JPH1087706A - Production of methacrylic resin - Google Patents

Production of methacrylic resin

Info

Publication number
JPH1087706A
JPH1087706A JP24982196A JP24982196A JPH1087706A JP H1087706 A JPH1087706 A JP H1087706A JP 24982196 A JP24982196 A JP 24982196A JP 24982196 A JP24982196 A JP 24982196A JP H1087706 A JPH1087706 A JP H1087706A
Authority
JP
Japan
Prior art keywords
polymerization
monomer
solvent
methyl methacrylate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24982196A
Other languages
Japanese (ja)
Other versions
JP3779777B2 (en
Inventor
Junichi Miura
順一 三浦
Hideo Kinoshita
秀雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24982196A priority Critical patent/JP3779777B2/en
Publication of JPH1087706A publication Critical patent/JPH1087706A/en
Application granted granted Critical
Publication of JP3779777B2 publication Critical patent/JP3779777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To industrially very stably obtain a methacrylic resin which is excellent in resistance to thermal decomposition, suppressed in runaway reaction caused by the gel effect and of high purity by the continuous solution polymerization and specifying the amount of the solvent to less than a certain amount. SOLUTION: In order to polymerize (A) monomers mainly comprising methyl methacrylate, (B) a solvent (suitably an alkylbenznen) is used in an amount of 0.1-10wt.% based on the whole mixture on the polymerization. In more detail, a recycled liquid mixture containing unreacting components A and B and a newly sopplied component A are continuously fed to a distillation column and the distillate monomers and component B are continuously fed into a polymerization reactor and polymerized. Then, the polymerization reaction mixture is evaporated to take out the polymer and simultaneously unreacting components A and B are recycled. At this time, the amount of the component B is preferably adjusted to 0.1-10wt.% based on the whole weight of the mixture on the polymerization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶液重合法による
メタクリル系樹脂の製造方法に関する。
The present invention relates to a method for producing a methacrylic resin by a solution polymerization method.

【0002】[0002]

【従来の技術】メタクリル系樹脂は、その卓越した透明
性、良好な機械的性質、加工性並びに成形品における外
観の美麗さなどによって、例えば照明器具、看板、各種
装飾品、銘板、テールランプなどの自動車部品、テーブ
ルウェアーなどに広く用いられている。又、最近は各種
レンズ、光ディスク、導光板などの光学分野にも広く用
いられてきている。その為に、高度な光学特性が要求さ
れつつある。
2. Description of the Related Art Methacrylic resins can be used, for example, in lighting equipment, signboards, various decorative articles, nameplates, tail lamps, etc. due to their excellent transparency, good mechanical properties, workability, and beautiful appearance of molded articles. Widely used for automobile parts and tableware. Recently, it has been widely used in optical fields such as various lenses, optical disks, and light guide plates. Therefore, advanced optical characteristics are being demanded.

【0003】メタクリル系樹脂の製造方法としては懸濁
重合方法が広く採用されている。しかしながら、この製
造方法の最大の欠点は、使用される懸濁安定剤がポリマ
ー中に一部残存し、ポリマー特性、特に光学特性が低下
することである。この懸濁重合方法の欠点を改良する方
法として、塊状重合法(特開昭49−37993号公
報、特開平3−111408号公報など)、溶液重合法
(特開昭63−57613号公報、特開平1−1724
01号公報など)が提案されている。これらの方法によ
れば、懸濁重合方法と異なり、懸濁安定剤が使用されな
い為に光学特性に優れたメタクリル系樹脂の製造が可能
である。しかしながら、塊状重合は、安定な重合反応の
制御が困難で時として重合系の粘度が増大するに伴いポ
リマー分子の拡散が制限され、停止反応が低下する、い
わゆるゲル効果により暴走反応を招く問題点がある。
[0003] As a method for producing a methacrylic resin, a suspension polymerization method is widely employed. However, the greatest disadvantage of this production method is that the suspension stabilizer used remains partially in the polymer, and the polymer properties, especially the optical properties, are degraded. As methods for improving the disadvantages of the suspension polymerization method, bulk polymerization methods (JP-A-49-37993, JP-A-3-111408, etc.) and solution polymerization methods (JP-A-63-57613, Kaihei 1-1724
No. 01 publication) has been proposed. According to these methods, unlike the suspension polymerization method, a methacrylic resin having excellent optical properties can be produced because no suspension stabilizer is used. However, bulk polymerization has a problem that it is difficult to control a stable polymerization reaction, and sometimes the diffusion of polymer molecules is restricted as the viscosity of the polymerization system increases, and the termination reaction is reduced. There is.

【0004】更に、この塊状重合を工業的なレベルで連
続的に生産する場合、もう一つの大きな問題がある。即
ち、一般に工業的にメタクリル系樹脂を塊状重合で連続
して生産する場合、一般的には完全混合型の重合反応機
を使用して重合させるが、重合転化率100%とすると
重合液の粘度が高く成りすぎて攪拌できないなどの問題
がある為、通常重合転化率を70%以下に抑えて重合さ
せる。その為、重合後の未反応メタクリル酸メチルより
なるリサイクル液を再使用する。しかしながら、リサイ
クル液は、重合時生成する不純物などを含む為、蒸留塔
あるいはパーシャルコンデンサーなどで精製する。光学
特性が要求されるメタクリル系樹脂では、特に重合時に
生成する不純物、特に着色不純物を除去する為に、リサ
イクル液の精製は必要である。
[0004] Furthermore, when this bulk polymerization is continuously produced on an industrial level, there is another major problem. That is, in general, when methacrylic resin is continuously industrially produced by bulk polymerization, polymerization is generally carried out using a complete mixing type polymerization reactor, but when the polymerization conversion rate is 100%, the viscosity of the polymerization liquid is increased. Is too high to stir, so that polymerization is usually carried out with the polymerization conversion rate kept at 70% or less. Therefore, a recycled liquid composed of unreacted methyl methacrylate after polymerization is reused. However, since the recycle liquid contains impurities and the like generated during polymerization, it is purified by a distillation column or a partial condenser. In the case of methacrylic resins requiring optical characteristics, it is necessary to purify the recycle solution in order to remove impurities generated during polymerization, particularly, colored impurities.

【0005】リサイクル液の精製は、上記の如く蒸留塔
あるいはパーシャルコンデンサーなどが使用されるが、
パーシャルコンデンサーは、不純物の沸点の低いものの
除去は困難である為、通常蒸留塔による方法が用いられ
る。蒸留塔で精製する場合、不純物は、メタクリル酸メ
チル等単量体より沸点が高い為、蒸留されず、蒸留塔ボ
トムに残存し、蒸留塔ボトム部のメタクリル酸メチル単
量体を主成分とするボトム液と共に抜き出すことによっ
て除去する。しかしながら、メタクリル酸メチル単量体
を主成分とするボトム液の滞留時間が長く且つ温度が高
い為、蒸留塔ボトムでメタクリル酸メチル単量体の重合
が進行し、リボイラーでの熱交換効率の低下や生成した
ポリマーによる配管の閉塞等が起こる。あるいは極端な
場合は、蒸留塔ボトム全体で重合が進行し、固化してし
まうなど工業的に安定に製造する上において大きな問題
点がある。
[0005] As described above, a distillation column or a partial condenser is used to purify the recycle solution.
Since it is difficult to remove impurities having a low boiling point from a partial condenser, a method using a distillation column is usually used. When purifying in a distillation column, impurities are not distilled because they have a higher boiling point than monomers such as methyl methacrylate and remain at the bottom of the distillation column, and the main component is a methyl methacrylate monomer at the bottom of the distillation column. Remove by withdrawing with bottom liquid. However, because the residence time of the bottom liquid containing methyl methacrylate monomer as a main component is long and the temperature is high, polymerization of methyl methacrylate monomer proceeds at the bottom of the distillation column, and the heat exchange efficiency in the reboiler decreases. And clogging of the piping by the generated polymer occurs. Or, in an extreme case, there is a large problem in industrially stable production such as polymerization progressing and solidifying in the entire bottom of the distillation column.

【0006】一方、溶液重合は、溶剤によって反応系の
粘度が低減される為、ゲル効果を抑制でき暴走反応を抑
制できる。又、溶媒としてメタクリル酸メチル等単量体
より高い沸点のものを使用すれば蒸留塔ボトムは溶媒が
主成分となりここでの重合はほとんど起こらず重合で生
成する不純物を溶媒と共に抜き出すことができ、メタク
リル系樹脂を極めて安定に生産することができる。しか
しながら、大きな別の問題がある。それは、生産するメ
タクリル系樹脂の耐熱分解性の低下である。耐熱分解性
が低下するとメタクリル系樹脂を成形加工する時にポリ
マーのジッパー反応による分解が起こり、このメタクリ
ル酸メチル単量体を主体とした分解生成物が原因で、い
わゆるシルバーストリークと呼ばれる銀条跡が発生し、
それが製品不良となる問題がある。
On the other hand, in the solution polymerization, since the viscosity of the reaction system is reduced by the solvent, the gel effect can be suppressed and the runaway reaction can be suppressed. Also, if a solvent having a boiling point higher than that of a monomer such as methyl methacrylate is used as a solvent, the bottom of the distillation column is mainly composed of the solvent, and the polymerization here hardly occurs, and impurities generated by the polymerization can be extracted together with the solvent. A methacrylic resin can be produced extremely stably. However, there is another major problem. It is a decrease in the thermal decomposition resistance of the methacrylic resin to be produced. When the heat decomposition resistance is reduced, decomposition occurs due to the zipper reaction of the polymer when molding and processing the methacrylic resin, and due to the decomposition products mainly composed of this methyl methacrylate monomer, silver streaks called silver streaks are formed. Occurs
There is a problem that it becomes a product defect.

【0007】[0007]

【発明が解決しようとする課題】本発明は、優れたメタ
クリル系樹脂、特に光学特性及び耐熱分解性に優れ、且
つ工業的にメタクリル系樹脂を安定して製造する方法を
提供するものである。
The object of the present invention is to provide a method for stably producing methacrylic resins, which are excellent in optical properties and thermal decomposition resistance, and are industrially stable.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記問題を
解決する方法を見出だすべく鋭意検討した結果、連続溶
液重合法で溶媒量を、重合時の全混合物の重量に基ずき
10重量%以下、好ましくは5重量%以下とすることに
より、耐熱分解性に優れ、ゲル効果による暴走反応も抑
制され、更にリサイクル液を蒸留塔を使用して精製する
プロセスの場合は、蒸留塔ボトムでのポリマーの生成も
起こらず重合時に生成する不純物を安定して取り出すこ
とができ、工業的に極めて安定に光学純度の高いメタク
リル系樹脂を製造することができることを見い出し本発
明を完成するに至った。
The present inventors have conducted intensive studies to find a method for solving the above-mentioned problems. As a result, the amount of the solvent in the continuous solution polymerization method was determined based on the weight of the whole mixture at the time of polymerization. By setting the content to 10% by weight or less, preferably 5% by weight or less, excellent thermal decomposition resistance, a runaway reaction due to a gel effect is suppressed, and in the case of a process for purifying a recycled solution using a distillation column, a distillation column is used. It has been found that impurities generated during polymerization can be stably taken out without producing a polymer at the bottom, and a methacrylic resin having a high optical purity can be produced industrially extremely stably to complete the present invention. Reached.

【0009】即ち、本発明は、メタクリル酸メチルを主
成分とする単量体を重合させるに当たり、重合時の全混
合物の重量に基づき0.1〜10重量%の溶媒を使用す
ることを特徴とするメタクリル系樹脂の製造方法に関す
るものである。更に(A)新たなメタクリル酸メチルを
主成分とする単量体と重合後の未反応メタクリル酸メチ
ルを主成分とする単量体及び溶媒を含むリサイクル液と
を連続して蒸留塔へ供給し、蒸留された単量体及び溶剤
を連続して重合反応機に供給、重合し、次いで重合液を
脱揮して重合物を取り出すと同時に未反応のビニル単量
体及び溶媒をリサイクル使用してなる連続溶液重合プロ
セスあるいは(B)重合後の未反応メタクリル酸メチル
を主成分とする単量体及び溶媒を含むリサイクル液を連
続して蒸留塔へ供給し、蒸留されたメタクリル酸メチル
を主成分とする単量体及び溶媒と新たなメタクリル酸メ
チルを主成分とする単量体とを連続して重合反応機に供
給、重合し、次いで重合液を脱揮して重合物を取り出す
と同時に未反応メタクリル酸メチルを主成分とする単量
体及び溶媒をリサイクル使用する連続溶液重合プロセス
において、使用する溶媒量が、重合時の全混合物の重量
に基づき0.1〜10重量%、好ましくは0.1〜5重
量%であることを特徴とするメタクリル系樹脂の製造方
法に関するものである。
That is, the present invention is characterized in that in polymerizing a monomer mainly composed of methyl methacrylate, a solvent is used in an amount of 0.1 to 10% by weight based on the weight of the whole mixture at the time of polymerization. And a method for producing a methacrylic resin. Further, (A) a new monomer mainly composed of methyl methacrylate and a recycled liquid containing a monomer mainly composed of unreacted methyl methacrylate after polymerization and a solvent are continuously supplied to the distillation column. , The distilled monomer and solvent are continuously supplied to the polymerization reactor, polymerization is performed, and then the polymerization liquid is devolatilized to remove the polymer, and at the same time, the unreacted vinyl monomer and solvent are recycled and used. A continuous solution polymerization process or (B) after the polymerization, a recycle liquid containing a monomer containing unreacted methyl methacrylate as a main component and a solvent is continuously supplied to a distillation column, and the distilled methyl methacrylate is used as a main component. The monomer and solvent and the new monomer containing methyl methacrylate as the main component are continuously supplied to the polymerization reactor for polymerization, and then the polymerization solution is devolatilized to remove the polymer. Reaction methyl methacrylate In a continuous solution polymerization process in which a monomer and a solvent containing as main components are recycled, the amount of the solvent used is 0.1 to 10% by weight, preferably 0.1 to 5% by weight based on the weight of the whole mixture at the time of polymerization. The present invention relates to a method for producing a methacrylic resin, which is characterized in that it is a weight percent.

【0010】メタクリル酸メチルを主成分とする単量体
としは、メタクリル酸メチル単独あるいはメタクリル酸
メチルと共重合可能な単量体とからなる。メタクリル酸
メチルと共重合可能な単量体は、メタクリル酸エチル、
メタクリル酸ブチル、メタクリル酸シクロヘキシル等の
メタクリル酸アルキルエステル類、アクリル酸メチル、
アクリル酸エチル、アクリル酸ブチル等のアクリル酸ア
ルキルエステル類、スチレン、ビニルトルエン、αメチ
ルスチレン等の芳香族ビニル化合物類、アクリロニトリ
ル、メタクリルニトリル等のシアン化ビニル類、N−フ
ェニルマレイミド、N−シクロヘキシルマレイミド等の
マレイミド類、無水マレイン酸等の不飽和カルボン酸無
水物類、アクリル酸、メタクリル酸、マレイン酸等の不
飽和酸類が挙げられる。これらメタクリル酸メチルと共
重合可能な単量体の中でも、特にアクリル酸エステル類
は耐熱分解性が良く、又アクリル酸エステル類を共重合
させて得られるメタクリル系樹脂は成形加工時の流動性
が高く好ましい。
The monomer containing methyl methacrylate as a main component comprises methyl methacrylate alone or a monomer copolymerizable with methyl methacrylate. Monomers copolymerizable with methyl methacrylate are ethyl methacrylate,
Butyl methacrylate, alkyl methacrylates such as cyclohexyl methacrylate, methyl acrylate,
Acrylic acid alkyl esters such as ethyl acrylate and butyl acrylate; aromatic vinyl compounds such as styrene, vinyl toluene and α-methylstyrene; vinyl cyanides such as acrylonitrile and methacrylonitrile; N-phenylmaleimide; N-cyclohexyl Examples include maleimides such as maleimide, unsaturated carboxylic anhydrides such as maleic anhydride, and unsaturated acids such as acrylic acid, methacrylic acid, and maleic acid. Among these monomers copolymerizable with methyl methacrylate, acrylates in particular have good thermal decomposition resistance, and methacrylic resins obtained by copolymerizing acrylates have fluidity during molding. High and preferred.

【0011】メタクリル酸メチルに共重合させるアクリ
ル酸エステル類の使用量は、15重量%以下が好まし
い。15重量%を越えると、耐熱分解性、流動性等の改
良効果は高いが、耐熱性即ち熱変形温度が低下し好まし
くない。アクリル酸エステル類の中でも、特にアクリル
酸メチル及びアクリル酸エチルは、それを少量メタクリ
ル酸メチルと共重合させても上記改良効果は著しく最も
好ましい。共重合可能な単量体は一種または二種以上組
み合わせて使用することもできる。
The amount of the acrylate to be copolymerized with methyl methacrylate is preferably 15% by weight or less. If the content exceeds 15% by weight, the effect of improving thermal decomposition resistance, fluidity and the like is high, but the heat resistance, that is, the heat deformation temperature, is undesirably reduced. Among the acrylates, particularly, methyl acrylate and ethyl acrylate have the most remarkable improvement effect even when a small amount thereof is copolymerized with methyl methacrylate. The copolymerizable monomers can be used alone or in combination of two or more.

【0012】本発明で用いる溶媒は、蒸留塔ボトム及び
蒸留塔内部でメタクリル酸メチル単量体及びメタクリル
酸メチル単量体と共重合可能な単量体混合物や除去すべ
き不純物を溶解させ、且つ、メタクリル酸メチル単量体
及びメタクリル酸メチルと共重合可能な単量体より高い
沸点を有しておれば特に限定するものではないが、通
常、トルエン、キシレン、エチルベンゼン、ジエチルベ
ンゼン等の芳香族化合物、オクタン、デカン等の脂肪族
化合物、デカリン等の脂環族化合物、酢酸ブチル、酢酸
ペンチル等のエステル化合物、1,1,1,2−テトラ
クロロエタン、1,1,2,2,−テトラクロロエタン
等のハロゲン化合物等を用いる事ができる。使用する溶
媒の沸点は、メタクリル酸メチル単量体及びメタクリル
酸メチルと共重合可能な単量体の沸点より高いこと、好
ましくは15℃以上、さらに好ましくは30℃以上高い
ことが望ましい。この中でも、特にトルエン、キシレ
ン、エチルベンゼンが工業的に安価に入手することがで
き、且つ重合に悪影響を及ぼすことがなく且つ重合で生
成する不純物の溶解性も高く最も好ましい。
The solvent used in the present invention dissolves a methyl methacrylate monomer and a monomer mixture copolymerizable with the methyl methacrylate monomer and impurities to be removed at the bottom of the distillation column and inside the distillation column; Although it is not particularly limited as long as it has a higher boiling point than the methyl methacrylate monomer and the monomer copolymerizable with methyl methacrylate, usually, toluene, xylene, ethylbenzene, aromatic compounds such as diethylbenzene Octane, aliphatic compounds such as decane, alicyclic compounds such as decalin, ester compounds such as butyl acetate and pentyl acetate, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane And the like can be used. The boiling point of the solvent used is desirably higher than the boiling points of the methyl methacrylate monomer and the monomer copolymerizable with methyl methacrylate, preferably 15 ° C. or higher, more preferably 30 ° C. or higher. Among them, toluene, xylene and ethylbenzene are particularly preferable because they can be industrially obtained at low cost, do not adversely affect the polymerization, and have high solubility of impurities generated by the polymerization.

【0013】使用する溶媒量は、重合時の全混合物の重
量に基づき0.1〜10重量%、好ましくは0.1〜5
重量%である。この範囲の溶媒量では、耐熱分解性は良
好であり塊状重合品と大きな差はないかあるいは驚くべ
きことに少量の溶媒添加したものが優れる。この理由
は、通常耐熱分解性を落とす一つの原因は2つのポリマ
ー成長ラジカルの不均化反応停止によって生成される重
合体末端二重結合構造である(特開平3−294307
号公報)。しかしながら、この末端二重結合は、溶媒が
存在することによって水素引き抜き停止による水素末端
構造となり不均化反応による末端二重結合構造の生成が
抑制されることによると推定される。
The amount of the solvent used is 0.1 to 10% by weight, preferably 0.1 to 5% by weight, based on the weight of the whole mixture at the time of polymerization.
% By weight. When the amount of the solvent is in this range, the thermal decomposition resistance is good and there is no great difference from the bulk polymerized product. The reason for this is that one of the factors that usually lowers the thermal decomposition resistance is a polymer terminal double bond structure generated by stopping the disproportionation reaction of two polymer-grown radicals (Japanese Patent Laid-Open No. 3-294307).
No.). However, it is presumed that the terminal double bond becomes a hydrogen terminal structure due to the termination of hydrogen abstraction due to the presence of the solvent, and the generation of the terminal double bond structure due to the disproportionation reaction is suppressed.

【0014】又、この溶媒量でもゲル化による暴走反応
は抑制される。この理由は、ゲル効果による暴走反応
は、上記の如く重合系の粘度が増大するに伴いポリマー
分子の拡散が制限され、停止反応が低下することによっ
て起こるが、溶媒があることによってその溶媒からの水
素引き抜きにより停止反応が促進されることによると推
定される。更に、この溶媒量で蒸留塔ボトムでの重合が
防止される。
The runaway reaction due to gelation can be suppressed even with this amount of solvent. The reason for this is that the runaway reaction due to the gel effect occurs when the viscosity of the polymerization system is increased, as described above, whereby the diffusion of polymer molecules is restricted and the termination reaction is reduced. It is estimated that the termination reaction is promoted by hydrogen abstraction. Furthermore, polymerization at the bottom of the distillation column is prevented with this amount of solvent.

【0015】当然、溶媒量が多いものは問題がないが、
0.1重量%の添加であっても、蒸留塔ボトムは、使用
する溶媒が蒸留する単量体よりも沸点が高いとボトム液
は溶媒が主成分となる。このボトム液中の単量体が少な
くそこでの重合が起こらず安定に運転できる。溶媒量が
10重量%を越えると、耐熱分解性の低下が大きく好ま
しくない。0.1重量%より少ないと、ゲル効果による
暴走反応が起こり易くなり好ましくない。なお、溶媒量
を10重量%以下にすると、重合反応系の粘度が高くな
り、重合反応の制御が困難となるケースもあるが、これ
は重合転化率をやや低めにすることでこの問題は解決す
る。
Of course, there is no problem if the amount of the solvent is large,
Even if 0.1 wt% is added, if the solvent used in the bottom of the distillation column has a higher boiling point than the monomer to be distilled, the bottom liquid mainly contains the solvent. The amount of the monomer in the bottom liquid is small, so that the polymerization can not be performed there and the operation can be stably performed. If the amount of the solvent exceeds 10% by weight, the thermal decomposition resistance is greatly reduced, which is not preferable. If the amount is less than 0.1% by weight, a runaway reaction due to the gel effect is likely to occur, which is not preferable. When the amount of the solvent is set to 10% by weight or less, the viscosity of the polymerization reaction system becomes high, and in some cases, it becomes difficult to control the polymerization reaction. However, this problem can be solved by slightly lowering the polymerization conversion. I do.

【0016】本発明の連続溶液重合プロセスとしては、
混合装置、温度調節装置を備え、連続的に原料の供給と
反応液の排出を行わせしめることのできる供給口と排出
口を備えた容器を単独または複数直列に接続した構成の
反応機に原料として単量体と溶媒を主成分とする原料を
連続的に供給し同時に最終反応機から反応液を連続的に
排出し、排出された反応液を連続的に予備加熱機を通し
て脱揮装置に導入し、高温減圧下に未反応単量体及び溶
剤を蒸発させることにより重合体を分離して得るプロセ
スをいう。
The continuous solution polymerization process of the present invention includes:
A reactor equipped with a mixing device, a temperature control device, and having a supply port and a discharge port capable of continuously supplying and discharging the raw material and having a single or a plurality of containers connected in series is used as a raw material in a reactor. The raw material mainly composed of a monomer and a solvent is continuously supplied, and at the same time, the reaction liquid is continuously discharged from the final reactor, and the discharged reaction liquid is continuously introduced into the devolatilization apparatus through the pre-heater. A process in which a polymer is separated by evaporating unreacted monomers and a solvent under high temperature and reduced pressure.

【0017】個々の重合反応機としては、攪拌翼により
均一に攪拌され均一な反応液組成が得られる構造で、反
応機の例としては、ダブルヘリカルリボン、ピッチドバ
ドル、タービン、アンカー型などの攪拌翼で均一に攪拌
可能な完全混合型反応機を用いることができる。これら
の個々の完全混合型反応機においては、溶媒量を10重
量%以下の場合も、重合転化率が70%を越える場合
に、重合反応の制御が困難となったり、重合反応機につ
いて継続される機器への配管中の圧力損失が大きくなっ
て、重合液の輸送が困難となり好ましくない。従って、
完全混合型反応機の重合転化率は70%以下とすること
が必要である。
Each polymerization reactor has a structure in which a uniform reaction liquid composition is obtained by being uniformly stirred by a stirring blade, and examples of the reactor include a double helical ribbon, a pitched paddle, a turbine, an anchor type stirring blade, and the like. And a complete mixing type reactor capable of stirring uniformly. In these individual complete mixing reactors, even when the amount of the solvent is 10% by weight or less, when the polymerization conversion exceeds 70%, it becomes difficult to control the polymerization reaction, or the polymerization reactor is continuously used. The pressure loss in the piping to the equipment becomes large, which makes it difficult to transport the polymerization liquid, which is not preferable. Therefore,
It is necessary that the polymerization conversion of the complete mixing type reactor be 70% or less.

【0018】また、完全混合型反応機での重合転化率が
40%未満であれば、揮発成分による脱揮工程の負荷が
大きく、例えば予備加熱器の伝熱効率の制約から脱揮不
十分になる場合があり好ましくない。一方、完全混合型
反応機以外の反応機を単独または複数の完全混合型反応
機の後段に用いることができる。このような反応機にお
いては、反応機内での均一混合を必要としない為、重合
の局部的な進行による系の攪拌状態の不安定化が起こら
ず、重合転化率は、安定な重合反応物の移送が可能な範
囲であればよい。
If the polymerization conversion in the complete mixing type reactor is less than 40%, the load of the devolatilization step due to volatile components is large, and for example, devolatilization becomes insufficient due to the restriction of the heat transfer efficiency of the preheater. In some cases, this is not preferable. On the other hand, a reactor other than the complete mixing type reactor can be used singly or after a plurality of complete mixing type reactors. In such a reactor, uniform mixing in the reactor is not required, so that the stirring state of the system is not destabilized due to local progress of polymerization, and the polymerization conversion rate is stable. Any range is possible as long as it can be transferred.

【0019】メタクリル系樹脂の重合温度としては、一
般的な120〜160℃の範囲内の温度が好ましい。重
合温度が120℃未満であれば、重合が遅すぎ、また1
60℃を越えると転化率の調整が困難となるため好まし
くない。本発明の連続溶液重合プロセスの一例を図1で
説明する。(A)新たなメタクリル酸メチルを主成分と
する単量体1と重合後の未反応メタクリル酸メチルを主
成分とする単量体及び溶媒を含むリサイクル液9とを連
続して蒸留塔2へ供給し、蒸留された単量体及び溶剤、
更に重合開始剤、分子量調整剤を連続して重合反応機5
に供給、重合し、次いで重合液を脱揮タンク8で脱揮し
て重合物10を取り出すと同時に未反応のビニル単量体
及び溶媒をリサイクル9使用して連続溶液重合する。又
は(B)新たなメタクリル酸メチルを主成分とする単量
体1と重合後の未反応メタクリル酸メチルを主成分とす
る単量体及び溶媒を含むリサイクル液9とを直接連続し
て蒸留塔2へ供給し、以下同様にして連続溶液重合す
る。
The polymerization temperature of the methacrylic resin is preferably in the general range of 120 to 160 ° C. If the polymerization temperature is lower than 120 ° C., the polymerization is too slow, and
If the temperature exceeds 60 ° C., it becomes difficult to adjust the conversion, which is not preferable. One example of the continuous solution polymerization process of the present invention will be described with reference to FIG. (A) A new monomer 1 mainly containing methyl methacrylate and a recycled liquid 9 containing a monomer mainly containing unreacted methyl methacrylate after polymerization and a solvent are continuously fed to the distillation column 2. Fed and distilled monomers and solvents,
Further, a polymerization initiator and a molecular weight regulator are continuously added to the polymerization reactor 5.
Then, the polymerization solution is devolatilized in a devolatilization tank 8 to take out a polymer 10, and at the same time, a continuous solution polymerization is carried out by recycling 9 an unreacted vinyl monomer and a solvent. Or (B) a distillation column in which a new monomer 1 mainly containing methyl methacrylate and a recycled liquid 9 containing a monomer mainly containing unreacted methyl methacrylate after polymerization and a solvent are directly and continuously mixed. And then continuously polymerized in the same manner.

【0020】蒸留は、例えば充填塔式、棚段式などの蒸
留塔により実施する。蒸留の方式は、例えば、除去した
い不純物を含むリサイクル液あるいはこれと新たな単量
体との混合液を蒸留塔の中段または上段より供給し、蒸
留塔ボトム液をリボイラー等の加熱器で加熱しながら蒸
留し、蒸留塔の塔頂部より留出するメタクリル酸メチル
を主成分とする単量体及び溶媒の蒸気をコンデンサーに
て凝縮することによって実施する。この際、使用する溶
媒の沸点が単量体より高い場合、重合時に生成する不純
物、例えばメタクリル酸メチルダイマー、オリゴマーあ
るいは金属異物、ポリマーの焼け異物などの不純物更に
リサイクル液の貯蔵安定化の為に添加する重合禁止剤あ
るいは原料中に含まれる重合禁止剤など光学特性を低下
させる不純物は蒸留塔ボトムに濃縮される。この不純物
は、蒸留塔ボトムより連続してあるいは断続して取り出
すと同時に取り出した量の溶媒を追加することによって
連続的に不純物を除去することができる。なお蒸留は、
上記の如く、新たな単量体と重合後の未反応単量体及び
溶媒を含むリサイクル液とを併せて蒸留する方法とリサ
イクル液のみを蒸留する方法とがあるが、前者の方が新
たな単量体中に含まれる異物が除去でき、より好まし
い。
The distillation is carried out, for example, by a packed column type, a tray type distillation column or the like. In the distillation method, for example, a recycle solution containing impurities to be removed or a mixed solution of this and a new monomer is supplied from the middle or upper stage of the distillation column, and the bottom solution of the distillation column is heated by a heater such as a reboiler. The distillation is performed while condensing a vapor of a monomer and a solvent containing methyl methacrylate as a main component and distilled off from the top of the distillation column with a condenser. In this case, if the solvent used has a higher boiling point than the monomer, impurities generated during polymerization, for example, impurities such as methyl methacrylate dimer, oligomer or metal foreign matter, burned foreign matter of the polymer, and storage stability of the recycle solution are required. Impurities, such as a polymerization inhibitor to be added or a polymerization inhibitor contained in the raw material, which deteriorate optical properties are concentrated at the bottom of the distillation column. These impurities can be continuously or intermittently taken out from the bottom of the distillation column and can be continuously removed by adding the removed amount of the solvent. The distillation is
As described above, there are a method in which a new monomer and a recycled liquid containing an unreacted monomer and a solvent after polymerization are distilled together, and a method in which only the recycled liquid is distilled.The former is a new method. Foreign substances contained in the monomer can be removed, which is more preferable.

【0021】上記の様に蒸留したメタクリル酸メチルを
主成分とする単量体及び溶剤、場合により新たなメタク
リル酸メチルを主成分とする単量体、更に重合開始剤、
分子量調整剤などを個別にあるいは混合して重合反応機
に供給し重合する。この単量体溶液は、光学特性を向上
させる為に、例えば向流接触塔へ連続的に供給し、不活
性ガスと置換し、単量体溶液中の溶存酸素を1ppm以
下とする。更に金属異物などの異物を除去する為に、単
量体溶液を0.5μ以下のフィルターで濾過することが
好ましい。
A monomer and a solvent containing methyl methacrylate as a main component distilled as described above, and optionally a new monomer containing methyl methacrylate as a main component, a polymerization initiator,
A molecular weight modifier and the like are individually or mixed and supplied to a polymerization reactor for polymerization. This monomer solution is continuously supplied to, for example, a countercurrent contact tower to improve the optical characteristics, and is replaced with an inert gas to reduce the dissolved oxygen in the monomer solution to 1 ppm or less. Further, in order to remove foreign substances such as metal foreign substances, it is preferable to filter the monomer solution with a filter having a size of 0.5 μm or less.

【0022】この際、使用する重合開始剤は、重合温度
で活性に分解しラジカルを発生するもので、例えば、ジ
−tert−ブチルパーオキシド、ジ−クミルパーオキ
シド、メチルエチルケトンパーオキシド、ジ−tert
−ブチルパーフタレート、ジ−tert−ブチルパーベ
ンゾエート、tert−ブチルパーアセテート、2,5
−ジメチル−2,5−ジ(tert−ブチルパーオキ
シ)ヘキサン、1,1−ビス(t−ブチルパーオキシ)
−3,3,5−トリメチルシクロヘキサン、ジ−ter
t−アミルパーオキジド、ベンゾイルパーオキシド、ク
メンハイドロパーオキシド及びラウリルパーオキシドな
どの有機過酸化物、アゾビスイソブタノールジアセテー
ト、1,1’−アゾビスシクロヘキサンカルボニトリ
ル、2−フェニルアゾ2,4−ジメチル−4−メトキシ
バレロニトリル、2−シアノ−2−2プロピルアゾホル
ムアシド及び2,2’−アゾビスイソブチロニトリルな
どのアゾ系化合物などを用いることができる。これらは
単独でまたは二種以上組み合わせて使用できる。これら
の重合開始剤の使用量は、全反応混合物の重量に基づき
0.0010〜0.03重量%の範囲が好ましい。
At this time, the polymerization initiator used is one which is decomposed actively at the polymerization temperature to generate radicals, for example, di-tert-butyl peroxide, di-cumyl peroxide, methyl ethyl ketone peroxide, di-tert.
-Butyl perphthalate, di-tert-butyl perbenzoate, tert-butyl peracetate, 2,5
-Dimethyl-2,5-di (tert-butylperoxy) hexane, 1,1-bis (t-butylperoxy)
-3,3,5-trimethylcyclohexane, di-ter
Organic peroxides such as t-amyl peroxide, benzoyl peroxide, cumene hydroperoxide and lauryl peroxide, azobisisobutanol diacetate, 1,1′-azobiscyclohexanecarbonitrile, 2-phenylazo 2,4 An azo compound such as -dimethyl-4-methoxyvaleronitrile, 2-cyano-2-propylazoformamide and 2,2'-azobisisobutyronitrile can be used. These can be used alone or in combination of two or more. The use amount of these polymerization initiators is preferably in the range of 0.0010 to 0.03% by weight based on the weight of the whole reaction mixture.

【0023】更に、この際使用する分子量調整剤は、主
としてメルカプタン類が使用される。メルカプタン類と
しては、例えば、n−ブチルメルカプタン、イソブチル
メルカプタン、n−オクチルメルカプタン、n−ドデシ
ルメルカプタン、sec−ドデシルメルカプタン、te
rt−ブチルメルカプタンなどのアルキル基または置換
アルキル基を有する第一級、第二級及び第三級メルカプ
タン、フェニルメルカプタン、チオクレゾールなどの芳
香族メルカプタン、チオグリコール酸とそのエステル及
びエチレンチオグリコールなどが使用できる。これらは
単独でまたは二種以上組み合わせて使用できる。これら
の分子量調整剤の使用量は、製造する重合体の分子量に
応じて適宜決定されるが、通常は、全反応混合物の重量
に基づき0.01〜0.5重量%の範囲で選ばれる。
Further, as the molecular weight modifier used at this time, mercaptans are mainly used. Examples of the mercaptans include n-butyl mercaptan, isobutyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, sec-dodecyl mercaptan, te
Primary or secondary and tertiary mercaptans having an alkyl group or a substituted alkyl group such as rt-butyl mercaptan, aromatic mercaptans such as phenyl mercaptan, thiocresol, thioglycolic acid and its esters, ethylene thioglycol, etc. Can be used. These can be used alone or in combination of two or more. The amount of use of these molecular weight regulators is appropriately determined according to the molecular weight of the polymer to be produced, but is usually selected in the range of 0.01 to 0.5% by weight based on the weight of the whole reaction mixture.

【0024】この様な重合反応により得られた重合液
は、脱揮して重合物を取り出すと同時に揮発分である未
反応メタクリル酸メチルを主成分とする単量体及び溶媒
を分離する。揮発分は、リサイクル液として蒸留・再使
用し、連続的にメタクリル系樹脂を製造する。脱揮装置
としては、多段ベント付き押出機、脱揮タンクなどを使
用する。好ましくは、重合液を予備加熱器などで200
〜290℃の温度に加熱し、上部に十分な空間を有し、
且つ200〜250℃、20〜100トールの温度、真
空下の脱揮タンクにフィードして重合物を取り出すと同
時に未反応メタクリル酸メチルを主成分とする単量体及
び溶媒からなる揮発成分を分離しリサイクル液として再
使用する。重合体に残存する揮発分は、1重量%以下、
好ましくは0.5重量%以下、更に好ましくは0.3重
量%以下である。この減圧下に保持された脱揮タンクに
重合液を導入する方法は、揮発成分の瞬間的な揮発とそ
れによる発泡を生じて、極めて大きな蒸発面積を形成
し、高沸点の溶剤を使用しても効率的に短時間で揮発成
分が除去され、ポリマー中に残存する溶媒あるいは残留
単量体が少なく、且つポリマーの着色も少なく光学特性
に優れた好ましい脱揮方法である。
The polymerization solution obtained by such a polymerization reaction is devolatilized to take out a polymer, and at the same time, a monomer and a solvent mainly composed of unreacted methyl methacrylate, which are volatile components, are separated. The volatile components are distilled and reused as a recycle liquid to continuously produce a methacrylic resin. As the devolatilizing device, an extruder with a multi-stage vent, a devolatilizing tank, or the like is used. Preferably, the polymerization solution is placed in a preheater or the like for 200 hours.
Heat to a temperature of ~ 290 ° C, have enough space on top,
The polymer is fed to a devolatilization tank under vacuum at a temperature of 200 to 250 ° C. and a temperature of 20 to 100 torr, and at the same time, a volatile component consisting of a monomer and a solvent containing unreacted methyl methacrylate as a main component is separated. And reuse it as a recycle liquid. The volatile matter remaining in the polymer is 1% by weight or less,
It is preferably at most 0.5% by weight, more preferably at most 0.3% by weight. This method of introducing a polymerization solution into a devolatilization tank held under reduced pressure causes instantaneous volatilization of volatile components and foaming thereby, forming an extremely large evaporation area, and using a high boiling point solvent. This is a preferred devolatilization method in which volatile components are efficiently removed in a short time, the amount of solvent or residual monomer remaining in the polymer is small, the coloring of the polymer is small, and the optical properties are excellent.

【0025】[0025]

【発明の実施の形態】重合体の物性の測定方法は以下の
とおりである。 (1)重合体の固有粘度の測定 重合体150mgをクロロホルム50mlに溶解し、2
5℃の温度でオストワルド粘度計で測定した。 (2)全光線透過率の測定 ASTM D−1003法によって測定した。 (3)耐熱分解性の測定 3オンスの射出成型機を使用し、成形機の温度を290
℃に設定した。ポリマーを計量した後、成形機内に10
分間滞留させた。成形機内に滞留させることによりポリ
マーが熱分解し、分解したガス量に比例したポリマーが
ノズルから排出されるが、その排出量を計量し熱分解性
の尺度とした。
BEST MODE FOR CARRYING OUT THE INVENTION The method for measuring the physical properties of a polymer is as follows. (1) Measurement of intrinsic viscosity of polymer 150 mg of polymer was dissolved in 50 ml of chloroform.
It was measured with an Ostwald viscometer at a temperature of 5 ° C. (2) Measurement of total light transmittance It was measured by the ASTM D-1003 method. (3) Measurement of heat decomposition resistance Using a 3 oz. Injection molding machine, and setting the temperature of the molding machine to 290
Set to ° C. After weighing the polymer, 10
Stayed for a minute. The polymer is thermally decomposed by staying in the molding machine, and the polymer proportional to the amount of the decomposed gas is discharged from the nozzle. The discharged amount was measured and used as a measure of the thermal decomposability.

【0026】[0026]

【実施例1】メタクリル酸メチル91.6重量%、アク
リル酸メチル2.0重量%及びエチルベンゼン6.4重
量%の重合後のリサイクル液/メタクリル酸メチル9
8.0重量%及びアクリル酸メチル2.0重量%の新た
な単量体溶液を47/53の重量比で蒸留塔に連続して
フィードした。蒸留された単量体溶液は、メタクリル酸
メチル95重量%、アクリル酸メチル2.0重量%、エ
チルベンゼン3.0重量%であった。この単量体溶液に
1,1−ビス(t−ブチルパーオキシ)−3,3,5−
トリメチルシクロヘキサンが105ppmになる量及び
n−オクチルメルカプタンが1950ppmになる量を
連続的に追添加し重合反応機に連続的に供給、重合温度
155℃、滞留時間2.0時間で重合した。この際の単
量体の重合転化率は53%であった。この重合液を連続
的に重合反応機から取り出し、次いで加熱板で260℃
に加熱し、加熱板の間隔を通して脱揮タンクに流延落下
せしめた。脱揮タンク、30トール、230℃に維持し
重合体と未反応単量体及び溶剤と分離した。重合体は押
出ダイスより押出し、更に未反応単量体及び溶剤はリサ
イクル液として蒸留再使用し約5日の連続運転を実施し
た。得られたメタクリル系樹脂ペレット中のアクリル酸
メチル含有量は1.9重量%、残存単量体は2300p
pmであった。又、固有粘度は、56ml/g、全光線
透過率は93%、耐熱分解性の尺度である排出量は17
gであった。又、蒸留塔ボトムでのポリマーの析出は全
くなかった。
Example 1 Recycle liquid after polymerization of 91.6% by weight of methyl methacrylate, 2.0% by weight of methyl acrylate and 6.4% by weight of ethylbenzene / methyl methacrylate 9
A fresh monomer solution of 8.0% by weight and 2.0% by weight of methyl acrylate was continuously fed to the distillation column in a weight ratio of 47/53. The distilled monomer solution was 95% by weight of methyl methacrylate, 2.0% by weight of methyl acrylate, and 3.0% by weight of ethylbenzene. 1,1-bis (t-butylperoxy) -3,3,5-
An amount of trimethylcyclohexane of 105 ppm and an amount of n-octyl mercaptan of 1950 ppm were continuously added and continuously supplied to a polymerization reactor, where polymerization was performed at a polymerization temperature of 155 ° C. and a residence time of 2.0 hours. At this time, the polymerization conversion of the monomer was 53%. The polymerization solution was continuously taken out of the polymerization reactor, and then heated at 260 ° C.
And cast and dropped into the devolatilization tank through the gap between the heating plates. The polymer was separated from the unreacted monomer and the solvent while maintaining the temperature in the devolatilization tank at 30 Torr and 230 ° C. The polymer was extruded from an extrusion die, and the unreacted monomer and solvent were distilled and reused as a recycle liquid, and a continuous operation was carried out for about 5 days. The resulting methacrylic resin pellets had a methyl acrylate content of 1.9% by weight and a residual monomer content of 2300 p.
pm. In addition, the intrinsic viscosity is 56 ml / g, the total light transmittance is 93%, and the discharge amount, which is a measure of thermal decomposition resistance, is 17%.
g. Also, no polymer was precipitated at the bottom of the distillation column.

【0027】[0027]

【実施例2〜5、比較例1〜2】実施例1における条件
を表1に示た以外は、実施例1と同様な操作を行った。
その結果を表1に示す。なお実施例1も併記する。な
お、比較例1は、約5日間の運転でリボイラホー部に一
部ポリマーの析出が見られた。しかしながら実施例は、
全てポリマーの析出は見られなかった。
Examples 2 to 5, Comparative Examples 1 and 2 The same operation as in Example 1 was carried out except that the conditions in Example 1 were shown in Table 1.
Table 1 shows the results. Example 1 is also described. In addition, in Comparative Example 1, precipitation of a part of the polymer was observed in the reboiler hoe portion during operation for about 5 days. However, the example is
No polymer precipitation was observed in any case.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【実施例6】使用するアクリル酸メチルをアクリル酸エ
チルに変えた以外は実施例1と同様にメタクリル系樹脂
を製造した。得られたメタクリル系樹脂ペレット中のア
クリル酸エチル含有量2.0重量%、残存単量体230
0ppm、固有粘度54ml/g、全光線透過率93
%、耐熱分解性の尺度である排出量17gであった。
又、蒸留塔ボトムでのポリマーの析出は全くなかった。
Example 6 A methacrylic resin was produced in the same manner as in Example 1 except that methyl acrylate used was changed to ethyl acrylate. Ethyl acrylate content in the obtained methacrylic resin pellets 2.0% by weight, residual monomer 230
0 ppm, intrinsic viscosity 54 ml / g, total light transmittance 93
%, Which was a discharge amount of 17 g, which is a measure of thermal decomposition resistance.
Also, no polymer was precipitated at the bottom of the distillation column.

【0030】[0030]

【実施例7】使用する溶媒を混合キシレンに変えた以外
は実施例1と同様にメタクリル系樹脂を製造した。得ら
れたメタクリル系樹脂ペレット中のアクリル酸メチル含
有量2.0重量%、残存単量体2300ppm、固有粘
度58ml/g、全光線透過率93%、耐熱分解性の尺
度である排出量16gであった。又、蒸留塔ボトムでの
ポリマーの析出は全くなかった。
Example 7 A methacrylic resin was produced in the same manner as in Example 1 except that the solvent used was changed to mixed xylene. The obtained methacrylic resin pellets had a methyl acrylate content of 2.0% by weight, a residual monomer of 2,300 ppm, an intrinsic viscosity of 58 ml / g, a total light transmittance of 93%, and a discharge amount of 16 g, which is a measure of thermal decomposition resistance. there were. Also, no polymer was precipitated at the bottom of the distillation column.

【0031】[0031]

【発明の効果】本発明によれば、連続溶液重合において
溶媒量を、重合時の全混合物の重量に基づき10重量%
以下、好ましくは5重量%以下とすることにより、耐熱
分解性に優れ、又、ゲル効果による暴走反応も抑制さ
れ、更に、蒸留塔ボトムでのポリマー生成もなく重合時
に生成する不純物などを取り出すこともでき、従って工
業的に極めて安定に光学純度の高いメタクリル系樹脂を
製造できる。
According to the present invention, in continuous solution polymerization, the amount of solvent is adjusted to 10% by weight based on the weight of the total mixture during polymerization.
By setting the content to 5% by weight or less, excellent thermal decomposition resistance is obtained, a runaway reaction due to a gel effect is suppressed, and impurities generated during polymerization without polymer formation at the bottom of the distillation column are taken out. Therefore, a methacrylic resin having high optical purity can be industrially extremely stably produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶液重合プロセスでの連続溶液重合装
置の一例を示す。
FIG. 1 shows an example of a continuous solution polymerization apparatus in a solution polymerization process of the present invention.

【符号の説明】[Explanation of symbols]

1、新たな単量体供給ライン 2、蒸留塔 3、不純物抜き出しライン 4、コンデンサー 5、重合反応機 6、定量ポンプ 7、加熱板 8、脱揮タンク 9、揮発分リサイクルライン 10、脱揮タンク 11、ポリマー払い出しライン 1, new monomer supply line 2, distillation column 3, impurity extraction line 4, condenser 5, polymerization reactor 6, metering pump 7, heating plate 8, devolatilization tank 9, volatile matter recycling line 10, devolatilization tank 11. Polymer dispensing line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08F 220:12) (C08F 220/14 220:18) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08F 220: 12) (C08F 220/14 220: 18)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 メタクリル酸メチルを主成分とする単量
体を重合させるに当たり、重合時の全混合物の重量に基
づき0.1〜10重量%の溶媒を含有することを特徴と
するメタクリル系樹脂の製造方法。
1. A methacrylic resin characterized by containing a solvent in an amount of 0.1 to 10% by weight, based on the weight of the entire mixture during polymerization, in polymerizing a monomer containing methyl methacrylate as a main component. Manufacturing method.
【請求項2】 (A)重合後の未反応メタクリル酸メチ
ルを主成分とする単量体及び溶媒を含むリサイクル液と
新たなメタクリル酸メチルを主成分とする単量体とを連
続して蒸留塔へ供給し、蒸留された単量体及び溶剤を連
続して重合反応機に供給、重合し、次いで重合液を脱揮
して重合物を取り出すと同時に未反応のビニル単量体及
び溶媒をリサイクル使用してなる連続溶液重合プロセス
において、使用する溶媒量が、重合時の全混合物の重量
に基づき0.1〜10重量%であることを特徴とする請
求項1記載のメタクリル系樹脂の製造方法。
2. A continuous distillation of a (A) unreacted methyl methacrylate-based monomer after polymerization and a recycle liquid containing a solvent and a new methyl methacrylate-based monomer continuously. Supply to the column, continuously supply the distilled monomer and solvent to the polymerization reactor, polymerize, then devolatilize the polymerization solution to take out the polymer, and simultaneously remove the unreacted vinyl monomer and solvent. 2. The methacrylic resin production according to claim 1, wherein the amount of solvent used in the continuous solution polymerization process using recycling is 0.1 to 10% by weight based on the weight of the whole mixture at the time of polymerization. Method.
【請求項3】 (B)重合後の未反応メタクリル酸メチ
ルを主成分とする単量体及び溶媒を含むリサイクル液を
連続して蒸留塔へ供給し、蒸留されたメタクリル酸メチ
ルを主成分とする単量体及び溶媒と新たなメタクリル酸
メチルを主成分とする単量体とを連続して重合反応機に
供給、重合し、次いで重合液を脱揮して重合物を取り出
すと同時に未反応メタクリル酸メチルを主成分とする単
量体及び溶媒をリサイクル使用する連続溶液重合プロセ
スにおいて、使用する溶媒量が、重合時の全混合物の重
量に基づき0.1〜10重量%であることを特徴とする
請求項1記載のメタクリル系樹脂の製造方法。
And (B) continuously supplying a recycle liquid containing a monomer and a solvent mainly composed of unreacted methyl methacrylate after polymerization to a distillation column, and using distilled methyl methacrylate as a main component. The monomer and solvent to be added and the new monomer containing methyl methacrylate as the main component are continuously supplied to the polymerization reactor, polymerized, and then devolatilized to remove the polymer and unreacted at the same time. In a continuous solution polymerization process in which a monomer and a solvent containing methyl methacrylate as a main component are recycled, the amount of a solvent used is 0.1 to 10% by weight based on the weight of the whole mixture at the time of polymerization. The method for producing a methacrylic resin according to claim 1.
【請求項4】 溶媒量が、重合時の全混合物の重量に基
づき0.1〜5重量%であることを特徴とする請求項
1、2又は3記載のメタクリル系樹脂の製造方法。
4. The method for producing a methacrylic resin according to claim 1, wherein the amount of the solvent is 0.1 to 5% by weight based on the weight of the whole mixture at the time of polymerization.
【請求項5】 メタクリル酸メチルを主成分とする単量
体が、メタクリル酸メチル単独あるいはメタクリル酸メ
チル単量体と15重量%以下のアクリル酸エステル単量
体からなることを特徴とする請求項1、2又は3記載の
メタクリル系樹脂の製造方法。
5. The method according to claim 1, wherein the monomer containing methyl methacrylate as a main component comprises methyl methacrylate alone or a methyl methacrylate monomer and 15% by weight or less of an acrylate monomer. 4. The method for producing a methacrylic resin according to 1, 2, or 3.
【請求項6】 アクリル酸エステル単量体がアクリル酸
メチル単量体又はアクリル酸エチル単量体であることを
特徴とする請求項5のメタクリル系樹脂の製造方法。
6. The method for producing a methacrylic resin according to claim 5, wherein the acrylate monomer is a methyl acrylate monomer or an ethyl acrylate monomer.
【請求項7】 溶媒がアルキルベンゼンであることを特
徴とする請求項1、2又は3記載のメタクリル系樹脂の
製造方法。
7. The method for producing a methacrylic resin according to claim 1, wherein the solvent is an alkylbenzene.
【請求項8】 溶媒が、トルエン、キシレン、エチルベ
ンゼンから選ばれることを特徴とする請求項7のメタク
リル系樹脂の製造方法。
8. The method according to claim 7, wherein the solvent is selected from toluene, xylene, and ethylbenzene.
JP24982196A 1996-09-20 1996-09-20 Method for producing methacrylic resin Expired - Lifetime JP3779777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24982196A JP3779777B2 (en) 1996-09-20 1996-09-20 Method for producing methacrylic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24982196A JP3779777B2 (en) 1996-09-20 1996-09-20 Method for producing methacrylic resin

Publications (2)

Publication Number Publication Date
JPH1087706A true JPH1087706A (en) 1998-04-07
JP3779777B2 JP3779777B2 (en) 2006-05-31

Family

ID=17198695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24982196A Expired - Lifetime JP3779777B2 (en) 1996-09-20 1996-09-20 Method for producing methacrylic resin

Country Status (1)

Country Link
JP (1) JP3779777B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568841B2 (en) 2008-04-08 2014-08-13 住友化学株式会社 Methacrylic resin composition for hot plate fusion

Also Published As

Publication number Publication date
JP3779777B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP3628518B2 (en) Methacrylic polymer and process for producing the same
KR100427376B1 (en) Process for Preparing Polymer
KR100319421B1 (en) Method for preparing methacrylate polymer
US5719242A (en) Process for preparing methyl methacrylate polymer
JP2752458B2 (en) Method for producing methacrylic polymer
US5530080A (en) Polymethacrylate molding compound with high heat deflection temperature and stability against thermal degradation
EP0863167A1 (en) Process for producing a copolymer
US6100366A (en) Cyclic imino ether group containing polymer and production process therefor
JP3801124B2 (en) Method for producing methacrylic polymer
JP3013951B2 (en) Acrylic resin manufacturing method
JP3636554B2 (en) Method for removing impurities in continuous solution polymerization
JP4676687B2 (en) Method for producing (meth) acrylic polymer
JP3779777B2 (en) Method for producing methacrylic resin
CN114891147A (en) Methyl methacrylate copolymer and preparation method and application thereof
JP3628124B2 (en) Method for removing impurities in continuous bulk polymerization
JP2000053708A (en) Production of methacrylic polymer with excellent production stability
JP3858948B2 (en) Method for producing styrene-methyl methacrylate polymer
WO2011142384A1 (en) Method for producing methacrylic polymer
JP2000053709A (en) Continuous production of methacrylic polymer
JP3779776B2 (en) Method for producing methacrylic resin with excellent optical quality
JPS6357613A (en) Methacrylate resin and its production
US8981019B2 (en) Method for producing methacrylic-based polymer
JPH1087737A (en) Removal of impurity in continuous solution polymerization
WO1997011978A1 (en) Raw material for the production of heat-resistant resin, heat-resistant resin and process for the production of the resin
JP2001233912A (en) Manufacturing method of methacrylic polymer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

EXPY Cancellation because of completion of term