JP4147775B2 - Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and coating properties - Google Patents

Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and coating properties Download PDF

Info

Publication number
JP4147775B2
JP4147775B2 JP2002018025A JP2002018025A JP4147775B2 JP 4147775 B2 JP4147775 B2 JP 4147775B2 JP 2002018025 A JP2002018025 A JP 2002018025A JP 2002018025 A JP2002018025 A JP 2002018025A JP 4147775 B2 JP4147775 B2 JP 4147775B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
properties
mass
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002018025A
Other languages
Japanese (ja)
Other versions
JP2003213337A (en
Inventor
渡辺  誠
俊人 高宮
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002018025A priority Critical patent/JP4147775B2/en
Publication of JP2003213337A publication Critical patent/JP2003213337A/en
Application granted granted Critical
Publication of JP4147775B2 publication Critical patent/JP4147775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、変圧器その他の電気機器の鉄心等に用いられる方向性電磁鋼板の製造方法に関し、特に一次再結晶焼鈍後に塗布する焼鈍分離剤に改良を加えることにより、磁気特性および被膜特性を改善してなる方向性電磁鋼板を製造する方法についての提案である。
【0002】
【従来の技術】
方向性電磁鋼板は、所定の成分組成に調整した鋼スラブを、熱間圧延後、冷間圧延し、一次再結晶焼鈍した後、二次再結晶のための最終仕上焼鈍を行って製造するのが普通である。ところで、かかる二次再結晶処理に当たっては、鋼中インヒビターの作用により、鋼板の圧延方向に磁化容易軸が揃った粗大結晶粒が生成する。しかし、二次再結晶を起こさせ、磁気特性に優れた鋼板を得るためには、最終仕上焼鈍を、高温で長時間行う必要がある。そこで、鋼板の焼付防止を目的として、この焼鈍前に、マグネシアを主体とする焼鈍分離剤を、水と懸濁させてスラリーとして塗布することが行われている。
【0003】
上記マグネシアは、かような焼鈍分離剤としての役割のほかに、最終仕上焼鈍に先んじて行われる一次再結晶焼鈍の過程で鋼板表面に生成するSiO2を主体とした酸化層と反応することによって、フォルステライト(Mg2SiO4)被膜を形成するという働きがある。そして、このフォルステライト被膜は、後工程で上塗りされるリン酸塩系の絶縁コーティングと地鉄部分とを強固に密着させる一種のバインダーとして働くほか、それ自体が絶縁被膜としても働き、さらには、鋼板に張力を付与することにより磁気特性を改善する働きもある。従って、鋼板表面には、均一な厚みを持ち、鋼板との密着性のよいフォルステライト被膜を形成することが必要である。上記のように、焼鈍分離剤は、鋼板特性に大きな影響を与える。
【0004】
さらに、焼鈍分離剤は、上述した働き以外に、最終仕上焼鈍中に、鋼板の析出物の生成、成長や結晶粒の成長挙動を変化させて、磁気特性に影響を及ぼす作用もある。例えば、マグネシアをスラリー化し、塗布した際の水分量が多すぎると、鋼板が酸化されて磁気特性が劣化したり、被膜に点状欠陥が生成したりする。また、マグネシアに含まれる不純物が焼鈍中に鋼板に侵入することにより、二次再結晶挙動が変化することなども知られている。したがって、焼鈍分離剤の成分や配合割合、マグネシアの粉体特性の良否は、方向性電磁鋼板の磁気特性、被膜特性を左右する重要な要因といえる。
【0005】
このため、従来から、焼鈍分離剤の品質改良のため、様々な方法が提案されている。例えば、特開昭50-145315号公報には、44μmふるいを98%以上通過し、かつ、20μm以下の粒子を80%以上含有する微細酸化チタンを焼鈍分離剤に1〜20重量%含有させることにより、耐熱性絶縁被膜を形成させる技術が開示され、特開平9-249916号公報には、平均粒径0.3〜3μmのMgOに、1種または2種以上の添加剤を配合し、この添加剤の平均粒径を0.03〜0.15μmの範囲で添加剤に応じて調整することにより、優れた磁気特性と被膜特性を得る方法が開示され、また、特開平01-192739には、焼鈍分離剤スラリーとして、MgOスラリー中に、比表面積15m2/g以上のTiO2を、MgO100重量部に対し0.3〜10重量部配合した焼鈍分離剤スラリーを用いる技術が開示され、さらに、特許第2673767号公報には、添加剤の粒径を特定する技術が開示されている。
【0006】
【発明が解決しようとする課題】
このように、電磁鋼板のフォルステライト被膜特性は、上述した焼鈍分離剤の改善により、ある程度は向上してきた。しかし、現実には、工業的に大量生産している過程での工場の微妙な条件変動により、上記被膜品質にバラツキが生じ、被膜模様が発生したり被膜密着性が劣化するという問題点があった。
【0007】
本発明の目的は、焼鈍分離剤に添加される添加剤の特性を改良することにより、磁気特性、被膜特性に優れた方向性電磁鋼板を製造する有利な方法を提案することにある。
【0008】
【課題を解決するための手段】
発明者らは、方向性電磁鋼板の磁気特性、被膜特性を安定的に向上させることのできる方法を探るために、仕上焼鈍後の磁気特性及び表面状態に影響を及ぼす焼鈍分離剤の添加剤の性状について、種々検討した。その結果、前記添加剤について、それの粒度や比表面積などを変化させると、被膜品質や磁気特性が大きく改善できることを見出した。また、磁気特性、被膜特性の向上のためには、かかる添加剤の特性を個々に調整するのではなく、相互の関係を考慮した場合に効果的であることを知見し、本発明を完成させた。
【0009】
すなわち、本発明は、Si:2.0〜4.Omass%を含有する鋼スラブを加熱後熱間圧延し、1回又は中間焼鈍を挟む複数回の冷間圧延により最終板厚とし、次いで、一次再結晶焼鈍した後、鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布し、最終仕上焼鈍を行う一連の工程よりなる方向性電磁鋼板の製造方法において、上記焼鈍分離剤には、平均粒径をD(μm)、BET比表面積をS(m/g)、真密度をρ(g/cm)としたときに、D:0.15〜0.50μm、S:5.0〜14.9m/gであり、下記式;
1.1≦ρSD/6≦2.6
の関係を満足する酸化チタン粉(但し、表面処理されたものを除く)を前記マグネシア100重量部に対して2〜8重量部含むことを特徴とする方向性電磁鋼板の製造方法である
【0011】
【発明の実施の形態】
以下、本発明を開発する契機となった実験について説明する。
この実験では、供試材として、C:0.045mass%、Si:3.25mass%、Mn:0.07mass%、Se:0.02mass%、Sb:0.02mass%を含み、残部は実質的にFeよりなる鋼スラブを、1380℃で30分加熱後、熱間圧延して2.2mmの板厚にしたのち、1050℃で1分間の中間焼鈍を挟む2回の冷間圧延により最終板厚0.23mmに仕上げ、次いで、800℃×2分間の一次再結晶焼鈍をしてから、焼鈍分離剤を塗布、乾燥させた鋼板を用いた。
また、上記焼鈍分離剤は、マグネシア粉100重量部に対し、添加剤として、平均粒径とBET比表面積の異なる酸化チタン(TiO2)を2重量部添加したものを、20℃×60分の水和処理を行ってスラリーとしたものを用いた。なお、この焼鈍分離剤は、鋼板の両面当たり12g/m2の条件で塗布し、乾燥させた。
その後、830℃で50時間保定後、該温度から1150℃までを30℃/hの昇温速度で加熱した後、1200℃で10時間の純化焼鈍を含む仕上焼鈍を行った。
ここで、上記平均粒径は、検体を分散媒に投入して300Wで3分間、超音波分散したのち、レーザー回折式粒度分布計で測定した値であり、また、BET比表面積は、吸着種をN2としてBET多点法で測定した値である。
【0012】
上記の鋼板について、鉄損W17/50(W/kg)及び被膜密着性を測定し、それらの結果を添加剤の特性値からなるパラメータρSD/6で整理し、図1として示した。ここで、Sは添加剤である酸化チタンのBET比表面積(m2/g)、Dは酸化チタンのレーザー回折式粒度分布計で測定した平均粒径(μm)およびρは酸化チタンの真密度(g/cm3)の値である。また、被膜密着性は、鋼板を、径の異なる丸棒に巻きつけたときに、被膜が剥離しなかった最小の曲げ径を示したものである(以下、同じ)。
【0013】
図1から明らかなように、添加剤のパラメータρSD/6と鉄損および被膜密着性とは強い相関を示している。この添加剤のパラメータ値を1.1〜2.6の範囲に制御することにより、磁気特性、被膜特性とも改善されることがわかる。
【0014】
従来から、添加剤である酸化チタンの役割については、種々の調査が行われている。その結果、酸化チタンの粒径やBET比表面積を調整することにより、被膜形成が促進されることが知られていた。しかし、上記実験の結果、これらを個々に制御したのみでは必ずしも良好な被膜が得られるとは限らず、BET比表面積と平均粒径とを特定の関係のもとで制御することによりはじめて安定的に良好な被膜が得られることが見出されたのである。
【0015】
焼鈍分離剤に添加される添加剤のBET比表面積と、平均粒径の関係を特定の関係とすることにより仕上焼鈍後の磁気特性と被膜特性が変化する理由は明らかでないが、発明者らは以下のように考えている。
【0016】
一般に、粉体の粒径は、BET比表面積Sが明らかな場合、6/ρSで換算できるとされている。従ってρSD/6は、BET比表面積から測定した平均粒径(比表面積径)とレーザー回折式粒度分布計から測定した平均粒径Dとの比を表す指標となる。レーザー回折式粒度分布計から測定した平均粒径は、超音波により分散されるので、弱く凝集した粉体は分散されるが、強く凝集した粒子は分散されないまま残る。これに対してBET比表面積は、凝集の影響はほとんど現れない。従って、上記の比は、粒子の凝集の程度(凝集の強さ)を示すと考えられる。
また、焼鈍分離剤の塗布工程においては、弱く凝集した粒子は、コーターで塗布する時の剪断応力やコイルに巻き取った時の面圧で容易に破壊されるのに対し、強く凝集した粒子は、これらの応力では破壊されずに凝集したまま鋼板に巻き込まれる。従って、ρSD/6の値を所定の範囲内に収めるということは、凝集程度を制御し適正化することに相当する。この凝集程度を適正化すると、主剤であるマグネシアとの分散性が増して均一分散が促進されるとともに、適度の凝集力を持たせることによる鋼板との密着性の改善や、水との濡れ性が高まることによる液はじきの防止、粉体切出し等の作業性の改善をもたらし、ひいては、生産性を低下することなく、良好な被膜特性を得ることができる。
【0017】
なお、焼鈍分離剤中の添加剤を適正化する技術は、特開昭50-145315号公報、特開平9-249916号公報を初めとして数多く開示されている。しかし、本発明のように、レーザー回折式粒度分布計での平均粒径とBET比表面積から得られる平均粒径の比によって、添加剤の特性が変化することは今まで知られていなかった。すなわち、本発明は、単純に、添加剤のレーザー回折式粒度分布計による粒径を管理するだけでなく、BET比表面積と合わせて管理することにより、従来よりも更に優れた被膜特性が得られることを新規に見出したのである。
【0018】
以下、本発明に係る方向性電磁鋼板の製造方法を具体的に説明する。
まず、本発明において用いられる鋼スラブとしては、以下に説明する成分組成のものが有利に適合する。
Cは、出鋼段階で低下させて脱炭焼鈍を行わない方法と、ある程度の量を確保して組織の改善を図り、後で脱炭焼鈍により除去するという方法とがある。前者では、Cの磁気特性への悪影響を避けるため、0.01mass%未満が好ましく、後者では、組織改善効果を得るため、好適範囲は0.01mass%以上0.10mass%未満である。
Siは、鋼板の比抵抗を高め、鉄損を低減するのに必須の成分であるが、2.0mass%に満たないと鉄損の低減効果が弱まり、また4.5mass%を超えると冷延性が損なわれる。
【0019】
上記成分の他に、磁化容易軸に高度に揃った二次再結晶粒を形成させるため、インヒビターを構成する成分を含有させることが一般的である。このインヒビターとしては、AlN,MnSe,MnS等がよく知られていて、これらインヒビターを単独使用または併用することができる。その際、インヒビターとして、MnS及び/又はMnSeを用いる場合には、Mnを0.03〜0.10mass%、S,Seを合計で0.01〜0.03mass%の範囲で含有させる。また、AlNをインヒビターとして用いる場合は、Al:0.01〜0.04mass%含有させる。Nは、製造工程途中で窒化することもできるが、製鋼時にあらかじめNを含有させる場合には50〜120mass ppmとする。これらの範囲よりも低い場合には、インヒビターとしての効果が発揮できず、逆に高い場合には、二次再結晶が不安定になる。
【0020】
また、上記の主インヒビターの他に、B,Cu,Sn,Cr,Sb,Ge,Mo,Te,Bi,P,Vなども、補助インヒビターとして用いることができる。これらの有効な含有量は、総量で0.01mass%以上0.2mass%以下である。これらの各インヒビターは、単独使用、併用のいずれもが可能である。
なお、近年、インヒビターを含まず、粒界易動度差を利用して二次再結晶させる技術が開発されているが、この場合には、Alは100mass ppm未満、N,S,Seについては50mass ppm未満とする。
【0021】
上記成分組成を有する鋼スラブは、公知の方法に従い、加熱して熱間圧延し、1回又は中間焼鈍を挟む複数回の冷間圧延により最終板厚にする。なお、必要に応じて熱延板焼鈍を行うことも可能である。
【0022】
最終冷延板は、一次再結晶焼鈍を行い、次いで、焼鈍分離剤を塗布したのち、最終仕上焼鈍を行う。上記焼鈍分離剤の主剤には、マグネシアを用いる。これとともに、適正な粒径、BET比表面積の添加剤を用いることが、本発明の重要な構成要件の一つである。すなわち、添加剤のレーザー回折式粒度分布計で測定した平均粒径をD(μm)、BET比表面積をS(m2/g)、真密度をρ(g/cm3)とするとき、下記式;
1.1≦ρSD/6≦4.0
の関係を満足するよう添加剤の特性を制御する必要がある。上記式の上限を外れると、強く凝集した粒子が鋼板に巻き込まれ、被膜の不均一や斑点模様を生じる原因となる。逆に、下限を外れると、添加剤粒子の付着力が小さくなりすぎて、コイル巻取り時に粒子が剥落したり、コイル搬送時に滑りを起こしたりして、被膜の劣化や作業性の低下を招く。
【0023】
さらに、添加剤として酸化チタンを用いた場合について、酸化チタンの被膜特性および磁気特性に及ぼす影響について調査した。その結果、ρSD/6の値が1.1〜2.6の範囲において、特に磁気特性、被膜特性が良好であった。また、レーザー回折式粒度分布計で測定したときの平均粒径が0.15〜0.50μm、BET比表面積が5.0〜14.9m2/gの範囲で、最も磁気特性、被膜特性が良好であった。平均粒径が0.15μmを下回ったり、BET比表面積が14.9m2/gを超えたりすると、凝集が弱すぎて塗布ムラが発生し、被膜劣化をもたらす。一方、平均粒径が0.50μmを超えたり、BET比表面積5.0m2/gを下回ったりすると反応が進みにくくなり、やはり良好な被膜は得られない。
【0024】
添加剤のBET比表面積と平均粒径の調整方法は、添加剤の種類により製法が各々異なるので一概にいえないが、酸化チタンを例に取ると、以下のようになる。一般に、酸化チタンは、1.鉱石の反応→2.溶液の清澄→3.加水分解による含水酸化チタンの沈殿→4.含水酸化チタンの洗浄→5.焼成→6.粉砕の工程で製造される。平均粒径は、加水分解時のpHや溶液注入速度を変更したり、あるいは焼成温度や粉砕の能力を変更することなどにより調整することができる。また、BET比表面積は焼成の温度や添加混合剤の種類や量を変更して調整することができる。
【0025】
焼鈍分離剤には、上記酸化チタン以外に、添加剤として、Mn,Mg,Sn,Ti,Cu,Nb,Tl,Sr,Bi,Fe等の酸化物、水酸化物、硫酸塩等を含有させることができる。これらの添加量は、マグネシア100重量部に対し、各々、0.3〜12重量部とする。0.3重量部未満では効果がなく、12重量部を超えると、却って被膜や磁気特性を低下させる。これらの添加剤は、単独使用、複数使用、いずれも可能である。
【0026】
上記の焼鈍分離剤は、水で懸濁・スラリー化したのち、鋼板表面に所定の目付量で塗布し、乾燥させる。この時の目付量は、両面で4g/m2〜18g/m2が望ましい。低すぎると被膜形成に必要なマグネシアの量が不足し、多すぎるとコストがかかる上、水和水分が多くなりすぎて磁性が劣化する。また、水和の条件は、通常、10〜50℃で、10〜100分程度で行われるが、本発明でもこの範囲で行って差し支えない。
【0027】
その後、仕上焼鈍を施すが、これは公知の方法でよい。これら一連の処理後、絶縁張力コートを施し、平坦化焼鈍、磁区細分化処理を行って、製品に仕上げる。
【0028】
【実施例】
(実施例1)
C:0.06mass%、Si:3.4mass%、Mn:0.068mass%、Al:0.024mass%、Se:0.019mass%、Sb:0.026mass%、Bi:0.004mass%、N:0.008mass%、Cr:0.O31mass%を含み、残部は実質的にFeよりなる鋼スラブを、1350℃で40分加熱後、熱間圧延して2.0mmの板厚にし、900℃×60sの熱延板焼鈍を施してから、1000℃×60sの中間焼鈍を挟んだタンデム圧延機による2回の冷間圧延により0.23mmの最終板厚に仕上げた。この鋼板を脱炭焼鈍後、焼鈍分離剤を塗布、乾燥し、コイル状に巻き取った。上記焼鈍分離剤は、マグネシア100重量部に対し、性状の異なる酸化チタン8重量部と硫酸ストロンチウム2重量部を添加したものを、20℃×40分の条件で水和してスラリーとし、鋼板表面に両面で13g/m2を塗布した。
その後、最終仕上焼鈍として、800℃から1100℃を10℃/hで昇温した後、1200℃×10hの純化焼鈍を行った。続いて、絶縁コーティングを塗布し、ヒートフラットニングを兼ねて900℃×60sで焼付け、さらに、プラズマ照射による磁区細分化処理を施した。
【0029】
この時の被膜特性について表1に示す。この表から分かるとおり、酸化チタンおよび硫酸ストロンチウムの特性(ρSD/6の値)が本発明範囲内にある添加剤を用いることにより、最も優れた磁気特性、被膜特性が得られている。また、この表のNo.2,3のように、どちらか一方のみが本発明の範囲に入っている場合でも、本発明の改善効果は、ある程度得られている。従って、コスト等の問題で本来の添加剤のρSD/6の値が4.0以内に収められない場合でも、これと同時に本発明範囲内の別の添加剤を併用して用いることにより、良好な特性が得られることが分かる。
【0030】
【表1】

Figure 0004147775
【0031】
(実施例2)
C:0.06mass%、Si:3.28mass%、Mn:0.07mass%、Al:0.021mass%、N:0.008mass%、Se:0.02mass%及びSb:0.025mass%を含み、残部は実質的にFeよりなる鋼スラブを、1400℃で40分加熱し、熱間圧延により板厚2.2mmにし、2回の冷間圧延を1000℃×2分の中間焼鈍を挟んで行い、最終板厚0.23mmに仕上げた。この冷延板を、850℃×2分の一次再結晶焼鈍後、焼鈍分離剤を鋼板表面に両面で13g/m2を塗布、乾燥し、コイルに巻き取った。上記焼鈍分離剤は、100重量部のマグネシアに対し、6重量部の性状の異なる酸化チタンと0.1重量部の塩化アンチモンを添加した焼鈍分離剤を、温度2O℃、時聞40分で水和してスラリーとしたものを用いた。その後、最終仕上焼鈍として、800℃から1100℃を10℃/hで昇温し、1200℃×10hの純化焼鈍を行った。引き続き、絶縁コーティングを塗布し、ヒートフラットニングを兼ねて900℃×60秒で焼付け、その後、プラズマ照射により磁区細分化処理を行った。
【0032】
この時の被膜特性について表2に示す。塩化アンチモンのような水溶性の添加剤を用いても、酸化チタンの平均粒径とBET比表面積を本発明範囲内に収めることにより、優れた磁気特性が得られる。また、ρSD/6の値を1.1〜4.0にすることにより磁気特性、被膜とも改善し、さらに1.1〜2.6にすることにより一層の改善効果が認められる。
【0033】
【表2】
Figure 0004147775
【0034】
(実施例3)
C:0.06mass%、Si:3.32mass%、Mn:0.07mass%、Se:0.02mass%及びSb:0.023mass%を含み、残部は実質的にFeよりなる鋼スラブを、14O0℃で40分加熱後、熱間圧延にして板厚2.2mmとし、2回の冷間圧延を1000℃×2分の中間焼鈍を挟んで行い、最終板厚0.30mmに仕上げた。この冷延板を、850℃×2分の一次再結晶焼鈍後、100重量部のマグネシアと2重量部の種々の添加剤を添加した焼鈍分離剤を、水和温度20℃、水和時間40分で水和したスラリーを、鋼板表面に両面に塗布量13g/m2で塗布し、乾燥してコイルに巻き取った。
その後、最終仕上焼鈍として、800℃で50時間保定後、1200℃10hの純化焼鈍を行った。引き続き、絶縁コーティングを塗布し、ヒートフラットニングを兼ねて900℃×60秒で焼付けた。
この時の被膜特性について表3に示す。いずれの添加剤を用いても、ρSD/6の値を本発明範囲内にすることにより磁気特性、被膜特性とも改善している。
【0035】
【表3】
Figure 0004147775
【0036】
(実施例4)
C:0.05mass%、Si:3.03mass%、Mn:0.07mass%、Al:0.005mass%、N:0.004mass%、Sb:0.023mass%及びCu:0.05mass%を含み、残部は実質的にFeよりなるスラブを、1200℃で60分加熱し、熱間圧延により板厚2.0mmとし、200℃の温間圧延により最終板厚0.30mmに仕上げた。この冷延板を、850℃×2分の一次再結晶焼鈍後、100重量部のマグネシアと2重量部の種々の添加剤を添加した焼鈍分離剤を、水和温度20℃、水和時間40分で水和して鋼板表面に両面で13g/m2を塗布し、乾燥してコイルに巻き取った。
その後、最終仕上焼鈍として、800℃×50時間保定した後、1200℃×10hの純化焼鈍を行った。引き続き、絶縁コーティングを塗布し、ヒートフラットニングを兼ねて900℃×60秒で焼付けた。
この時の被膜特性について表4に示す。実施例3とは、鋼板の成分組成や製造工程が異なっていても、添加剤のρSD/6の値を本発明範囲内にすることにより、磁気特性、被膜特性とも改善されている。
【0037】
【表4】
Figure 0004147775
【0038】
【発明の効果】
以上説明したように、本発明によれば、焼鈍分離剤の添加剤の平均粒径、比表面積を適正範囲に制御することにより、被膜特性および磁気特性に優れた方向性電磁鋼板を安定して製造することが可能となる。
【図面の簡単な説明】
【図1】 添加剤の特性値ρSD/6と被膜の密着性との関係を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing grain-oriented electrical steel sheets used for iron cores of transformers and other electrical equipment, and in particular, improves magnetic properties and film properties by improving the annealing separator applied after primary recrystallization annealing. It is a proposal about the method of manufacturing the grain-oriented electrical steel sheet formed.
[0002]
[Prior art]
The grain-oriented electrical steel sheet is manufactured by hot rolling, cold rolling, primary recrystallization annealing, and final finishing annealing for secondary recrystallization. Is normal. By the way, in the secondary recrystallization treatment, coarse crystal grains having easy magnetization axes aligned in the rolling direction of the steel sheet are generated by the action of the inhibitor in steel. However, in order to cause secondary recrystallization and obtain a steel sheet having excellent magnetic properties, it is necessary to perform final finish annealing at a high temperature for a long time. Therefore, for the purpose of preventing seizure of the steel sheet, an annealing separator mainly composed of magnesia is suspended in water and applied as a slurry before the annealing.
[0003]
In addition to its role as an annealing separator, the magnesia reacts with an oxide layer mainly composed of SiO 2 formed on the steel sheet surface in the process of primary recrystallization annealing performed prior to final finish annealing. It has the function of forming a forsterite (Mg 2 SiO 4 ) film. And this forsterite film works as a kind of binder that firmly adheres the phosphate-based insulating coating and the base iron part, which are overcoated in a later process, itself works as an insulating film, It also works to improve magnetic properties by applying tension to the steel sheet. Therefore, it is necessary to form a forsterite film having a uniform thickness and good adhesion to the steel plate on the steel plate surface. As described above, the annealing separator has a great influence on the steel sheet characteristics.
[0004]
Furthermore, in addition to the functions described above, the annealing separator has an effect of affecting the magnetic properties by changing the formation and growth of precipitates on the steel sheet and the growth behavior of crystal grains during the final finish annealing. For example, if the amount of moisture when slurrying and applying magnesia is too large, the steel sheet is oxidized and the magnetic properties are deteriorated, or point defects are generated in the coating. In addition, it is also known that secondary recrystallization behavior is changed when impurities contained in magnesia enter the steel plate during annealing. Therefore, it can be said that the composition and blending ratio of the annealing separator and the powder properties of magnesia are important factors that influence the magnetic properties and film properties of the grain-oriented electrical steel sheet.
[0005]
For this reason, conventionally, various methods have been proposed for improving the quality of the annealing separator. For example, JP-A-50-145315 discloses that an annealing separator contains 1 to 20% by weight of fine titanium oxide that passes through a 44 μm sieve by 98% or more and contains 20% or less particles by 80% or more. Discloses a technique for forming a heat-resistant insulating film, and JP-A-9-249916 discloses that one or more additives are added to MgO having an average particle size of 0.3 to 3 μm. Discloses a method for obtaining excellent magnetic properties and film properties by adjusting the average particle size of 0.03 to 0.15 μm in accordance with the additive, and JP-A-01-192739 discloses an annealing separator slurry. As a technique, an annealing separator slurry in which 0.3 to 10 parts by weight of TiO 2 having a specific surface area of 15 m 2 / g or more and 100 parts by weight of MgO is blended in an MgO slurry is disclosed, and further, in Japanese Patent No. 2673767 Discloses a technique for specifying the particle size of an additive.
[0006]
[Problems to be solved by the invention]
Thus, the forsterite film characteristics of the electrical steel sheet have been improved to some extent by the improvement of the annealing separator described above. However, in reality, there is a problem in that the quality of the coating film varies due to slight fluctuations in the conditions of the factory in the process of mass production industrially, resulting in a coating pattern or deterioration in coating adhesion. It was.
[0007]
An object of the present invention is to propose an advantageous method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties by improving the properties of the additive added to the annealing separator.
[0008]
[Means for Solving the Problems]
In order to find a method capable of stably improving the magnetic properties and film properties of grain-oriented electrical steel sheets, the inventors of the present invention added an additive for an annealing separator that affects the magnetic properties and surface condition after finish annealing. Various properties were examined. As a result, it has been found that the coating quality and magnetic properties can be greatly improved by changing the particle size and specific surface area of the additive. In addition, to improve the magnetic properties and film properties, it has been found that it is effective when considering the mutual relationship, rather than adjusting the properties of such additives individually, and the present invention has been completed. It was.
[0009]
That is, the present invention provides Si: 2.0-4. Steel slab containing Omass% is heated and then hot-rolled to obtain the final sheet thickness by one or multiple cold rolling sandwiching intermediate annealing, then primary recrystallization annealing, and then magnesia is the main component on the steel sheet surface In the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which an annealing separator is applied and final finish annealing is performed, the annealing separator has an average particle diameter of D (μm) and a BET specific surface area of S ( m 2 / g), when the true density is ρ (g / cm 3 ), D is 0.15 to 0.50 μm, S is 5.0 to 14.9 m 2 / g, and the following formula:
1.1 ≦ ρSD / 6 ≦ 2.6
2 to 8 parts by weight of titanium oxide powder satisfying the relationship (excluding those subjected to surface treatment) with respect to 100 parts by weight of magnesia .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the following, experiments that triggered the development of the present invention will be described.
In this experiment, steels containing C: 0.045 mass%, Si: 3.25 mass%, Mn: 0.07 mass%, Se: 0.02 mass%, Sb: 0.02 mass% as the test material, the balance being substantially made of Fe. The slab was heated at 1380 ° C for 30 minutes, then hot rolled to a thickness of 2.2mm, then finished to a final thickness of 0.23mm by cold rolling twice at 1050 ° C for 1 minute intermediate annealing. Next, a steel sheet that had been subjected to primary recrystallization annealing at 800 ° C. for 2 minutes and then applied with an annealing separator and dried was used.
Further, the annealing separator, compared magnesia powder 100 parts by weight, as an additive, the average particle diameter and those different titanium oxide BET specific surface area (TiO 2) were added 2 parts by weight, 20 ° C. × 60 minutes A slurry obtained by hydration was used. This annealing separator was applied under conditions of 12 g / m 2 per both surfaces of the steel sheet and dried.
Thereafter, after holding at 830 ° C. for 50 hours, the temperature was heated from this temperature to 1150 ° C. at a rate of temperature increase of 30 ° C./h, and then finish annealing including purification annealing at 1200 ° C. for 10 hours was performed.
Here, the above average particle diameter is a value measured with a laser diffraction particle size distribution meter after ultrasonic dispersion at 300 W for 3 minutes after putting the specimen into the dispersion medium, and the BET specific surface area is the adsorbed species. Is a value measured by the BET multipoint method with N 2 .
[0012]
The steel sheet was measured for iron loss W 17/50 (W / kg) and film adhesion, and the results were organized by the parameter ρSD / 6 consisting of the characteristic values of the additive and shown in FIG. Here, S is the BET specific surface area (m 2 / g) of titanium oxide as an additive, D is the average particle diameter (μm) measured with a laser diffraction particle size distribution meter of titanium oxide, and ρ is the true density of titanium oxide It is the value of (g / cm 3 ). The film adhesion indicates the minimum bending diameter at which the film did not peel when the steel sheet was wound around a round bar having a different diameter (hereinafter the same).
[0013]
As is clear from FIG. 1, the additive parameter ρSD / 6, the iron loss, and the film adhesion show a strong correlation. It can be seen that by controlling the parameter value of this additive in the range of 1.1 to 2.6, both the magnetic properties and the film properties are improved.
[0014]
Conventionally, various investigations have been conducted on the role of titanium oxide as an additive. As a result, it has been known that film formation is promoted by adjusting the particle size and BET specific surface area of titanium oxide. However, as a result of the above experiment, it is not always possible to obtain a good coating only by controlling these individually, and stable only by controlling the BET specific surface area and the average particle diameter under a specific relationship. It has been found that a good coating can be obtained.
[0015]
Although the reason why the magnetic properties and film properties after finish annealing change by making the relationship between the BET specific surface area of the additive added to the annealing separator and the average particle size a specific relationship is not clear, the inventors I think as follows.
[0016]
In general, the particle size of the powder can be converted to 6 / ρS when the BET specific surface area S is clear. Therefore, ρSD / 6 is an index representing the ratio between the average particle diameter (specific surface area diameter) measured from the BET specific surface area and the average particle diameter D measured from the laser diffraction particle size distribution analyzer. Since the average particle diameter measured from the laser diffraction particle size distribution meter is dispersed by ultrasonic waves, the weakly agglomerated powder is dispersed, but the strongly agglomerated particles remain undispersed. On the other hand, the BET specific surface area has almost no influence of aggregation. Therefore, the above ratio is considered to indicate the degree of aggregation (aggregation strength) of particles.
In the annealing separation agent application process, weakly agglomerated particles are easily broken by shear stress when applied with a coater or surface pressure when wound on a coil, whereas strongly agglomerated particles are In these stresses, the steel sheets are rolled up without being destroyed and agglomerated. Therefore, keeping the value of ρSD / 6 within a predetermined range corresponds to controlling and optimizing the degree of aggregation. By optimizing this degree of aggregation, the dispersibility with magnesia, which is the main agent, is increased and uniform dispersion is promoted. Adhesion with steel sheets is improved by imparting appropriate cohesion and water wettability. As a result, the improvement of workability such as prevention of liquid repelling and powder cutting out due to the increase in the thickness can be achieved, and as a result, good coating properties can be obtained without lowering the productivity.
[0017]
A number of techniques for optimizing the additives in the annealing separator have been disclosed, including JP-A-50-145315 and JP-A-9-249916. However, as in the present invention, it has not been known until now that the characteristics of the additive change depending on the ratio of the average particle diameter obtained by the laser diffraction particle size distribution meter and the average particle diameter obtained from the BET specific surface area. That is, according to the present invention, not only the particle size of the additive by the laser diffraction particle size distribution meter is managed, but also the coating properties superior to conventional ones can be obtained by managing it together with the BET specific surface area. This is a new finding.
[0018]
Hereinafter, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention will be specifically described.
First, as the steel slab used in the present invention, those having the composition described below are advantageously adapted.
There is a method in which C is reduced at the steel-out stage and no decarburization annealing is performed, and a method in which a certain amount is secured to improve the structure and later removed by decarburization annealing. The former is preferably less than 0.01 mass% in order to avoid adverse effects on the magnetic properties of C, and the latter is preferably in the range of 0.01 mass% to less than 0.10 mass% in order to obtain a structure improvement effect.
Si is an essential component for increasing the specific resistance of steel sheets and reducing iron loss. However, if it is less than 2.0 mass%, the effect of reducing iron loss is weakened, and if it exceeds 4.5 mass%, cold rolling properties are impaired. It is.
[0019]
In addition to the above components, in order to form secondary recrystallized grains highly aligned with the easy axis of magnetization, it is common to include a component constituting an inhibitor. As this inhibitor, AlN, MnSe, MnS and the like are well known, and these inhibitors can be used alone or in combination. At that time, when MnS and / or MnSe is used as an inhibitor, Mn is contained in a range of 0.03 to 0.10 mass% and S and Se in a total range of 0.01 to 0.03 mass%. Moreover, when using AlN as an inhibitor, Al: 0.01-0.04mass% is contained. N can be nitrided in the course of the manufacturing process, but is 50 to 120 mass ppm when N is included in advance during steelmaking. When it is lower than these ranges, the effect as an inhibitor cannot be exhibited, and when it is higher, secondary recrystallization becomes unstable.
[0020]
In addition to the above main inhibitors, B, Cu, Sn, Cr, Sb, Ge, Mo, Te, Bi, P, V and the like can also be used as auxiliary inhibitors. These effective contents are 0.01 mass% or more and 0.2 mass% or less by the total amount. Each of these inhibitors can be used alone or in combination.
In recent years, a technique for secondary recrystallization using a difference in grain boundary mobility, which does not contain an inhibitor, has been developed. In this case, Al is less than 100 mass ppm, and N, S, and Se are Less than 50 mass ppm.
[0021]
The steel slab having the above component composition is heated and hot-rolled according to a known method, and is brought to a final plate thickness by one or a plurality of cold rolling sandwiching intermediate annealing. In addition, it is also possible to perform hot-rolled sheet annealing as needed.
[0022]
The final cold-rolled sheet is subjected to primary recrystallization annealing, and after applying an annealing separator, final finishing annealing is then performed. Magnesia is used as the main component of the annealing separator. At the same time, the use of an additive having an appropriate particle size and BET specific surface area is one of the important components of the present invention. That is, when the average particle diameter measured by a laser diffraction particle size distribution meter of the additive is D (μm), the BET specific surface area is S (m 2 / g), and the true density is ρ (g / cm 3 ), formula;
1.1 ≦ ρSD / 6 ≦ 4.0
Therefore, it is necessary to control the characteristics of the additive so as to satisfy the above relationship. If the upper limit of the above formula is exceeded, strongly agglomerated particles will be caught in the steel sheet, causing non-uniform coating and spotted patterns. On the other hand, if the lower limit is exceeded, the adhesive force of the additive particles becomes too small, causing the particles to fall off when winding the coil, or causing slipping during coil conveyance, leading to deterioration of the coating and workability. .
[0023]
Furthermore, when titanium oxide was used as an additive, the influence of titanium oxide on film properties and magnetic properties was investigated. As a result, the magnetic characteristics and the film characteristics were particularly good when the value of ρSD / 6 was in the range of 1.1 to 2.6. Further, the magnetic properties and film properties were most favorable when the average particle size was 0.15 to 0.50 μm and the BET specific surface area was 5.0 to 14.9 m 2 / g as measured by a laser diffraction particle size distribution meter. When the average particle size is less than 0.15 μm or the BET specific surface area exceeds 14.9 m 2 / g, the aggregation is too weak and uneven coating occurs, resulting in coating deterioration. On the other hand, if the average particle size exceeds 0.50 μm or falls below the BET specific surface area of 5.0 m 2 / g, the reaction becomes difficult to proceed, and a good coating cannot be obtained.
[0024]
The method for adjusting the BET specific surface area and the average particle diameter of the additive cannot be generally described because the manufacturing method differs depending on the type of the additive. However, taking titanium oxide as an example, the method is as follows. Generally, titanium oxide is Reaction of ore → 2. Solution clarification → 3. Precipitation of hydrous titanium oxide by hydrolysis → 4. Cleaning of hydrous titanium oxide → 5. Firing → 6. Manufactured in the grinding process. The average particle size can be adjusted by changing the pH at the time of hydrolysis or the solution injection speed, or by changing the firing temperature or the pulverization ability. Further, the BET specific surface area can be adjusted by changing the firing temperature and the kind and amount of the additive mixture.
[0025]
In addition to the above titanium oxide, the annealing separator contains oxides such as Mn, Mg, Sn, Ti, Cu, Nb, Tl, Sr, Bi, Fe, hydroxides, sulfates, etc. as additives. be able to. These addition amounts are 0.3 to 12 parts by weight with respect to 100 parts by weight of magnesia. If it is less than 0.3 parts by weight, there is no effect, and if it exceeds 12 parts by weight, the film and magnetic properties are deteriorated. These additives can be used alone or in combination.
[0026]
The above annealing separator is suspended and slurried with water, and then applied to the surface of the steel sheet with a predetermined basis weight and dried. Basis weight at this time, 4g / m 2 ~18g / m 2 is desirable in both. If it is too low, the amount of magnesia required for film formation will be insufficient. If it is too high, the cost will be high, and the hydrated water will be too much and the magnetism will deteriorate. Hydration is usually performed at 10 to 50 ° C. for about 10 to 100 minutes, but the present invention may be performed within this range.
[0027]
Then, although finish annealing is performed, this may be a known method. After these series of treatments, an insulation tension coat is applied, and flattening annealing and magnetic domain fragmentation treatment are performed to finish the product.
[0028]
【Example】
(Example 1)
C: 0.06 mass%, Si: 3.4 mass%, Mn: 0.068 mass%, Al: 0.024 mass%, Se: 0.019 mass%, Sb: 0.026 mass%, Bi: 0.004 mass%, N: 0.008 mass%, Cr: A steel slab containing 0. 31 mass%, with the balance being essentially Fe, is heated at 1350 ° C for 40 minutes, hot rolled to a thickness of 2.0 mm, and then subjected to hot rolling of 900 ° C x 60 s. After that, it was finished to a final thickness of 0.23 mm by cold rolling twice with a tandem rolling mill with an intermediate annealing of 1000 ° C. × 60 s. This steel plate was decarburized and annealed, and then an annealing separator was applied, dried, and wound into a coil. The above-mentioned annealing separator is hydrated to 100 parts by weight of magnesia and added with 8 parts by weight of titanium oxide and 2 parts by weight of strontium sulfate, and hydrated at 20 ° C for 40 minutes to form a slurry. 13 g / m 2 was coated on both sides.
Thereafter, as final finish annealing, the temperature was increased from 800 ° C. to 1100 ° C. at 10 ° C./h, and then purified annealing at 1200 ° C. × 10 h was performed. Subsequently, an insulating coating was applied, and baked at 900 ° C. × 60 s for heat flattening, and further subjected to magnetic domain fragmentation treatment by plasma irradiation.
[0029]
The coating properties at this time are shown in Table 1. As can be seen from this table, the most excellent magnetic properties and coating properties can be obtained by using an additive in which the properties of titanium oxide and strontium sulfate (value of ρSD / 6) are within the scope of the present invention. Further, as shown in Nos. 2 and 3 in this table, even when only one of them falls within the scope of the present invention, the improvement effect of the present invention is obtained to some extent. Therefore, even when the value of ρSD / 6 of the original additive cannot be kept within 4.0 due to problems such as cost, it is possible to obtain good characteristics by simultaneously using another additive within the scope of the present invention at the same time. It can be seen that
[0030]
[Table 1]
Figure 0004147775
[0031]
(Example 2)
C: 0.06 mass%, Si: 3.28 mass%, Mn: 0.07 mass%, Al: 0.021 mass%, N: 0.008 mass%, Se: 0.02 mass% and Sb: 0.025 mass%, the balance being substantially Fe A steel slab made of 1400 ° C is heated for 40 minutes, hot rolled to a thickness of 2.2 mm, and two cold rollings are performed with an intermediate annealing of 1000 ° C x 2 minutes, resulting in a final thickness of 0.23 mm Finished. This cold-rolled sheet was subjected to primary recrystallization annealing at 850 ° C. for 2 minutes, and then an annealing separator was applied to the steel sheet surface at 13 g / m 2 on both sides, dried, and wound around a coil. The above annealing separator hydrates 100 parts by weight of magnesia with 6 parts by weight of titanium oxide having different properties and 0.1 parts by weight of antimony chloride, and hydrates at a temperature of 2 ° C for 40 minutes. The slurry was used. After that, as final finish annealing, the temperature was raised from 800 ° C. to 1100 ° C. at 10 ° C./h, and purified annealing at 1200 ° C. × 10 h was performed. Subsequently, an insulating coating was applied and baked at 900 ° C. for 60 seconds also serving as heat flattening, and then magnetic domain fragmentation was performed by plasma irradiation.
[0032]
The coating properties at this time are shown in Table 2. Even when a water-soluble additive such as antimony chloride is used, excellent magnetic properties can be obtained by keeping the average particle diameter and BET specific surface area of titanium oxide within the range of the present invention. Further, when the value of ρSD / 6 is set to 1.1 to 4.0, both the magnetic properties and the film are improved, and when it is further set to 1.1 to 2.6, a further improvement effect is recognized.
[0033]
[Table 2]
Figure 0004147775
[0034]
(Example 3)
C: 0.06mass%, Si: 3.32mass%, Mn: 0.07mass%, Se: 0.02mass% and Sb: 0.023mass%, with the balance being substantially Fe, steel slab heated at 14O0 ° C for 40 minutes Thereafter, it was hot-rolled to a sheet thickness of 2.2 mm, and cold-rolled twice, with an intermediate annealing of 1000 ° C. × 2 minutes, finished to a final sheet thickness of 0.30 mm. This cold-rolled sheet was subjected to primary recrystallization annealing at 850 ° C. for 2 minutes, and then an annealing separator containing 100 parts by weight of magnesia and 2 parts by weight of various additives was added to a hydration temperature of 20 ° C. and a hydration time of 40 The slurry hydrated in minutes was applied to both surfaces of the steel sheet at a coating amount of 13 g / m 2 , dried and wound around a coil.
Thereafter, as final finish annealing, after holding at 800 ° C. for 50 hours, purification annealing was performed at 1200 ° C. for 10 hours. Subsequently, an insulating coating was applied, and baked at 900 ° C. for 60 seconds also serving as heat flattening.
Table 3 shows the coating properties at this time. Regardless of which additive is used, both the magnetic properties and the film properties are improved by making the value of ρSD / 6 within the range of the present invention.
[0035]
[Table 3]
Figure 0004147775
[0036]
Example 4
C: 0.05 mass%, Si: 3.03 mass%, Mn: 0.07 mass%, Al: 0.005 mass%, N: 0.004 mass%, Sb: 0.023 mass%, and Cu: 0.05 mass%, the balance being substantially Fe The resulting slab was heated at 1200 ° C for 60 minutes, hot rolled to a thickness of 2.0 mm, and warm rolled at 200 ° C to a final thickness of 0.30 mm. This cold-rolled sheet was subjected to primary recrystallization annealing at 850 ° C. for 2 minutes, and then an annealing separator containing 100 parts by weight of magnesia and 2 parts by weight of various additives was added to a hydration temperature of 20 ° C. and a hydration time of 40 Hydrated in minutes, 13 g / m 2 was applied on both sides of the steel sheet, dried, and wound on a coil.
Thereafter, as final finish annealing, after holding at 800 ° C. for 50 hours, purification annealing at 1200 ° C. for 10 hours was performed. Subsequently, an insulating coating was applied, and baked at 900 ° C. for 60 seconds also serving as heat flattening.
Table 4 shows the coating properties at this time. Even if the component composition and manufacturing process of the steel sheet are different from those of Example 3, both the magnetic properties and the coating properties are improved by making the value of ρSD / 6 of the additive within the range of the present invention.
[0037]
[Table 4]
Figure 0004147775
[0038]
【The invention's effect】
As described above, according to the present invention, by controlling the average particle size and specific surface area of the annealing separator additive within an appropriate range, the grain-oriented electrical steel sheet having excellent coating properties and magnetic properties can be stably obtained. It can be manufactured.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a characteristic value ρSD / 6 of an additive and adhesion of a film.

Claims (1)

Si:2.0〜4.Omass%を含有する鋼スラブを加熱後熱間圧延し、1回又は中間焼鈍を挟む複数回の冷間圧延により最終板厚とし、次いで、一次再結晶焼鈍した後、鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布し、最終仕上焼鈍を行う一連の工程よりなる方向性電磁鋼板の製造方法において、上記焼鈍分離剤には、平均粒径をD(μm)、BET比表面積をS(m/g)、真密度をρ(g/cm)としたときに、D:0.15〜0.50μm、S:5.0〜14.9m/gであり、下記式;
1.1≦ρSD/6≦2.6
の関係を満足する酸化チタン粉(但し、表面処理されたものを除く)を前記マグネシア100重量部に対して2〜8重量部含むことを特徴とする方向性電磁鋼板の製造方法。
Si: 2.0-4. Steel slab containing Omass% is heated and then hot-rolled to obtain the final sheet thickness by one or multiple cold rolling sandwiching intermediate annealing, then primary recrystallization annealing, and then magnesia is the main component on the steel sheet surface In the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which an annealing separator is applied and final finish annealing is performed, the annealing separator has an average particle diameter of D (μm) and a BET specific surface area of S ( m 2 / g), when the true density is ρ (g / cm 3 ), D is 0.15 to 0.50 μm, S is 5.0 to 14.9 m 2 / g, and the following formula:
1.1 ≦ ρSD / 6 ≦ 2.6
2 to 8 parts by weight of titanium oxide powder satisfying the above relationship (excluding those subjected to surface treatment) with respect to 100 parts by weight of magnesia.
JP2002018025A 2002-01-28 2002-01-28 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and coating properties Expired - Lifetime JP4147775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002018025A JP4147775B2 (en) 2002-01-28 2002-01-28 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and coating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018025A JP4147775B2 (en) 2002-01-28 2002-01-28 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and coating properties

Publications (2)

Publication Number Publication Date
JP2003213337A JP2003213337A (en) 2003-07-30
JP4147775B2 true JP4147775B2 (en) 2008-09-10

Family

ID=27653508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018025A Expired - Lifetime JP4147775B2 (en) 2002-01-28 2002-01-28 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and coating properties

Country Status (1)

Country Link
JP (1) JP4147775B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979785B1 (en) * 2005-05-23 2010-09-03 신닛뽄세이테쯔 카부시키카이샤 Grain oriented electromagnetic steel sheet having excellent film adhesion and process for producing the same
JP6572956B2 (en) * 2016-10-19 2019-09-11 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
EP3950971B1 (en) 2019-03-29 2023-11-22 JFE Steel Corporation Grain-oriented electrical steel sheet and production method therefor

Also Published As

Publication number Publication date
JP2003213337A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
KR100727333B1 (en) electrical steel sheet suitable for compact iron core and manufacturing method therefor
WO2013051270A1 (en) Annealing separator agent for grain-oriented electromagnetic steel sheet
JP2008260668A (en) Magnesia for annealing separating agent and manufacture method of grain oriented magnetic steel sheet
JP6769587B1 (en) Electrical steel sheet and its manufacturing method
JP3536775B2 (en) Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties
KR102464102B1 (en) Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
JP2018066061A (en) Directional electromagnetic steel sheet, and manufacturing method thereof
JP2000256810A (en) Grain oriented silicon steel sheet excellent in magnetic property in low magnetic field and high-frequency and punching workability and its production
JP4147775B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and coating properties
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JP3885463B2 (en) Method for producing grain-oriented silicon steel sheet
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP2003213338A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and film property
WO2020149344A1 (en) Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
JP4259338B2 (en) Method for producing grain-oriented electrical steel sheet and method for preparing annealing separator
JP3536776B2 (en) Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
JP7107454B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3921807B2 (en) Method for producing grain-oriented silicon steel sheet
JP3415379B2 (en) Insulating coating on grain-oriented silicon steel sheet and method of forming the same
JP2008261022A (en) Grain oriented electrical decarburized annealed steel sheet, and method for producing the same
JPH1088241A (en) Production of grain oriented silicon steel sheet excellent in film characteristic
JP2001192737A (en) Method for producing grain oriented silicon steel sheet excellent in glass film characteristic and magnetic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4147775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term