著なNo.1のようなMgOでは、
攪拌速度の高速化および攪拌時間の長時間化によっても
凝集が破壊されにくい。The properties of MgO powder related to the formation of higher order aggregates
Influence (1) The formation of high-order aggregates is due to the content of particles of 1 μm or less (result of MgO particle size distribution by laser diffraction particle size analyzer)
When it becomes 50% or more, it becomes obvious. (2) When the MgO particle size distribution and the citric acid activity distribution are relatively sharp, a higher-order aggregate is easily formed. (3) In MgO such as No. 1 where the formation of higher order aggregates is remarkable,
Aggregation is not easily destroyed even by increasing the stirring speed and the stirring time.
【0028】高次凝集体の形成を防止する方法 (1) 高次凝集体の形成を防止するには、低次凝集体のフ
ロキュレートを阻止することが肝要である。 (2) 低次凝集体のフロキュレートは、低次凝集体を形成
しているMgOとはクエン酸活性度および粒度分布が異な
るMgOが隣接して存在することにより防止される。すな
わち、数種のMgOを混合処理することにより低次凝集体
のフロキュレートを防止できる。 (3) MgO粒度分布およびクエン酸活性度が比較的広いMg
Oの場合、MgOスラリー調合前に攪拌処理を実施すると
さらに凝集粒生成が抑制される。 Method for Preventing the Formation of Higher Order Aggregates (1) In order to prevent the formation of higher order aggregates, it is important to prevent flocculation of lower order aggregates. (2) Flocculation of low-order aggregates is prevented by the presence of adjacent MgO having a different citric acid activity and particle size distribution from MgO forming low-order aggregates. That is, flocculation of low-order aggregates can be prevented by mixing several types of MgO. (3) Mg with relatively wide MgO particle size distribution and citric acid activity
In the case of O, when the stirring treatment is performed before the preparation of the MgO slurry, the generation of aggregated particles is further suppressed.
【0029】上記の知見に基づき、以下に述べる実験を
行った。MgO製造条件が異なる表2示す各種MgO粉につ
いて、MgOスラリー凝集特性およびMgOスラリー塗布・
乾燥後の外観および密着性を調査した。得られた結果を
図5と表3にそれぞれ示す。なお、図5中のMgO粉No.8
〜11は、それぞれ以下の処理を施したものである。 MgO粉No.8:No.1を8割とNo.4を2割混合処理したも
の。 MgO粉No.9:No.2を5割とNo.3を4割とNo.4を1割混合
処理したもの。 MgO粉No.10 :No.5のみを攪拌処理したもの。 MgO粉No.11 :No.7のみを攪拌処理したもの。The following experiments were conducted based on the above findings. For the various MgO powders shown in Table 2 with different MgO production conditions, the MgO slurry aggregation characteristics and the MgO slurry application /
The appearance and adhesion after drying were investigated. The results obtained are shown in FIG. The MgO powder No. 8 in FIG.
To 11 are each obtained by performing the following processing. MgO powder No.8: 80% of No.1 mixed with 20% of No.4. MgO powder No.9: 50% of No.2, 40% of No.3 and 10% of No.4 mixed. MgO powder No.10: No.5 only after stirring. MgO powder No.11: A mixture obtained by stirring No.7 alone.
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 [Table 3]
【0032】表3に示したとおり、凝集性テストの結
果、累積90%径が大きいMgOは、MgOスラリー塗布後の
外観が劣化することが判明した。すなわち、No.1単独で
は巨大な凝集粒が形成され、MgOスラリー塗布後の外観
は不良である。しかしながら、No.4との混合処理を行っ
たNo.8では、凝集性テスト時の累積90%径は格段に低く
なり、MgOスラリー塗布後の外観は大幅に改善されてい
る。この理由は、No.1よりも活性度が低いNo.4を配合・
混合することにより、No.1の低次凝集体が集合するのを
No.4のMgO粒子が妨げ、結果的に低次凝集体のフロキュ
レートの形成が阻止されるからである。同様に、No.2単
独では大きな凝集粒が形成されたものの、No.2:5割、
No.3:4割、No.4:1割を混合処理したNo.9では、各々
のMgO単独使用の場合よりも、MgOスラリー塗布後の外
観および鋼板との密着性が改善されている。As shown in Table 3, as a result of the cohesion test, it was found that MgO having a large cumulative 90% diameter deteriorated in appearance after the application of the MgO slurry. That is, No. 1 alone forms huge agglomerated particles, and the appearance after application of the MgO slurry is poor. However, in No. 8 which was mixed with No. 4, the cumulative 90% diameter during the cohesion test was significantly lower, and the appearance after application of the MgO slurry was significantly improved. The reason is that No.4, which has lower activity than No.1,
By mixing, the aggregation of No. 1 low order aggregates
This is because the MgO particles of No. 4 hinder, and as a result, the formation of flocculate of low-order aggregates is hindered. Similarly, although large aggregates were formed by No. 2 alone, No. 2: 50%,
In No. 9 in which No. 3: 40% and No. 40: 10% were mixed, the appearance after application of the MgO slurry and the adhesion to the steel sheet were improved as compared with the case of using each MgO alone.
【0033】また、No.1, 2,3,4および6よりも広
い活性度分布を有するNo.5, 7の場合は、構成している
MgOの粒度および活性度にバラツキがあるため、低次凝
集体のフロキュレートは生成しにくく、従って凝集性テ
ストによる累積90%径は比較的小さく、またMgOスラリ
ーの塗布外観も良好である。しかも、このNo.5, 7で
は、スラリー調合前に粉体の攪拌処理を行うことにより
(No.10, 11)、構成しているMgOの粒度および活性度の
バラツキが有効に活かされ、さらに凝集性が低下するこ
とが判る。なお、かかる攪拌処理または混合処理の方
法、処理量および処理時間等は特に限定されるものでは
なく、この発明にて限定される図1の点A、B、C、
D、EおよびFに囲まれる領域を満足するようなMgOス
ラリー凝集特性とすることが肝要である。Nos. 5, 7 having a wider activity distribution than Nos. 1, 2, 3, 4, and 6 constitute
Because of the variation in the particle size and activity of MgO, flocculation of low-order aggregates is not easily generated, and therefore, the cumulative 90% diameter in the cohesion test is relatively small, and the appearance of the MgO slurry applied is good. In addition, in Nos. 5 and 7, the dispersion of the particle size and activity of the constituting MgO is effectively utilized by performing the stirring treatment of the powder before preparing the slurry (Nos. 10 and 11). It turns out that cohesiveness falls. In addition, the method of the stirring process or the mixing process, the processing amount, the processing time, and the like are not particularly limited, and the points A, B, C, and C in FIG.
It is important that the MgO slurry has a cohesive property satisfying the region surrounded by D, E and F.
【0034】次に、図5中のNo.1〜11のMgOを用いた場
合について、フォルステライト質グラス被膜特性および
磁気特性に及ぼす影響を調査した。 C:0.07wt%、Si:3.25wt%、Al:0.025 wt%、N:0.
0080wt%、Mn:0.07wt%、Se:0.02wt%、Sb:0.025 wt
%およびCu:0.08wt%を含み、残部は実質的にFeの組成
になる電磁鋼用スラブを、1380℃で30分加熱後、熱延に
より2.2 mmの板厚にした後、1050℃、1分間の中間焼鈍
を挟む2回の冷間圧延により0.22mm厚の最終板厚に仕上
げた。ついで、かかる冷延板を、脱炭焼鈍後、No.1〜11
のMgOを主剤として、このMgO:100 重量部に対しTiO2
を8重量部およびSnO2を2重量部添加した焼鈍分離剤と
水を、前記した凝集性テストの場合と同様の調合条件
(攪拌速度:1000rpm)にてスラリー化し、片面当たり6
g/m2の塗布を行った。その後、1100℃まで12℃/h の昇
温速度で昇熱する2次結晶焼鈍を行い、引き続き1200
℃、5時間の純化焼鈍を施した。かくして得られた鋼板
のフォルステライト質グラス被膜外観および磁気特性に
ついて調査した結果を、表4に示す。Next, when MgO of Nos. 1 to 11 in FIG. 5 was used, the influence on the forsterite glass coating film properties and the magnetic properties was investigated. C: 0.07 wt%, Si: 3.25 wt%, Al: 0.025 wt%, N: 0.
0080 wt%, Mn: 0.07 wt%, Se: 0.02 wt%, Sb: 0.025 wt
% And Cu: 0.08 wt%, the balance being substantially Fe, the slab for electromagnetic steel was heated at 1380 ° C. for 30 minutes, and then hot-rolled to a thickness of 2.2 mm. The steel sheet was finished to a final thickness of 0.22 mm by performing two cold rollings with an intermediate annealing for one minute. Then, after the cold rolled sheet was decarburized and annealed, No. 1 to 11
Of MgO: 100 parts by weight of TiO 2
Of water and 8 parts by weight of SnO 2 and 2 parts by weight of SnO 2 were slurried under the same mixing conditions (stirring speed: 1000 rpm) as in the cohesion test described above, and 6 parts per side.
g / m 2 was applied. Thereafter, a secondary crystal annealing is performed to increase the temperature to 1100 ° C. at a rate of 12 ° C./h.
5 ° C. for 5 hours. Table 4 shows the results obtained by examining the appearance and magnetic properties of the forsterite glass coating of the steel sheet thus obtained.
【0035】[0035]
【表4】 [Table 4]
【0036】表4に示したとおり、表3において優れた
MgOスラリー塗布外観および鋼板との密着性が得られた
MgO粉を用いた場合に、良好なフォルステライト質グラ
ス被膜および磁気特性が得られている。すなわち、MgO
スラリーの凝集特性が特定の範囲にある場合に、優れた
被膜特性および磁気特性が得られることが確認された。As shown in Table 4, excellent in Table 3
Appearance of MgO slurry application and adhesion to steel plate were obtained.
When using MgO powder, good forsterite glass coating and magnetic properties were obtained. That is, MgO
It was confirmed that when the aggregating property of the slurry was in a specific range, excellent film properties and magnetic properties were obtained.
【0037】上記と同様にして、数多くのMgO粉につい
て、MgOスラリー凝集特性とフォルステライト質グラス
被膜および磁気特性との関係について調査した結果、Mg
O粉と水を懸濁させてMgOスラリーを調合した際、MgO
スラリーの粒度分布をレーザー回折式粒度分布計で測定
した時に得られる累積90%が図1の点A、B、C、D、
EおよびFで囲まれる範囲を満足する場合に、MgOスラ
リー塗布後の外観が均一で、かつ鋼板との密着性に優れ
たものが得られ、ひいては優れたフォルステライト質グ
ラス被膜および磁気特性が得られることが見出されたの
である。In the same manner as described above, a number of MgO powders were examined for the relationship between the MgO slurry cohesion properties and the forsterite glass coating and magnetic properties.
When preparing MgO slurry by suspending O powder and water,
When the particle size distribution of the slurry was measured by a laser diffraction type particle size distribution analyzer, 90% of the cumulative values obtained in points A, B, C, D, and
When the range surrounded by E and F is satisfied, a uniform appearance after application of the MgO slurry and excellent adhesion to the steel sheet can be obtained, and as a result, an excellent forsterite glass coating and magnetic properties can be obtained. It was found to be possible.
【0038】ここで、図1の点A、B、C、D、Eおよ
びFで囲まれる範囲が適正域であることの理由は、次の
とおりである。まず、点A、B、Cを結ぶ線よりも累積
90%径が小さい場合は、焼鈍分離剤塗布後の鋼板表面に
おいて、鋼板とMgOの接触面積低下に起因する焼鈍分離
剤の密着性の低下、焼鈍分離剤塗布層の膜厚および密度
に不均一を生じる。このような場合は概してスラリー粘
度が過度に低下し、乾燥中に鋼板上のスラリーが乾燥炉
内の気流に流されて非常に不均一な模様が発生し、高速
塗布性が劣化するからである。また、この領域に属する
MgOは概して、脱炭焼鈍板の表面酸化層との反応性が悪
く、白膜状の被膜が生成し、かような被膜形成を介して
磁気特性も劣化する。一方、点C、D、Fを結ぶ線より
も累積90%径が大きい場合は、MgO粒子同士の凝集が起
こり易く、水に懸濁させた際に、粗大粒子を形成し、焼
鈍分離剤塗布表面の均一性が損なわれるだけではなく、
MgO粗大凝集粒中における焼鈍分離剤の添加物濃度が低
下するため、焼鈍分離剤添加物の均一分散が阻害され、
鋼板表面に対して焼鈍分離剤添加物を均一に分散した状
態で塗布できない。このような場合には、鋼板表面上で
の焼鈍分離剤の均一性が劣化するため、均一なフォルス
テライト質グラス被膜が形成されにくい。The reason why the range surrounded by points A, B, C, D, E and F in FIG. 1 is an appropriate range is as follows. First, it is more cumulative than the line connecting points A, B, and C.
If the 90% diameter is small, on the steel sheet surface after the application of the annealing separator, the adhesion of the annealing separator decreases due to the decrease in the contact area between the steel sheet and MgO, and the film thickness and density of the annealing separator coating layer become uneven. Is generated. In such a case, the slurry viscosity generally decreases excessively, and during drying, the slurry on the steel plate is flowed into the airflow in the drying furnace to generate a very uneven pattern, thereby deteriorating the high-speed coating property. . Also belongs to this area
MgO generally has poor reactivity with the surface oxide layer of the decarburized annealed sheet, and a white film-like film is formed, and the magnetic properties are also degraded through such film formation. On the other hand, if the cumulative 90% diameter is larger than the line connecting the points C, D, and F, the MgO particles are likely to agglomerate, and when suspended in water, coarse particles are formed and the annealing separator is applied. Not only does the surface uniformity suffer,
Because the additive concentration of the annealing separator in the MgO coarse aggregates decreases, the uniform dispersion of the annealing separator additive is inhibited,
The steel sheet cannot be applied in a state where the annealing separator additive is uniformly dispersed on the steel sheet surface. In such a case, the uniformity of the annealing separator on the surface of the steel sheet is deteriorated, so that it is difficult to form a uniform forsterite glass coating.
【0039】また、この発明のMgOは、図1に示される
点A、B、C、D、EおよびFで囲まれる領域を満足す
るMgOスラリー凝集特性を有するほか、下記の粉体特性
を満足するものであることが好ましい。化学成分的に
は、CaO:0.25〜0.75wt%、ハロゲン:0.005 〜0.080
wt%、B:0.06〜0.180 wt%、 SO3:0.70wt%以下を含
有し、残部は不可避的不純物と実質的にMgOからなるも
のであることが好ましい。ここで、CaOは被膜形成の促
進に有効に寄与するが、0.25wt%未満ではフォルステラ
イト質グラス被膜と鋼板との密着性が低下し、一方0.75
wt%を超えると膜厚が厚くなりすぎ、占積率が低下す
る。従って、CaOは0.25〜0.75wt%の範囲が好ましい。
ハロゲンは、特にClやFを指し、フォルステライト被膜
の焼結性を改善するものであるが、0.005 wt%未満では
その効果が発揮されず、一方 0.080wt%を超えるとグラ
ス被膜の点状剥離が発生する。従って、ハロゲンは 0.0
05〜0.080 wt%の範囲が好ましい。Bは、グラス被膜形
成を促進させるものであるが、0.06wt%に満たないと被
膜が薄くなり、一方0.18wt%を超えるとベンド特性が劣
化するので、0.06〜0.18wt%の範囲で含有させることが
好ましい。SO3 は、被膜密着性を改善する働きがある
他、MnSやMnSe系のインヒビターを含有する電磁鋼板素
材ではインヒビターを補強する働きがある。しかしなが
ら、0.70wt%を超えるとグラス被膜の点状剥離が発生す
るので、SO3 は0.70wt%以下とすることが好ましい。The MgO of the present invention has a MgO slurry cohesive property satisfying a region surrounded by points A, B, C, D, E and F shown in FIG. It is preferable that As chemical components, CaO: 0.25 to 0.75 wt%, halogen: 0.005 to 0.080
wt%, B: 0.06~0.180 wt% , SO 3: contains less 0.70wt%, it is preferable balance being made of unavoidable impurities and substantially MgO. Here, CaO effectively contributes to the promotion of film formation, but if it is less than 0.25% by weight, the adhesion between the forsterite glass film and the steel sheet decreases, while 0.75% by weight.
If it exceeds wt%, the film thickness becomes too thick, and the space factor decreases. Therefore, CaO is preferably in the range of 0.25 to 0.75 wt%.
Halogen refers to Cl and F in particular, and improves the sinterability of the forsterite film. However, if the content is less than 0.005 wt%, the effect is not exhibited. Occurs. Therefore, halogen is 0.0
The range of 05 to 0.080 wt% is preferred. B promotes the formation of a glass film, but if it is less than 0.06% by weight, the film becomes thin, and if it exceeds 0.18% by weight, the bend characteristics deteriorate. Therefore, B is contained in the range of 0.06 to 0.18% by weight. Is preferred. SO 3 has a function of improving film adhesion and a function of reinforcing an inhibitor in an electromagnetic steel sheet material containing an MnS or MnSe-based inhibitor. However, since the point-like separation of the glass film occurs exceeds 0.70wt%, SO 3 is preferably set to less 0.70wt%.
【0040】また、水和量が、20℃、30分の水和試験で
0.5〜3.5 wt%であることが好ましい。これは、仕上げ
焼鈍時の雰囲気酸化性に影響を及ぼす要素であり、適当
な水和量に調整することが好ましいからである。水和量
が 0.5wt%に満たないとグラス被膜の密着性が劣化し易
く、一方 3.5wt%を超えるとインヒビターが酸化されて
磁気特性が不良となる可能性が増す。The hydration amount was determined by a hydration test at 20 ° C. for 30 minutes.
Preferably it is 0.5 to 3.5 wt%. This is an element that affects the oxidizing property of the atmosphere during the finish annealing, and is preferably adjusted to an appropriate hydration amount. If the amount of hydration is less than 0.5 wt%, the adhesion of the glass coating is liable to deteriorate, while if it exceeds 3.5 wt%, the inhibitor is oxidized and the possibility of magnetic properties becoming poor increases.
【0041】さらに、液温:30℃で測定したCAA活性
度の最終反応率40%値(CAA40%)が、40〜150 秒の
範囲であることが好ましい。CAA40%が40秒未満では
水和量が過剰になり、一方 150秒を超えると水和量の低
下、固相反応性の低下に起因するグラス被膜の欠陥が発
生しがちになる。Further, it is preferable that the final reaction rate 40% value of CAA activity (CAA 40%) measured at a liquid temperature of 30 ° C. is in the range of 40 to 150 seconds. If the CAA content is less than 40 seconds, the amount of hydration becomes excessive, while if it exceeds 150 seconds, defects in the glass coating due to a decrease in the amount of hydration and a decrease in solid-phase reactivity tend to occur.
【0042】加えて、レーザー回折式粒度分布計により
測定されたMgOの累積50%径(体積基準)が4μm を超
えると、フォルステライト質グラス被膜の形成が遅れる
ので、4μm 以下とすることが好ましい。より望ましく
は2μm 以下である。In addition, if the cumulative 50% diameter (by volume) of MgO measured by a laser diffraction type particle size distribution analyzer exceeds 4 μm, the formation of a forsterite glass film is delayed, so that it is preferably 4 μm or less. . More preferably, it is 2 μm or less.
【0043】なお、焼鈍分離剤としては、分離剤に通常
添加される成分、例えばTiO2やチタン酸塩、ほう酸また
はほう酸塩、Sr化合物、Mn化合物、Sn化合物などを添加
することは何ら差し支えない。また、この発明は、電磁
鋼板であれば、全てのものに適用可能である。さらに、
製造方法についても格別の制限はなく、常法に従って行
えば良い。すなわち、素材鋼片を、公知の方法で加熱
し、熱間圧延を行った後、1回または中間焼鈍を挟む複
数回の冷間圧延を行って最終板厚する。また、必要に応
じて熱延板を冷延前に焼鈍を行ってもよい。これらの処
理後、従来公知の脱炭焼鈍を行い、ついでこの発明に従
う焼鈍分離剤を塗布してから、仕上げ焼鈍を行う。仕上
げ焼鈍は従来より公知の方法でよい。これら一連の処理
後、絶縁張力コートを施してフラットニング焼鈍を実施
して製品に仕上げる。かくして、優れたフォルステライ
ト質グラス被膜および磁気特性を有する方向性電磁鋼板
を得ることができるのである。As the annealing separating agent, it is possible to add components normally added to the separating agent, for example, TiO 2 , titanate, boric acid or borate, Sr compound, Mn compound, Sn compound and the like. . Further, the present invention is applicable to all electromagnetic steel sheets. further,
There is no particular limitation on the manufacturing method, and it may be performed in accordance with a conventional method. That is, the raw steel slab is heated by a known method, hot-rolled, and then cold-rolled once or a plurality of times with intermediate annealing therebetween to obtain a final sheet thickness. If necessary, the hot rolled sheet may be annealed before cold rolling. After these treatments, conventionally known decarburization annealing is performed, and then the annealing separator according to the present invention is applied, and then finish annealing is performed. The finish annealing may be performed by a conventionally known method. After these series of treatments, an insulating tension coat is applied and flattening annealing is performed to finish the product. Thus, a grain-oriented electrical steel sheet having an excellent forsterite glass coating and magnetic properties can be obtained.
【0044】[0044]
実施例1 C:0.075 wt%、Si:3.40wt%、Al:0.02wt%、N:0.
0075wt%、Mn:0.07wt%、Se:0.02wt%、Sb:0.026 wt
%およびCu:0.08wt%を含み、残部は実質的にFeの組成
になる電磁鋼用スラブを、1400℃で30分加熱後、熱延に
より2.2 mmの板厚にした後、1050℃、1分間の中間焼鈍
を挟む2回の冷間圧延により0.22mm厚の最終板厚に仕上
げた。この冷延板を、脱炭焼鈍後、表5に示すMgO粉N
o.1〜12のMgOを主剤として用い、このMgO:100 重量
部に対しTiO2:8重量部とSr(OH)2:3重量部を添加し
た焼鈍分離剤を水と混合して得た焼鈍分離剤スラリー
を、脱炭焼鈍板に片面当たり6g/m2の割合で塗布した。
この時の焼鈍分離剤スラリー塗布外観、乾燥後の状況お
よびMgO凝集性テストについての調査結果を、表5に併
せて示す。その後、N2+H2混合雰囲気中にて 850℃から
1100℃まで12.5℃/hの昇温速度で昇熱する2次再結晶
焼鈍を行い、引き続き水素中で1180℃、5時間の純化焼
鈍を施した。かくして得られた鋼板のフォルステライト
質グラス被膜外観および磁気特性について調査した結果
も、表5に併記する。Example 1 C: 0.075 wt%, Si: 3.40 wt%, Al: 0.02 wt%, N: 0.
0075wt%, Mn: 0.07wt%, Se: 0.02wt%, Sb: 0.026wt
% And Cu: 0.08 wt%, and the balance is substantially Fe. The slab for electromagnetic steel is heated at 1400 ° C. for 30 minutes, hot-rolled to a sheet thickness of 2.2 mm, and then heated at 1050 ° C. and 1%. The steel sheet was finished to a final thickness of 0.22 mm by performing two cold rollings with an intermediate annealing for one minute. This cold rolled sheet was subjected to decarburizing annealing, and then MgO powder N shown in Table 5
using MgO in o.1~12 principal ingredient, the MgO: 100 parts by weight of TiO 2: 8 parts by weight of Sr (OH) 2: were obtained by mixing with water annealing separator prepared by adding 3 parts by weight The annealing separator slurry was applied to a decarburized annealed plate at a rate of 6 g / m 2 per side.
Table 5 also shows the appearance of the annealed separating agent slurry applied, the condition after drying, and the results of the MgO cohesion test. Then, from 850 ° C in a N 2 + H 2 mixed atmosphere
Secondary recrystallization annealing was performed in which the temperature was raised to 1100 ° C. at a rate of 12.5 ° C./h, followed by purification annealing in hydrogen at 1180 ° C. for 5 hours. Table 5 also shows the results of an investigation on the appearance and magnetic properties of the forsterite glass coating of the steel sheet thus obtained.
【0045】[0045]
【表5】 [Table 5]
【0046】表5から明らかなように、この発明で規定
したMgO凝集特性を満足するMgO粉を用いた場合は、Mg
Oスラリー塗布外観および鋼板との密着性が優れてお
り、また仕上げ焼鈍後のフォルステライト質グラス被膜
および磁気特性も極めて良好であった。As is evident from Table 5, when MgO powder satisfying the MgO aggregation characteristics specified in the present invention was used, MgO
The appearance of the O slurry application and the adhesion to the steel sheet were excellent, and the forsterite glass coating after the finish annealing and the magnetic properties were also very good.
【0047】実施例2 C:0.040 wt%、Si:3.40wt%、Mn:0.07wt%、Se:0.
02wt%、Sb:0.025 wt%およびCu:0.08wt%を含み、残
部は実質的にFeの組成になる電磁鋼用スラブを、1400℃
で30分加熱後、熱延により2.0 mmの板厚にした後、 980
℃、1分間の中間焼鈍を挟む2回の冷間圧延により0.22
mm厚の最終板厚に仕上げた。この冷延板を脱炭焼鈍後、
表6に示すMgO粉No.1〜12のMgOを主剤として、このMg
O:100 重量部に対しTiO2:2重量部と SrSO4:1.5 重
量部を添加した焼鈍分離剤を水と混合して得た焼鈍分離
剤スラリーを、脱炭焼鈍板に片面当たり6g/m2の割合で
塗布した。この時の焼鈍分離剤スラリー塗布外観、乾燥
後の状況およびMgO凝集性テストについて調査した結果
を、表6に併せて示す。その後、N2雰囲気中にて 845
℃, 50時間の2次再結晶焼鈍を行い、引き続き水素中で
1180℃、5時間の純化焼鈍を実施した。かくして得られ
た鋼板のフォルステライト質グラス被膜外観および磁気
特性について調査した結果も、表6に併記する。Example 2 C: 0.040 wt%, Si: 3.40 wt%, Mn: 0.07 wt%, Se: 0.
A slab for electromagnetic steel containing 02 wt%, Sb: 0.025 wt% and Cu: 0.08 wt%, with the balance being substantially Fe, at 1400 ° C
After heating for 30 minutes at a temperature of 980 mm
℃ 2 times cold rolling with 1 minute intermediate annealing
Finished to a final thickness of mm. After decarburizing annealing this cold rolled sheet,
Using MgO of MgO powder Nos. 1 to 12 shown in Table 6 as a main ingredient,
O: 100 parts by weight, TiO 2 : 2 parts by weight, and SrSO 4 : 1.5 parts by weight were added to the annealed separating agent mixed with water. An annealed separating agent slurry was applied to a decarburized annealed plate at 6 g / m 2 per side. 2 was applied. Table 6 also shows the results of investigation on the appearance of the annealed separating agent slurry applied, the condition after drying, and the MgO cohesion test. Then, in an N 2 atmosphere, 845
℃, 50 hours of secondary recrystallization annealing, then in hydrogen
Purification annealing was performed at 1180 ° C. for 5 hours. Table 6 also shows the results of an investigation on the appearance and magnetic properties of the forsterite glass coating of the steel sheet thus obtained.
【0048】[0048]
【表6】 [Table 6]
【0049】同図から明らかなように、この発明に従う
MgO粉を用いた場合は、MgOスラリー塗布外観および鋼
板との密着性が優れており、また仕上げ焼鈍後のフォル
ステライト質グラス被膜および磁気特性も極めて良好で
あった。As is apparent from FIG.
When the MgO powder was used, the appearance of the coated MgO slurry and the adhesion to the steel sheet were excellent, and the forsterite glass coating after the finish annealing and the magnetic properties were also very good.
【0050】実施例3 C:0.030 wt%、Si:3.19wt%、Al:0.013 wt%、N:
0.0086wt%、Mn:0.007 wt%、Se:0.001 wt%、S:0.
009 wt%およびSb:0.012 wt%を含み、残部は実質的に
Feの組成になる電磁鋼用スラブを、1200℃で加熱し、熱
延により2.2 mmの板厚とし、ついで 900℃で1分間の熱
延板焼鈍後、酸洗し、1回の冷間圧延により0.34mm厚の
最終板厚に仕上げた。この冷延板を、 840℃で90秒間の
脱炭焼鈍後、表7に示すMgO粉No.1〜12のMgOを主剤と
して用い、このMgO:100 重量部に対しTiO2:8重量部
と Sr(OH)2:3重量部を添加した焼鈍分離剤を水と混合
して得た焼鈍分離剤スラリーを、脱炭焼鈍板に片面当た
り6g/m2の割合で塗布した。この時の焼鈍分離剤スラリ
ー塗布外観、乾燥後の状況およびMgO凝集性テストにつ
いて調査した結果を、表7に併せて示す。その後、N2雰
囲気中にて 850℃まで昇温し、 850℃から1080℃までを
N2+H2混合雰囲気にて昇熱粗度を20℃/hで昇温させる
2次再結晶焼鈍を行い、引き続きH2雰囲気で1080℃, 5
時間の純化焼鈍を施した。かくして得られた鋼板のフォ
ルステライト質グラス被膜外観および磁気特性について
調査した結果も、表7に併記する。Example 3 C: 0.030 wt%, Si: 3.19 wt%, Al: 0.013 wt%, N:
0.0086 wt%, Mn: 0.007 wt%, Se: 0.001 wt%, S: 0.
009 wt% and Sb: 0.012 wt%, with the balance being substantially
The slab for magnetic steel, which has the Fe composition, is heated at 1200 ° C, hot-rolled to a thickness of 2.2 mm, then hot-rolled at 900 ° C for 1 minute, pickled, and cold-rolled once. To a final thickness of 0.34 mm. This cold-rolled sheet was subjected to decarburizing annealing at 840 ° C. for 90 seconds, and thereafter MgO powders Nos. 1 to 12 shown in Table 7 were used as a main component, and 100 parts by weight of MgO and 8 parts by weight of TiO 2 were used. An annealing separator slurry obtained by mixing an annealing separator containing 3 parts by weight of Sr (OH) 2 with water was applied to a decarburized annealing plate at a rate of 6 g / m 2 per side. Table 7 also shows the results of an investigation on the appearance of the annealed separating agent slurry applied, the condition after drying, and the MgO cohesion test. Thereafter, the temperature is raised to 850 ° C in an N 2 atmosphere, and the temperature is increased from 850 ° C to 1080 ° C.
N 2 + H 2 perform secondary recrystallization annealing for heating the Noborinetsu roughness at 20 ° C. / h at a mixed atmosphere, subsequently 1080 ° C. in an atmosphere of H 2 5
Time purification annealing was performed. Table 7 also shows the results of an investigation on the appearance and magnetic properties of the forsterite glass coating of the steel sheet thus obtained.
【0051】[0051]
【表7】 [Table 7]
【0052】同図から明らかなように、この発明に従う
MgO粉を用いた場合は、MgOスラリー塗布外観および鋼
板との密着性が優れており、また仕上げ焼鈍後のフォル
ステライト質グラス被膜および磁気特性も極めて良好で
あった。As is apparent from FIG.
When the MgO powder was used, the appearance of the coated MgO slurry and the adhesion to the steel sheet were excellent, and the forsterite glass coating after the finish annealing and the magnetic properties were also very good.
【0053】[0053]
【発明の効果】この発明に従う焼鈍分離剤用のMgO粉
は、特定のMgOスラリー凝集特性を有し、焼鈍分離剤ス
ラリーとして鋼板表面に塗布した際に、粗大な凝集粒の
生成がなく、均一な塗布外観および良好な密着性を得る
ことができ、ひいては従来に比べてはるかに安定して良
好なフォルステライト質グラス被膜を形成することがで
き、さらにかような被膜形成を介して磁気特性をも安定
化させることができる。The MgO powder for an annealing separator according to the present invention has a specific MgO slurry aggregating property, and when applied as an annealing separator slurry to the surface of a steel sheet, does not generate coarse aggregates and is uniform. A good forsteritic glass coating can be formed much more stably than before, and the magnetic properties can be improved through the formation of such a coating. Can also be stabilized.
【図1】この発明に従うMgO粉の、MgOスラリー凝集特
性の適正範囲を示す図である。FIG. 1 is a view showing an appropriate range of MgO slurry aggregation characteristics of an MgO powder according to the present invention.
【図2】No.1のMgO粉の粒度分布を示す図である。FIG. 2 is a view showing the particle size distribution of No. 1 MgO powder.
【図3】No.1のMgO粉のMgOスラリー凝集性を攪拌速
度:1000rpm で測定した結果を示す図である。FIG. 3 is a graph showing the results of measuring the MgO slurry cohesion of No. 1 MgO powder at a stirring speed of 1000 rpm.
【図4】No.1のMgO粉のMgOスラリー凝集特性を示す図
である。FIG. 4 is a view showing the MgO slurry aggregation characteristics of No. 1 MgO powder.
【図5】各種MgO粉のMgOスラリー凝集特性を示す図で
ある。FIG. 5 is a graph showing MgO slurry aggregation characteristics of various MgO powders.
Claims (2)
O粉を水に懸濁させてMgOスラリーとした際、該MgOス
ラリーの粒度分布をレーザー回折式粒度分布計で測定し
た時の累積90%径が図1の点A,B,C,D,Eおよび
Fで囲まれる範囲を満足することを特徴とする、方向性
電磁鋼板製造時における焼鈍分離剤用のMgO粉。1. An MgO powder for an annealing separator, wherein the MgO powder is
When the O powder is suspended in water to form an MgO slurry, the cumulative 90% diameter when the particle size distribution of the MgO slurry is measured by a laser diffraction type particle size distribution meter is indicated by points A, B, C, D, and D in FIG. An MgO powder for an annealing separator in the production of grain-oriented electrical steel sheets, characterized by satisfying a range surrounded by E and F.
またはロータリーキルン焼成により得られたMgOを攪拌
処理または混合処理したものである方向性電磁鋼板製造
時における焼鈍分離剤用のMgO粉。2. The MgO powder according to claim 1, wherein the MgO powder is obtained by stirring or mixing MgO obtained by baking in a batch furnace or rotary kiln.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24045396A JP3933225B2 (en) | 1996-09-11 | 1996-09-11 | Method for preparing MgO powder for annealing separator during production of grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24045396A JP3933225B2 (en) | 1996-09-11 | 1996-09-11 | Method for preparing MgO powder for annealing separator during production of grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1088242A true JPH1088242A (en) | 1998-04-07 |
JP3933225B2 JP3933225B2 (en) | 2007-06-20 |
Family
ID=17059732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24045396A Expired - Lifetime JP3933225B2 (en) | 1996-09-11 | 1996-09-11 | Method for preparing MgO powder for annealing separator during production of grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3933225B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003082472A (en) * | 2001-09-11 | 2003-03-19 | Nippon Steel Corp | Separation agent for annealing, and method for producing grain oriented magnetic steel sheet having excellent glass film and magnetic property |
CN115989333A (en) * | 2020-09-01 | 2023-04-18 | 杰富意钢铁株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
-
1996
- 1996-09-11 JP JP24045396A patent/JP3933225B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003082472A (en) * | 2001-09-11 | 2003-03-19 | Nippon Steel Corp | Separation agent for annealing, and method for producing grain oriented magnetic steel sheet having excellent glass film and magnetic property |
CN115989333A (en) * | 2020-09-01 | 2023-04-18 | 杰富意钢铁株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3933225B2 (en) | 2007-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100762436B1 (en) | Annealing separating agent for grain oriented silicon steel sheet excellent in surface characteristic and production method of grain oriented silicon steel sheet using the same | |
JP5245277B2 (en) | Method for producing magnesia and grain-oriented electrical steel sheet for annealing separator | |
KR20040041772A (en) | Method for manufacturing a high-silicon steel sheet | |
EP1560938B1 (en) | Coating composition, and method of manufacturing high silicon electrical steel sheet using said composition | |
JP5418844B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPH1088244A (en) | Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet | |
JP3933225B2 (en) | Method for preparing MgO powder for annealing separator during production of grain-oriented electrical steel sheet | |
JPH09249916A (en) | Production of grain-oriented silicon steel sheet and separation agent for annealing | |
JP4310996B2 (en) | Method for producing grain-oriented electrical steel sheet and annealing separator used in this method | |
JP3043975B2 (en) | Annealing separator for grain-oriented silicon steel sheet | |
JP3356933B2 (en) | Annealing separator with excellent film-forming ability and method for producing grain-oriented electrical steel sheet using the same | |
JP3059338B2 (en) | Annealing separating agent for grain-oriented electrical steel sheet having extremely excellent reactivity and method of using the same | |
JP3021241B2 (en) | Method for producing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties | |
JPH05247661A (en) | Production of grain oriented silicon steel sheet having uniform glass film and excellent in magnetic property | |
JP3549492B2 (en) | Annealing separator and method for producing grain-oriented electrical steel sheet with excellent glass coating | |
JPH0748675A (en) | Production of grain-oriented silicon steel sheet excellent in film property and magnetic property | |
JP3103953B2 (en) | Ultrafine and uniform coating method of annealing separator MgO and pulverizing device of annealing separator MgO | |
JP3091088B2 (en) | Annealing separation agent having extremely excellent reactivity and method of using the same | |
JP4147775B2 (en) | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and coating properties | |
JP2749783B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties | |
JP3707249B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent coating uniformity | |
KR100900660B1 (en) | Coating composition with superior powder coating and surface properties | |
JP2001192737A (en) | Method for producing grain oriented silicon steel sheet excellent in glass film characteristic and magnetic property | |
JP2001192738A (en) | Method for producing grain oriented silicon steel sheet excellent in glass film characteristic and magnetic property | |
KR20040046399A (en) | Method for manufacturing high silicon non-oriented electrical steel sheet with superior magnetic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041102 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041227 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050221 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20050325 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060720 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070209 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070313 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140330 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |