JP2000053709A - Continuous production of methacrylic polymer - Google Patents

Continuous production of methacrylic polymer

Info

Publication number
JP2000053709A
JP2000053709A JP22266698A JP22266698A JP2000053709A JP 2000053709 A JP2000053709 A JP 2000053709A JP 22266698 A JP22266698 A JP 22266698A JP 22266698 A JP22266698 A JP 22266698A JP 2000053709 A JP2000053709 A JP 2000053709A
Authority
JP
Japan
Prior art keywords
reactor
polymer
polymerization
weight
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22266698A
Other languages
Japanese (ja)
Inventor
Tetsuo Nakamoto
哲生 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP22266698A priority Critical patent/JP2000053709A/en
Publication of JP2000053709A publication Critical patent/JP2000053709A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate

Abstract

PROBLEM TO BE SOLVED: To stably obtain the subject methacrylic polymer that has excellent thermal stability and optical properties in high productivity by continuous solution polymerization under specific conditions using specific amounts of monomers, a specific amount of non-polymerizable solvent and a specific free-radical initiator. SOLUTION: (A) Methyl methacrylate monomer, (B) an acrylic alkyl ester monomer of a 1-8 alkyl carbon atoms and (C) a non-polymerizable solvent are purified by distillation so that the distillate mixture satisfies formula I and formula II [A is the parts by weight of the component A, B is the parts by weight of the component B and C is the parts by weight of the component C]. Then, the distillate mixture, (D) a free-radical initiator with a half-life of 5.55×10-5-0.12 hours and (E) a chain transfer agent are continuously fed into the reactor to effect continuous polymerization reaction, as the temperature in the reactor is kept at 130-170 deg.C, the mean residence time of the reaction mixture is controlled to 0.5-1.9 hour, the ratio of the half-life of the component D to the mean residence time of the reaction mixture is kept at 5.0×10-4-0.50, the polymer concentration is kept at 0.40-0.70 in weight fraction and the number- average molecular weight of the polymer is held at 2.5×104-12.0×104. Then, the reaction mixture is continuously driven away and treated under reduced pressure to remove the volatile components.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱分解性及び光
学的透明性、耐候性に優れた、射出成形、押出成形等の
熱成形用の材料に適したメタクリル系重合体の連続的製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing a methacrylic polymer which is excellent in thermal decomposition resistance, optical transparency and weather resistance and is suitable for materials for thermoforming such as injection molding and extrusion molding. About.

【0002】[0002]

【従来の技術】メチルメタクリレート重合体または、メ
チルメタクリレートを主成分とするメタクリル系共重合
体からなるアクリル樹脂は、その卓越した透明性、耐候
性、そして良好な機械的性質、表面硬度、加工性並びに
成形品における外観の美麗さ等によって、例えば、各種
光学レンズ、光ディスク、導光板等の光学用途、照明器
具、看板、各種装飾品、銘板、テーブルウェアー、自動
車用テールランプ等の外装部品、エクステリア用品等の
屋外用途に広く使用されている。
2. Description of the Related Art An acrylic resin comprising a methyl methacrylate polymer or a methacrylic copolymer containing methyl methacrylate as a main component has excellent transparency, weather resistance, and excellent mechanical properties, surface hardness, and workability. Depending on the beauty of the appearance of the molded product, for example, optical applications such as various optical lenses, optical disks, and light guide plates, lighting equipment, signboards, various decorative products, nameplates, tableware, exterior parts such as tail lamps for automobiles, and exterior products Widely used for outdoor applications such as.

【0003】従来、このメタクリル系樹脂を射出成形に
より成形する場合に発生する問題点としては、成形品の
銀状痕(シルバーストリークス)や、気泡の発生、耐熱
変形性の低下、発生ガスによる作業環境の悪化等があっ
た。これらの問題は一般に成形時の溶融樹脂の温度を低
下させることにより、抑制されることが多いが、その場
合には溶融流動性の低下により大型や薄肉形状の成形品
の成形が困難になったり、成形品の残留歪みが製品品質
を低下させる等の理由により、その用途が制限される場
合があった。
[0003] Conventionally, the problems that occur when this methacrylic resin is molded by injection molding include silver marks (silver streaks) of molded products, generation of bubbles, deterioration of heat-resistant deformation, and generation of gas. The work environment deteriorated. In general, these problems are often suppressed by lowering the temperature of the molten resin at the time of molding, but in that case, molding of large or thin-walled molded products becomes difficult due to a decrease in melt fluidity. In some cases, the use of the molded product is limited due to reasons such as a decrease in product quality due to residual distortion of the molded product.

【0004】これらの問題は、メタクリル系重合体で
は、熱分解温度と重合体が成形加工に必要な溶融流動性
を示す温度が近接しているために、成形時に重合体の分
解反応が生じることに起因するメタクリル樹脂固有の問
題点と考えられている。従って該重合体の耐熱分解性を
改良することは、以上の問題の本質的解決の為に、有効
であると考えられており、従来から熱安定性の改良され
たメタクリル系重合体及びその製造方法が求められてき
た。
[0004] These problems are caused by the fact that in the case of methacrylic polymers, the decomposition reaction of the polymer occurs during molding because the thermal decomposition temperature is close to the temperature at which the polymer exhibits the melt fluidity required for molding. It is considered to be a problem inherent to the methacrylic resin caused by the above. Therefore, it is considered that improving the thermal decomposition resistance of the polymer is effective for essentially solving the above problems, and a methacrylic polymer having improved heat stability and its production have been conventionally known. A way has been sought.

【0005】その熱安定性を改良する方法として、塊状
重合(特開昭49−37993号公報、特開平3−11
1408号公報等)、溶液重合法(特開昭63−576
13号公報、特開平1−172401号公報等)等が提
案されている。一般に塊状重合、溶液重合法により製造
されたメタクリル系重合体は、懸濁重合法により製造さ
れたメタクリル系重合体と比較して、不純物が少なく光
学特性は良好な重合体を製造することが可能であるだけ
でなく、生産性に優れた連続プロセスが可能である。
As a method for improving the thermal stability, bulk polymerization (JP-A-49-37993, JP-A-3-11
1408), a solution polymerization method (JP-A-63-576).
No. 13, JP-A-1-172401, etc.) and the like have been proposed. Generally, methacrylic polymers produced by bulk polymerization and solution polymerization can produce polymers with less impurities and good optical properties compared to methacrylic polymers produced by suspension polymerization. In addition, a continuous process with excellent productivity is possible.

【0006】このため、連続塊状重合、連続溶液重合法
は特に高品質な重合体を高生産性条件下に製造可能なプ
ロセスとして注目され、技術の高度化が求められてい
る。しかし、後述のように現在のところ、これらの連続
重合法の特徴である生産性および、重合体の熱安定性の
双方において十分満足し得るメタクリル系重合体の製造
方法は見出されていない。
[0006] For this reason, continuous bulk polymerization and continuous solution polymerization are particularly attracting attention as processes capable of producing high-quality polymers under high productivity conditions, and there is a demand for advanced techniques. However, as described below, at present, a method for producing a methacrylic polymer that can sufficiently satisfy both the productivity and the thermal stability of the polymer, which are features of these continuous polymerization methods, has not been found.

【0007】すなわち、連続的重合方法における生産性
は、重合設備の規模と、反応機内での平均滞留時間、お
よび反応機最終出口における単量体の反応転化率が重要
であり、平均滞留時間が短く、また反応機最終出口にお
ける単量体の反応転化率が高いほど生産性に優れた製造
方法と言い得る。また、反応器最終出口における重合体
濃度が一定の条件で比較すると平均滞留時間が短いほ
ど、重合設備の規模を小さくすることができ生産性に優
れた製造方法と言い得る。
That is, the productivity in the continuous polymerization method depends on the scale of the polymerization equipment, the average residence time in the reactor, and the reaction conversion of the monomer at the final outlet of the reactor. It can be said that the production method is shorter and the higher the reaction conversion of the monomer at the final outlet of the reactor, the better the productivity. Further, when the polymer concentration at the final outlet of the reactor is compared under a constant condition, it can be said that the shorter the average residence time, the smaller the scale of the polymerization equipment and the more excellent the productivity.

【0008】従って、反応器最終出口での重合体濃度s
(重量分率)と反応機内平均滞留時間τ(時間)の比の
値s/τは、重合反応器の規模(反応機内反応液の全重
量)が同一の条件下での生産性を表す指標である。一般
に、重合反応の形式、組成、重合転化率が近似の条件で
は、反応器内滞留時間、重合体の熱安定性は相反する傾
向を示すことが知られているが、生産性と重合体の熱安
定性のバランスを改良するための方法については知見が
少なく、その改良は重要な技術的課題である。
Accordingly, the polymer concentration s at the final outlet of the reactor is
The value s / τ of the ratio between the (weight fraction) and the average residence time τ (time) in the reactor is an index representing the productivity under the same conditions of the polymerization reactor (the total weight of the reaction solution in the reactor). It is. In general, it is known that the polymerization reaction type, composition, and polymerization conversion rate under similar conditions, the residence time in the reactor, and the thermal stability of the polymer tend to be contradictory. There is little knowledge on methods for improving the balance of thermal stability, and the improvement is an important technical issue.

【0009】特公平8−19193号公報には、特定条
件下の連続塊状重合法で製造され、二重結合末端含有量
が特定範囲内である重合体が、耐熱分解性、光学特性に
優れることが開示されている。しかし、同号公報中に
は、重合体の耐熱分解性と重合時の条件については開示
されていない。例えば、同号報中実施例、比較例には、
反応器内滞留時間が5、6.7時間、重合率46〜59
%の例が開示されているが、反応器内での重合速度が異
なる一般的な条件下で熱安定性を制御するための方法に
ついては記載されていない。また、実施例より計算され
るs/τは0.11(1/時間)が最大である。
Japanese Patent Publication No. Hei 8-19193 discloses that a polymer produced by a continuous bulk polymerization method under specific conditions and having a double bond terminal content within a specific range is excellent in thermal decomposition resistance and optical properties. Is disclosed. However, the publication does not disclose the thermal decomposition resistance of the polymer and the conditions at the time of polymerization. For example, in Examples and Comparative Examples in the same bulletin,
The residence time in the reactor is 5,6.7 hours, and the degree of polymerization is 46 to 59.
Although examples of% are disclosed, no method is described for controlling thermal stability under general conditions where the rate of polymerization in the reactor is different. The maximum value of s / τ calculated from the embodiment is 0.11 (1 / hour).

【0010】一方、特開平8−253507号公報に
は、熱成形時におけるシルバーストリークスや発泡、着
色および臭気等の発生の少ない、耐熱分解性に優れたメ
タクリル樹脂の製造方法として、ラジカル開始剤の半減
期、平均滞留時間、ラジカル開始剤濃度、連鎖移動剤濃
度、モノマー転化率を特定範囲内とした溶媒量29〜5
重量%である1段完全混合槽を使用した製造方法が開示
されている。
On the other hand, Japanese Patent Application Laid-Open No. Hei 8-253507 discloses a method for producing a methacrylic resin which is less likely to generate silver streaks, foaming, coloring and odor during thermoforming and which is excellent in thermal decomposition resistance. The amount of the solvent 29 to 5 with the half-life, average residence time, radical initiator concentration, chain transfer agent concentration and monomer conversion of
A production method using a one-stage complete mixing tank, which is a percentage by weight, is disclosed.

【0011】そこでは溶媒量の限定理由として、5重量
%未満では重合の自動促進効果による重合速度の異常加
速化現象が生じやすく、安定に重合が維持できなくなる
と記載され、溶媒が重合安定性に寄与すると記載されて
いるが、重合を安定に制御するための溶媒量以外の要因
については全く記載されていない。また、実施例より計
算されるs/τの値の最大値は0.132(1/時間)
である。
It is stated that as a reason for limiting the amount of the solvent, if the amount is less than 5% by weight, the phenomenon of abnormal acceleration of the polymerization rate due to the effect of automatic promotion of the polymerization is likely to occur, and the polymerization cannot be stably maintained. However, there is no description other than the amount of solvent for stably controlling the polymerization. The maximum value of s / τ calculated from the embodiment is 0.132 (1 / hour).
It is.

【0012】以上例示したようにs/τの値は小さい程
工業的価値が高いことは自明であるにもかかわらず、従
来技術の範囲では熱安定性を実用可能レベルに保つ為
に、s/τが一定範囲値以下に限られていたということ
ができる。
As exemplified above, it is obvious that the smaller the value of s / τ, the higher the industrial value, but in the range of the prior art, in order to keep the thermal stability at a practicable level, It can be said that τ was limited to a certain range value or less.

【0013】一方熱安定性のレベルに制限が無い場合に
は生産性への制限が少ないと考えられ、s/τが大き
く、生産性に優れた連続塊状重合法が、特開平7−12
6308号公報に開示されている。同号公報中には、完
全混合型反応槽内を満液状態とし、実質的に熱の出入り
のない断熱状態とし、特定条件で連続塊状重合する製造
方法が開示され、実施例中として、s/τが0.33〜
1.34(1/時間)と従来より高生産性の製造条件が
記載され、重合安定性につての記載は見られるものの、
重合体の熱安定性については全く記載されず不明であ
る。
On the other hand, when there is no restriction on the level of thermal stability, it is considered that there is little restriction on productivity, and a continuous bulk polymerization method having a large s / τ and excellent productivity is disclosed in JP-A-7-12.
No. 6308. The same publication discloses a production method in which the inside of a complete mixing type reaction tank is filled with water, and is in an adiabatic state where heat does not flow in and out, and continuous bulk polymerization is performed under specific conditions. / Τ is 0.33 ~
Production conditions of 1.34 (1 / hour) and higher productivity than the conventional ones are described.
The thermal stability of the polymer is not described at all and is unknown.

【0014】以上の説明から明らかなように、耐熱分解
性に優れたメタクリル系重合体を連続溶液重合法によっ
て安定に製造するための製造技術については、生産性の
制限の大きい限られた条件範囲について知られるのみで
あった。特にs/τが0.2(1/時間)以上の高生産
性を有し、且つ熱安定性および、光学的透明性および耐
候性に優れた重合体を製造するための連続溶液重合技術
は得られていないのが現状であった。以上のような観点
から、熱安定性および光学特性、耐候性において優れた
高品質の重合体を従来より高い生産性で製造することが
可能な連続溶液重合技術の確立が望まれていた。
As is apparent from the above description, the production technology for stably producing a methacrylic polymer having excellent thermal decomposition resistance by a continuous solution polymerization method is limited in a limited condition range in which productivity is greatly limited. Was only known about. In particular, a continuous solution polymerization technique for producing a polymer having a high productivity of s / τ of 0.2 (1 / hour) or more, and having excellent thermal stability, optical transparency, and weather resistance is required. At present it has not been obtained. From the above viewpoints, it has been desired to establish a continuous solution polymerization technique capable of producing a high-quality polymer excellent in thermal stability, optical properties, and weather resistance with higher productivity than before.

【0015】[0015]

【発明が解決しようとする課題】本発明は、上記した要
望に応えるものであって、耐熱分解性および光学特性の
優れたメタクリル系重合体を高い生産性で製造可能にす
る連続溶液重合法を提供することを課題とするものであ
る。
SUMMARY OF THE INVENTION The present invention meets the above-mentioned demand and provides a continuous solution polymerization method capable of producing a methacrylic polymer excellent in thermal decomposition resistance and optical characteristics with high productivity. The task is to provide.

【0016】[0016]

【課題を解決するための手段】本発明者らは上記の課題
を解決する方法を見いだすべく鋭意検討した結果、特定
量の単量体、特定量の非重合性溶媒、特定範囲の半減期
を有する遊離基発生剤を用いた、特定条件下の連続溶液
重合法により、熱安定性、光学特性が優れたメタクリル
系重合体を従来より高い生産性で安定且つ連続的に製造
することができることを見出し本発明を完成するに至っ
た。
Means for Solving the Problems The present inventors have conducted intensive studies to find a method for solving the above-mentioned problems, and have found that a specific amount of monomer, a specific amount of non-polymerizable solvent, and a specific range of half-life are determined. By using a free radical generator having a continuous solution polymerization method under specific conditions, a methacrylic polymer having excellent heat stability and optical properties can be stably and continuously produced with higher productivity than before. The present invention has been completed.

【0017】即ち、本発明は、 1.メタクリル酸メチル単量体、アルキル基の炭素数が
1〜8であるアクリル酸アルキルエステル単量体および
非重合性溶媒を、夫々下記式 0.70≦A/(A+B)≦0.998 0.001<C/(A+B+C)<0.050 (式中Aはメタクリル酸メチル単量体の重量部、Bはメ
タクリル酸アルキルエステル単量体の重量部、Cは非重
合性溶媒の重量部である。)を満足する重量部、反応器
中における半減期が5.55×10-5〜0.12時間で
ある遊離基発生剤、および連鎖移動剤を連続的に反応器
に供給し、反応器内を130〜170℃に保ち均一に攪
拌混合しながら、反応器中における反応液の平均滞留時
間を0.5〜1.9時間、遊離基発生剤の半減期と反応
器中の反応液の平均滞留時間の比を5.0×10-4
0.50、反応器中の重合体濃度(重量分率)を0.4
0〜0.70、全供給液中の遊離基発生剤の発生遊離基
換算濃度(mol・g-1)と反応器中の重合液のポリマ
ー濃度(重量分率)の比を0.5×10-6〜3.0×1
-6mol・g-1、そして重合体の数平均分子量を2.
5×104〜12.0×104の範囲内に夫々制御して連
続的に重合反応させ、次いで反応器より反応液を連続的
に払い出した後、加熱減圧脱揮処理することを特徴とす
るメタクリル系重合体の製造方法。
That is, the present invention provides: A methyl methacrylate monomer, an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms, and a non-polymerizable solvent were respectively expressed by the following formula: 0.70 ≦ A / (A + B) ≦ 0.998. 001 <C / (A + B + C) <0.050 (where A is the weight part of the methyl methacrylate monomer, B is the weight part of the alkyl methacrylate monomer, and C is the weight part of the non-polymerizable solvent. ), A free radical generator having a half-life in the reactor of 5.55 × 10 −5 to 0.12 hours, and a chain transfer agent are continuously supplied to the reactor. While maintaining the inside at 130 to 170 ° C. and stirring and mixing uniformly, the average residence time of the reaction solution in the reactor is 0.5 to 1.9 hours, the half-life of the free radical generator and the reaction time of the reaction solution in the reactor. The ratio of the average residence time is 5.0 × 10 −4 or more.
0.50, the polymer concentration (weight fraction) in the reactor was 0.4
0 to 0.70, the ratio of the generated free radical generator concentration (mol · g −1 ) of the free radical generator in the whole supply liquid to the polymer concentration (weight fraction) of the polymerization liquid in the reactor is 0.5 × 10 -6 to 3.0 × 1
0 -6 mol · g -1 , and the number average molecular weight of the polymer is 2.
The polymerization reaction is controlled continuously within the range of 5 × 10 4 to 12.0 × 10 4 , and the polymerization reaction is continuously performed. Then, the reaction solution is continuously discharged from the reactor, followed by heating under reduced pressure and devolatilization. Of producing a methacrylic polymer.

【0018】2.供給液に使用するメタクリル酸メチ
ル、アクリル酸エステル、比重合性溶媒を蒸留精製し、
供給液中の溶存酸素含有量を1ppm以下とし、且つ透
過粒径2μm以下のフィルターを通過させることによ
り、固形状異物を除去することを特徴とする上記1記載
のメタクリル系重合体の製造方法。
2. Distillation and purification of methyl methacrylate, acrylate and specific polymerizable solvent used for the feed solution,
2. The method for producing a methacrylic polymer according to 1 above, wherein the solid foreign matter is removed by making the dissolved oxygen content in the supply liquid 1 ppm or less and passing through a filter having a transmission particle size of 2 μm or less.

【0019】3.非重合性溶媒が、エチルベンゼン、ト
ルエン、o−キシレン、m−キシレン、p−キシレンよ
り選ばれた一種以上の溶媒である上記1または2記載の
メタクリル系重合体の製造方法を提供するものである。
3. 3. The method for producing a methacrylic polymer according to 1 or 2, wherein the non-polymerizable solvent is at least one solvent selected from ethylbenzene, toluene, o-xylene, m-xylene, and p-xylene. .

【0020】本発明のメタクリル系重合体の製造方法
は、メタクリル酸メチル単量体、アルキル基の炭素数が
1〜8であるアクリル酸アルキルエステル単量体および
非重合性溶媒を、夫々下記式 0.70≦A/(A+B)≦0.998 0.001<C/(A+B+C)<0.050 (式中Aはメタクリル酸メチル単量体の重量部、Bはア
クリル酸アルキルエステル単量体の重量部、Cは非重合
性溶媒の重量部である。)を満足する重量部と、反応器
中における半減期が5.55×10-5〜0.12時間で
ある遊離基発生剤と、連鎖移動剤とからなる供給液を連
続的に反応器に供給することにより実施される。
The process for producing a methacrylic polymer of the present invention comprises the steps of reacting a methyl methacrylate monomer, an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms and a non-polymerizable solvent with the following formula: 0.70 ≦ A / (A + B) ≦ 0.998 0.001 <C / (A + B + C) <0.050 (where A is the weight part of methyl methacrylate monomer, B is alkyl acrylate monomer) And C is a part by weight of the non-polymerizable solvent.) And a free radical generator having a half-life of 5.55 × 10 −5 to 0.12 hours in a reactor. And the chain transfer agent is continuously supplied to the reactor.

【0021】反応器への供給液中のアルキル基の炭素数
が1〜8であるアクリル酸アルキルエステル単量体は製
造される重合体の耐熱分解性、溶融流動性を付与するた
めの成分である。
The alkyl acrylate monomer having 1 to 8 carbon atoms in the alkyl group in the liquid supplied to the reactor is a component for imparting heat decomposition resistance and melt fluidity of the polymer to be produced. is there.

【0022】供給液の組成は、Aをメタクリル酸メチル
単量体の重量部、Bをアルキル基の炭素数が1〜8であ
るアクリル酸アルキルエステル単量体の重量部とすると
き、 0.70≦A/(A+B)≦0.998 を満足することが必要である。上記のA/(A+B)は
得られる供給液中の単量体成分全体に占めるメタクリル
酸メチル単量体の割合を表わし、A/(A+B)の値が
0.70未満であると、得られる重合体のメタクリル系
重合体としての特徴が損なわれるため好ましくなく、一
方、A/(A+B)の値が0.998を越えると、アル
キル酸エステル単量体を共重合させる効果が少なく好ま
しくない。
The composition of the feed solution is as follows: when A is a part by weight of a methyl methacrylate monomer and B is a part by weight of an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms. It is necessary to satisfy 70 ≦ A / (A + B) ≦ 0.998. The above A / (A + B) represents the ratio of the methyl methacrylate monomer to the total monomer components in the obtained feed solution, and is obtained when the value of A / (A + B) is less than 0.70. Since the characteristics of the polymer as a methacrylic polymer are impaired, it is not preferable. On the other hand, if the value of A / (A + B) exceeds 0.998, the effect of copolymerizing the alkyl ester monomer is small, which is not preferable.

【0023】アルキル基の炭素数が1〜8であるアクリ
ル酸アルキルエステルの例としては、アクリル酸メチ
ル、アクリル酸エチル、アクリル酸n−プロピル、アク
リル酸sec−プロピル、アクリル酸tert−プロピ
ル、アクリル酸n−ブチル、アクリル酸sec−ブチ
ル、アクリル酸tert−ブチル、アクリル酸n−プロ
ピル、アクリル酸sec−プロピル、等が挙げられる。
これらのうち、アクリル酸メチル、アクリル酸エチル、
が共重合による耐熱分解性、溶融流動性改良効果の点で
特に好ましい。
Examples of the alkyl acrylate having 1 to 8 carbon atoms in the alkyl group include methyl acrylate, ethyl acrylate, n-propyl acrylate, sec-propyl acrylate, tert-propyl acrylate, and acryl acrylate. N-butyl acid, sec-butyl acrylate, tert-butyl acrylate, n-propyl acrylate, sec-propyl acrylate, and the like.
Of these, methyl acrylate, ethyl acrylate,
Is particularly preferred in view of the effects of improving the thermal decomposition resistance and the melt fluidity by copolymerization.

【0024】本発明において、反応器への供給液中の非
重合性溶媒は、重合体の熱安定性改良、重合反応の安定
制御、の為に必要な成分であって、単量体成分とラジカ
ル重合における共重合性を有しない有機化合物である。
本発明に使用する非重合性溶媒の具体例としては、トル
エン、o−キシレン、m−キシレン、p−キシレン、エ
チルベンゼン等の芳香族化合物、オクタン、デカン、シ
クロヘキサン等の脂肪族化合物、デカリン等の脂環族化
合物、酢酸ブチル、酢酸ペンチル等のエステル化合物、
メタノール、エタノール等のアルコール類等が挙げられ
る。特に重合安定性の観点からは、トルエン、o−キシ
レン、m−キシレン、p−キシレン、エチルベンゼンが
好ましい。
In the present invention, the non-polymerizable solvent in the liquid supplied to the reactor is a component necessary for improving the thermal stability of the polymer and controlling the stability of the polymerization reaction. Organic compounds having no copolymerizability in radical polymerization.
Specific examples of the non-polymerizable solvent used in the present invention include toluene, o-xylene, m-xylene, p-xylene, aromatic compounds such as ethylbenzene, octane, decane, aliphatic compounds such as cyclohexane, decalin and the like. Alicyclic compounds, butyl acetate, ester compounds such as pentyl acetate,
Examples include alcohols such as methanol and ethanol. Particularly, from the viewpoint of polymerization stability, toluene, o-xylene, m-xylene, p-xylene and ethylbenzene are preferred.

【0025】本発明において、反応器への供給液中のA
をメタクリル酸メチル単量体の重量部、Bをアルキル基
の炭素数が1〜8であるアクリル酸アルキルエステル単
量体の重量部、Cを非重合性溶媒の重量部とするとき、 0.001≦C/(A+B+C)≦0.050 好ましくは、 0.003≦C/(A+B+C)≦0.035 であることが必要である。
In the present invention, A in the feed to the reactor
Is a weight part of a methyl methacrylate monomer, B is a weight part of an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms, and C is a weight part of a non-polymerizable solvent. 001 ≦ C / (A + B + C) ≦ 0.050 Preferably, it is necessary that 0.003 ≦ C / (A + B + C) ≦ 0.035.

【0026】本発明においてC/(A+B+C)が0.
050を越えると、重合安定性改良効果が見られないば
かりか同一生産レートでの比較において重合体の熱安定
性が低下し好ましくない。一方、C/(A+B+C)の
値が0.001未満であれば、重合安定性改良効果が見
られず、同一生産レートでの比較において、重合体の熱
分解性が低下し好ましくない。C/(A+B+C)の値
が0.003〜0.035であれば、溶媒を使用する効
果即ち重合体の熱安定性改良、重合反応の安定制御の効
果において優れるためより好ましい。
In the present invention, C / (A + B + C) is not more than 0.
If it exceeds 050, not only the effect of improving the polymerization stability is not observed, but also the thermal stability of the polymer decreases in comparison at the same production rate, which is not preferable. On the other hand, if the value of C / (A + B + C) is less than 0.001, the effect of improving the polymerization stability is not seen, and the thermal decomposability of the polymer is lowered in comparison at the same production rate, which is not preferable. When the value of C / (A + B + C) is 0.003 to 0.035, the effect of using a solvent, that is, the effect of improving the thermal stability of the polymer and the effect of controlling the stability of the polymerization reaction, is more preferable.

【0027】本発明の反応器への供給される遊離基発生
剤は、アクリル系重合体のラジカル重合の開始反応を生
じる成分であって、重合反応器中における半減期が5.
55×10-5〜0.12時間であることが必要である。
半減期が5.55×10-5時間未満であると、同一の生
産レート条件での比較において得られる重合体の熱安定
性が低下する傾向が現れ好ましくなく、一方、半減期が
0.12時間を越えると重合反応の安定制御性が低下す
る傾向が現れ好ましくない。
The free radical generator supplied to the reactor of the present invention is a component which initiates the radical polymerization of the acrylic polymer, and has a half life of 5. in the polymerization reactor.
It needs to be 55 × 10 −5 to 0.12 hours.
If the half-life is less than 5.55 × 10 −5 hours, the thermal stability of the polymer obtained under the same production rate conditions tends to decrease, which is not preferable. If the time is exceeded, the stability controllability of the polymerization reaction tends to decrease, which is not preferable.

【0028】本発明に用いられる遊離基発生剤の例とし
ては、例えば、ジ−tert−ブチルパーオキシド、ジ
−クミルパーオキシド、メチルエチルケトンパーオキシ
ド、ジ−tert−ブチルパーフタレート、ジ−ter
t−ブチルパーベンゾエート、tert−ブチルパーア
セテート、2,5−ジメチル−2,5−ジ(tert−
ブチルパーオキシ)ヘキサン、1,1−ビス(t−ブチ
ルパーオキシ)−3,3,5−トリメチルシクロヘキサ
ン、ジ−tert−アミルパーオキシド、ベンゾイルパ
ーオキシド、クメンハイドロパーオキシド及びラウリル
パーオキシドなどの有機過酸化物、アゾビスイソブタノ
ールジアセテート、1、1’−アゾビスシクロヘキサン
カルボニトリル、2−フェニルアゾ2,4−ジメチル−
4−メトキシバレロニトリル、2−シアノ−2,2プロ
ピルアゾホルムアシド及び2,2’−アゾビスイソブチ
ロニトリル等のアゾ系化合物等が挙げられる。これらは
単独または二種以上、組み合わせて使用できる。
Examples of the free radical generator used in the present invention include, for example, di-tert-butyl peroxide, di-cumyl peroxide, methyl ethyl ketone peroxide, di-tert-butyl perphthalate, di-tert-butyl peroxide.
t-butyl perbenzoate, tert-butyl peracetate, 2,5-dimethyl-2,5-di (tert-butyl perbenzoate)
Butylperoxy) hexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, di-tert-amyl peroxide, benzoyl peroxide, cumene hydroperoxide and lauryl peroxide. Organic peroxide, azobisisobutanol diacetate, 1,1′-azobiscyclohexanecarbonitrile, 2-phenylazo 2,4-dimethyl-
Examples include azo compounds such as 4-methoxyvaleronitrile, 2-cyano-2,2-propylazoformamide and 2,2′-azobisisobutyronitrile. These can be used alone or in combination of two or more.

【0029】本発明のための重合反応器としては、混合
装置、温度調節装置を備え、連続的に原料の供給と反応
液の排出を行わせしめることのできる供給口と排出口を
備えた反応器を用いる。本発明における反応器は均一に
攪拌混合する為、攪拌器を備えることが必要であり、使
用できる攪拌翼の例としては、ダブルヘリカルリボン
翼、ピッチドパドル、タービン、アンカー型等が挙げら
れる。
As the polymerization reactor for the present invention, a reactor equipped with a mixing device and a temperature control device and having a supply port and a discharge port capable of continuously supplying raw materials and discharging the reaction solution is provided. Is used. The reactor in the present invention needs to be provided with a stirrer in order to stir and mix uniformly, and examples of stirring blades that can be used include a double helical ribbon blade, a pitched paddle, a turbine, and an anchor type.

【0030】本発明における反応熱の除去方法として
は、反応器上部に凝縮器を設け、反応器内部の圧力を制
御して反応液を沸騰させ、凝縮器で上記を凝縮循環させ
ることにより、蒸発潜熱により反応熱を除熱する方法、
反応器に供給される供給液の温度を低温に制御すること
により、供給液の顕熱により反応熱を除去する方法、反
応液外部に設けた外部冷却装置に反応液を循環させ熱交
換によって反応液を冷却する方法等何れの方法であって
もよく、これらのうち複数の除熱方式を併用することも
できる。
As a method for removing the reaction heat in the present invention, a condenser is provided at the upper part of the reactor, the pressure inside the reactor is controlled to boil the reaction solution, and the above is condensed and circulated by the condenser to evaporate. A method of removing the heat of reaction by latent heat,
A method of removing the reaction heat by sensible heat of the supply liquid by controlling the temperature of the supply liquid supplied to the reactor to a low temperature, and circulating the reaction liquid to an external cooling device provided outside the reaction liquid to react by heat exchange Any method such as a method of cooling a liquid may be used, and a plurality of heat removal methods may be used in combination.

【0031】本発明における重合反応器中の圧力につい
ては反応器の設計上の上限以内、制限以内であれば特に
制限はなく、反応液の除熱方式に応じて内圧を適宜調節
した条件下で反応をおこなうことができる。
The pressure in the polymerization reactor in the present invention is not particularly limited as long as it is within the upper limit of the design of the reactor and within the limit, and under the condition that the internal pressure is appropriately adjusted according to the heat removal method of the reaction solution. The reaction can take place.

【0032】本発明における重合反応器内の温度は、1
30〜170℃、好ましくは135〜160℃であるこ
とが必要である。反応器内温度が130℃未満であれば
反応器内の粘度上昇により重合制御の安定性が低下し、
また得られる重合体の熱安定性が低下する傾向が現れ好
ましくない。一方、反応器内温度が170℃を越える
と、重合体の熱安定性の低下、色度の悪化が現れる傾向
があり好ましくない。
In the present invention, the temperature in the polymerization reactor is 1
It needs to be 30 to 170 ° C, preferably 135 to 160 ° C. If the temperature in the reactor is lower than 130 ° C., the stability of the polymerization control decreases due to an increase in the viscosity in the reactor,
Further, the thermal stability of the obtained polymer tends to decrease, which is not preferable. On the other hand, if the temperature in the reactor exceeds 170 ° C., the thermal stability of the polymer tends to decrease, and the chromaticity tends to deteriorate.

【0033】本発明における反応器中の反応液の平均滞
留時間は0.5〜1.9時間、好ましくは0.7〜1.
8時間であることが必要である。平均滞留時間が0.5
時間未満であれば、得られる重合体の熱安定性が低下す
る傾向が現れ好ましく、一方、平均滞留時間が1.9時
間を越えると生産性が低下するため好ましくない。
In the present invention, the average residence time of the reaction solution in the reactor is 0.5 to 1.9 hours, preferably 0.7 to 1.
It needs to be 8 hours. Average residence time 0.5
When the time is less than the time, the thermal stability of the obtained polymer tends to decrease, and on the other hand, when the average residence time exceeds 1.9 hours, the productivity decreases, which is not preferable.

【0034】本発明において、反応器中の反応液中の重
合体の重量分率は0.40〜0.70、好ましくは0.
45〜0.65の範囲に制御することが必要である。重
合体の重量分率が0.40未満であれば、重合体の生産
速度に劣り、且つ重合後の脱揮回収時の負荷、重合体単
位重量当たりに必要とされる未反応成分回収の為のエネ
ルギー消費が過大となる為、好ましくない。
In the present invention, the weight fraction of the polymer in the reaction solution in the reactor is 0.40 to 0.70, preferably 0.1 to 0.70.
It is necessary to control in the range of 45 to 0.65. When the weight fraction of the polymer is less than 0.40, the production rate of the polymer is inferior, and the load at the time of devolatilization and recovery after polymerization and the recovery of unreacted components required per unit weight of the polymer are required. Energy consumption becomes excessive, which is not preferable.

【0035】一般に、連続的重合方法においては、重合
設備の規模と、反応機内での平均滞留時間、および反応
機最終出口における単量体の反応転化率が重要であり、
平均滞留時間が短く、また反応機最終出口における単量
体の反応転化率が高いほど生産性に優れた製造方法と言
い得る。また、反応機最終出口における重合体濃度が一
定の条件で比較すると平均滞留時間が短いほど、重合設
備の規模を小さくすることができ生産性に優れた製造方
法と言い得る。
In general, in a continuous polymerization method, the scale of the polymerization equipment, the average residence time in the reactor, and the reaction conversion of the monomer at the final outlet of the reactor are important.
It can be said that the shorter the average residence time and the higher the reaction conversion of the monomer at the final outlet of the reactor, the better the productivity. Further, when the polymer concentration at the final outlet of the reactor is compared under a constant condition, it can be said that the shorter the average residence time, the smaller the scale of the polymerization equipment and the more excellent the productivity.

【0036】従って、反応機最終出口での重合体濃度
(重量分率)と反応機内平均滞留時間の比の値は、重合
反応器の規模(反応機内反応液の全重量)が同一の条件
下での生産性を表す指標と考えられる。本発明における
反応器内重合体濃度s(重量分率)と、反応器内滞留時
間τ(時間)の比s/τは0.21〜1.40(1/時
間)の範囲であり、本発明によれば従来技術による製造
方法と比較して高い生産性で製造することができる。
Accordingly, the ratio of the polymer concentration (weight fraction) at the final outlet of the reactor to the average residence time in the reactor is determined under the condition that the scale of the polymerization reactor (total weight of the reaction solution in the reactor) is the same. It is considered to be an index indicating productivity in The ratio s / τ of the polymer concentration s (weight fraction) in the reactor and the residence time τ (time) in the reactor in the present invention is in the range of 0.21 to 1.40 (1 / hour). According to the invention, it is possible to manufacture with higher productivity as compared with the manufacturing method according to the prior art.

【0037】本発明において、反応器への供給液中の遊
離基発生剤の反応器中の半減期と反応器内平均滞留時間
の比は5.0×10-4〜0.50、好ましくは1.0×
10 -3〜0.10であることが必要である。上記の比の
値が5.0×10-4未満であれば得られる重合体の熱安
定性が低下する傾向が現れ、一方、0.50を越えると
重合安定性の低下、即ち転化率の制御性に劣る傾向が現
れ好ましくない。
In the present invention, the play in the liquid supplied to the reactor is
Half-life of the radical generator in the reactor and average residence time in the reactor
Is 5.0 × 10-Four~ 0.50, preferably 1.0x
10 -3It needs to be 〜0.10. Of the above ratio
Value is 5.0 × 10-FourIf less than the thermal stability of the resulting polymer
The qualitative tendency tends to decrease, while when it exceeds 0.50,
There is a tendency for polymerization stability to decrease, i.e., poor control of conversion.
Is not preferred.

【0038】本発明において、供給液中の遊離基発生剤
の発生遊離基換算濃度I(mol・g-1)と反応器中の
重合液濃度s(重量分率)の比I/sは0.5×10-6
〜3.0×10-6mol・g-1、好ましくは、0.6×
10-6〜2.8×10-6mol・g-1の範囲内となる濃
度を反応器に供給する。
In the present invention, the ratio I / s of the concentration I (mol · g −1 ) of the generated free radical in the feed liquid to the concentration s (weight fraction) of the polymerization liquid in the reactor is 0. .5 × 10 -6
~ 3.0 × 10 −6 mol · g −1 , preferably 0.6 ×
A concentration within the range of 10 -6 to 2.8 × 10 -6 mol · g -1 is supplied to the reactor.

【0039】ここで、遊離基発生剤の発生遊離基換算濃
度は以下のように定義される量をいう。供給液中全体に
基づく遊離基発生剤濃度と遊離基発生剤の活性酸素量と
から求めることができ、[発生遊離基換算濃度(mol
・g-1)]=[遊離基発生剤濃度(mol・g-1)]×
[(遊離基発生剤の活性酸素量/16)/100]で算
出される。ここで、[活性酸素量(%)]は[遊離基発
生剤単位重量あたり発生するRO・ラジカルO原子の重
量]×100(%)で定義される。これらは、用いる遊
離基発生剤の化学構造および、純度等からの計算、また
は、開始剤の完全分解時の生成物の分析等により決定す
ることができる。また、アゾ系化合物その他の場合も化
合物1モル当たり発生する遊離基モル数をもとに同様に
して求められる。
Here, the concentration in terms of the generated free radical of the free radical generator refers to an amount defined as follows. It can be determined from the concentration of the free radical generator based on the whole in the feed solution and the amount of active oxygen of the free radical generator, and [concentration in terms of generated free radical (mol
G- 1 )] = [free radical generator concentration (mol.g- 1 )]. Times.
It is calculated by [(amount of active oxygen of free radical generator / 16) / 100]. Here, [the amount of active oxygen (%)] is defined as [weight of RO / radical O atom generated per unit weight of free radical generator] × 100 (%). These can be determined by calculation from the chemical structure and purity of the free radical generator used, or by analysis of the product at the time of complete decomposition of the initiator. In the case of azo-based compounds and other cases, they can be similarly determined based on the number of moles of free radicals generated per mole of the compound.

【0040】上述の比率I/sは、重合体の熱分解性の
指標として重要であって、0.5×10-6mol・g-1
未満とする為には、生産性の低い条件に重合反応を制御
する必要があり好ましくなく、一方、3.0×10-6
ol・g-1を越えると熱安定性が低下し、従来のメタク
リル系重合体と比較して高温での成形、薄肉大型成形等
の場合にシルバーストリークス等の不良を発生する傾向
が大きくなり、好ましくない。
The above ratio I / s is important as an index of the thermal decomposability of the polymer, and is 0.5 × 10 −6 mol · g −1.
Less than the To, it is necessary to control the polymerization reaction to low productivity conditions not preferable, whereas, 3.0 × 10 -6 m
When ol · g -1 is exceeded, the thermal stability is reduced, and the tendency to generate defects such as silver streaks increases in high-temperature molding, thin-wall large-sized molding, etc., as compared with conventional methacrylic polymers. Is not preferred.

【0041】本発明のメタクリル系重合体の製造方法に
おいて、連鎖移動剤は重合体の分子量の調節のために反
応器に供給される成分であり、反応器への供給液中にし
める含有量は、反応器中の重合体の数平均分子量が2.
5×104〜12×104、好ましくは3.0×104
10×104の範囲内となるように重合体の分子量目標
値に応じて添加濃度を調節する。
In the method for producing a methacrylic polymer of the present invention, the chain transfer agent is a component supplied to the reactor for controlling the molecular weight of the polymer, and the content contained in the liquid supplied to the reactor is as follows: The number average molecular weight of the polymer in the reactor is 2.
5 × 10 4 to 12 × 10 4 , preferably 3.0 × 10 4 to
The addition concentration is adjusted according to the target molecular weight of the polymer so as to fall within the range of 10 × 10 4 .

【0042】本発明において重合体の数平均分子量は、
ゲルパーミュエーション(GPC)法により測定される
数値であって、分子量分布の狭い標準ポリメチルメタク
リレート(PMMA)を標準試料として較正されたゲル
パーミュエーションクロマトグラフにより、試料のPM
MA換算分子量分布を測定したデータから算出される数
値である。
In the present invention, the number average molecular weight of the polymer is:
It is a numerical value measured by a gel permeation (GPC) method, and the PM of the sample is determined by a gel permeation chromatograph calibrated using standard polymethyl methacrylate (PMMA) having a narrow molecular weight distribution as a standard sample.
It is a numerical value calculated from data obtained by measuring the molecular weight distribution in terms of MA.

【0043】反応器中の重合体の数平均分子量が2.5
×104未満であれば、重合体を成形加工して得られる
製品の機械的強度が低下する傾向が現れ好ましくなく、
一方、12×104を越えると、重合反応の安定制御可
能な条件範囲がせまくなり好ましくない。
The number average molecular weight of the polymer in the reactor is 2.5
If it is less than × 10 4 , the mechanical strength of the product obtained by molding the polymer tends to decrease, which is not preferable,
On the other hand, if it exceeds 12 × 10 4 , the condition range in which the polymerization reaction can be stably controlled becomes narrow, which is not preferable.

【0044】連鎖移動剤の例としては、メチルメルカプ
タン、エチルメルカプタン、プロピルメルカプタン、イ
ソプロピル、n−ブチルメルカプタン、イソブチルメル
カプタン、t−ブチルメルカプタン、n−オクチルメル
カプタン、n−ドデシルメルカプタン、sec−ドデシ
ルメルカプタン、t−ブチルメルカプタンなどのアルキ
ル基または置換アルキル基を有する第一級、第二級及び
第三級メルカプタン、フェニルメルカプタン、チオクレ
ゾールなどの芳香族メルカプタン、チオグリコール酸と
そのエステル及びエチレンチオグリコール等が挙げられ
る。これらは単独でまたは二種以上組み合わせて使用で
きる。これらのうち、重合体の色調、反応混合物から分
離除去の容易さの点からn−ブチル、t−ブチルおよび
n−オクチルメルカプタンの使用が特に好ましい。
Examples of the chain transfer agent include methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl, n-butyl mercaptan, isobutyl mercaptan, t-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, sec-dodecyl mercaptan, Primary, secondary and tertiary mercaptans having an alkyl group or a substituted alkyl group such as t-butyl mercaptan, aromatic mercaptans such as phenyl mercaptan, thiocresol, thioglycolic acid and its esters, ethylene thioglycol, etc. No. These can be used alone or in combination of two or more. Of these, use of n-butyl, t-butyl and n-octyl mercaptan is particularly preferred in view of the color tone of the polymer and the ease of separation and removal from the reaction mixture.

【0045】本発明において連続的に反応器より払い出
された反応液は、脱揮して重合物を取り出すと同時に揮
発分である未反応メタクリル酸メチルを主成分とする単
量体及び溶媒を分離する。脱揮装置としては、多段ベン
ト付き押出機、脱揮タンク等を使用することができる。
特に、該反応液を200〜290℃の温度に加熱し、上
部に十分な空間を有し、且つ温度200〜280℃、圧
力100torr以下の真空下の脱揮タンクにフィード
して重合物を取り出すと同時に未反応メタクリル酸メチ
ルを主成分とする単量体および非重合性溶媒からなる揮
発成分を分離する方法が好ましい。
In the present invention, the reaction solution continuously discharged from the reactor is devolatilized to remove the polymer, and at the same time, a monomer and a solvent mainly composed of unreacted methyl methacrylate, which is a volatile component, are removed. To separate. As the devolatilizing device, an extruder with a multi-stage vent, a devolatilizing tank, or the like can be used.
In particular, the reaction solution is heated to a temperature of 200 to 290 ° C., and a polymer is taken out by feeding it to a devolatilization tank having a sufficient space above and having a temperature of 200 to 280 ° C. and a pressure of 100 torr or less under vacuum. At the same time, a method of separating a volatile component composed of a monomer having unreacted methyl methacrylate as a main component and a non-polymerizable solvent is preferable.

【0046】この減圧下に保持された脱揮タンクに重合
液を導入する方法は、揮発成分の瞬間的な揮発とそれに
よる発泡を生じて、極めて大きな蒸発面積を形成し、高
沸点の溶媒を使用しても効率的に短時間で揮発成分が除
去され、重合体中に残存する未反応単量体、ダイマー、
オリゴマーおよび非重合性溶媒の量が少なく、光学的透
明性に優れた重合体が得られる点で優れた脱揮方式であ
る。この脱揮工程において、重合体に含まれる非重合性
溶媒の含有量を2〜500ppm、好ましくは、2〜3
00ppmの範囲内に制御することができる。
The method of introducing the polymerization solution into the devolatilization tank held under reduced pressure involves the instantaneous volatilization of volatile components and the resulting foaming, forming an extremely large evaporation area and removing the solvent having a high boiling point. Even when used, volatile components are efficiently removed in a short time, and unreacted monomers, dimers,
This is an excellent devolatilization method in that the amount of the oligomer and the non-polymerizable solvent is small, and a polymer having excellent optical transparency is obtained. In this devolatilization step, the content of the non-polymerizable solvent contained in the polymer is 2 to 500 ppm, preferably 2 to 3 ppm.
It can be controlled within the range of 00 ppm.

【0047】本発明の重合体の製造方法において、供給
液を反応器に供給するに際し、メタクリル酸メチル、ア
クリル酸エステル、非重合性溶媒の混合物は蒸留精製
し、且つ供給液中の溶存酸素濃度を1ppm以下とし、
且つ供給液を透過粒径2μm以下のフィルターを通過さ
せることにより、固形状異物を除去することができる。
上述の操作により、重合体の光学特性、耐候性をさらに
向上させることができる。
In the method for producing a polymer according to the present invention, when supplying a supply liquid to a reactor, a mixture of methyl methacrylate, acrylate and non-polymerizable solvent is purified by distillation, and the concentration of dissolved oxygen in the supply liquid is adjusted. To 1 ppm or less,
In addition, by passing the supply liquid through a filter having a transmission particle size of 2 μm or less, solid foreign matters can be removed.
By the above operation, the optical properties and weather resistance of the polymer can be further improved.

【0048】供給液の蒸留精製は、単量体、非重合性溶
媒に含まれる不純物および、異物の除去に有効であり、
重合体の光学的透明性、重合体に含まれる異物を除去さ
せる効果がある。その際、単量体および非重合性溶媒の
蒸留精製は、例えば、充填塔式、棚段式などの蒸留塔に
より実施する。蒸留の方式は原料混合物を蒸留塔の中段
または上段より供給し、蒸留塔ボトム液をリボイラー等
の加熱器で加熱しながら蒸留し、蒸留塔の塔頂部より流
出するメタクリル酸メチルを主成分とする単量体及び非
重合性溶媒の蒸気をコンデンサーにて凝縮することによ
って実施する。
The distillation purification of the feed solution is effective for removing impurities and foreign substances contained in the monomer and the non-polymerizable solvent.
It has the effect of removing the foreign matter contained in the polymer and the optical transparency of the polymer. At that time, the distillation and purification of the monomer and the non-polymerizable solvent are carried out, for example, by a distillation column such as a packed column type or a tray type. The distillation method supplies the raw material mixture from the middle or upper stage of the distillation column, distills while heating the distillation column bottom liquid with a heater such as a reboiler, and mainly contains methyl methacrylate flowing out from the top of the distillation column. It is carried out by condensing the vapors of the monomer and the non-polymerizable solvent in a condenser.

【0049】この際、使用する非重合性溶媒の沸点が単
量体より高い場合、蒸留塔ボトム液に濃縮された高沸点
の不純物、異物、単量体の貯蔵安定化のために添加され
た重合禁止剤等は、蒸留塔ボトム液を連続して或いは断
続して取り出すと同時に取り出した量の溶媒を追加する
ことによって除去することができる為特に好ましい。
At this time, when the boiling point of the non-polymerizable solvent used is higher than that of the monomer, the non-polymerizable solvent is added to stabilize the storage of the high boiling point impurities, foreign substances and monomer concentrated in the bottom liquid of the distillation column. The polymerization inhibitor and the like are particularly preferable because they can be removed by continuously or intermittently removing the bottom liquid of the distillation column and simultaneously adding the removed solvent.

【0050】なお、原料の一部として、重合反応後の反
応液から脱揮分離回収された未反応単量体および非重合
性溶媒をリサイクル使用する際、回収された未反応単量
体を蒸留精製することにより、メタクリル酸メチルダイ
マー、オリゴマーを除去することができる。
When the unreacted monomer and the non-polymerizable solvent devolatilized and separated from the reaction solution after the polymerization reaction are recycled for use as a part of the raw materials, the recovered unreacted monomer is distilled off. By purifying, methyl methacrylate dimer and oligomer can be removed.

【0051】蒸留精製された供給液原料は、更に向流接
触塔を用いて向流接触させることにより不活性ガスと置
換し、供給液中の溶存酸素濃度を1ppm以下とする。
タンク中における不活性ガスバブリング法では溶存酸素
濃度は10〜20ppmであるが、向流接触法により溶
存酸素濃度1ppm以下にすることが可能である。
The feed liquid material purified by distillation is further replaced with an inert gas by bringing it into countercurrent contact with a countercurrent contact tower to reduce the concentration of dissolved oxygen in the feed liquid to 1 ppm or less.
Although the dissolved oxygen concentration is 10 to 20 ppm by the inert gas bubbling method in the tank, the dissolved oxygen concentration can be reduced to 1 ppm or less by the countercurrent contact method.

【0052】本発明においては、供給原料の蒸留精製の
際、固形状異物が低減されるが、溶存酸素濃度を1pp
m以下とした後、更に透過粒径2μm以下のフィルター
で濾過することにより残留する異物を除去することが必
要である。フィルターの種類は、供給液に対し化学的に
安定であり、供給液を汚染することがなく且つ供給液か
ら固形状異物を除去できる構造を有するものであれば特
に制限はなく、例えば細孔濾過器、限外濾過膜等が挙げ
られる。このような濾過処理によって、得られる重合体
中の2μm以上の粒子径を有する固形状異物の含有量を
低減させ、重合体の黄色度および耐候性を向上させるこ
とができる。
In the present invention, when the feedstock is purified by distillation, solid foreign matter is reduced, but the dissolved oxygen concentration is reduced to 1 pp.
m or less, it is necessary to remove the remaining foreign matter by filtering through a filter having a transmission particle size of 2 μm or less. The type of the filter is not particularly limited as long as it is chemically stable to the supply liquid, does not contaminate the supply liquid, and has a structure capable of removing solid foreign matter from the supply liquid. Vessel, ultrafiltration membrane and the like. By such a filtration treatment, the content of solid foreign substances having a particle diameter of 2 μm or more in the obtained polymer can be reduced, and the yellowness and weather resistance of the polymer can be improved.

【0053】以上に詳述した本発明の連続重合プロセス
で用いられる連続重合装置の工程図の一例を図1(前半
部)及び図2(後半部)に示す。
One example of a process diagram of a continuous polymerization apparatus used in the continuous polymerization process of the present invention described in detail above is shown in FIG. 1 (first half) and FIG. 2 (second half).

【0054】本発明のメタクリル系重合体の製造方法に
おいて、重合体の改良の為、必要に応じて、離型剤、酸
化防止剤、光拡散剤、染料、顔料、蛍光増白剤、滑剤、
耐衝撃改質剤等を製造過程の各段階において重合体に添
加することができる。
In the method for producing a methacrylic polymer of the present invention, a releasing agent, an antioxidant, a light diffusing agent, a dye, a pigment, a fluorescent brightener, a lubricant,
Impact modifiers and the like can be added to the polymer at each stage of the manufacturing process.

【0055】[0055]

【発明の実施の形態】以下実施例により本発明の実施の
形態を説明するが、本発明はこれにより何ら制限を受け
るものではない。なお,実施例、比較例における重合体
の数平均分子量、熱分解性およびシルバーストリークス
発生率は以下に記載する方法に従い測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to examples, but the present invention is not limited by these examples. In addition, the number average molecular weight, the thermal decomposability, and the occurrence rate of silver streaks of the polymers in Examples and Comparative Examples were measured according to the methods described below.

【0056】(1)重合体の数平均分子量 重合反応中の重合反応器から、反応液を抜き出し、ゲル
パーミュエーションクロマトグラフィー(GPC)を用
いて以下のように決定した。反応液2gを20gのアセ
トンに完全に溶解した後、2000gのn−ヘキサンに
再沈殿させポリマーを分離し、真空乾燥しポリマー試料
とした。ポリマー試料20mgを、テトラヒドロフラ
ン:THF40cm3に溶解し、試料溶液とした。得ら
れたクロマトグラムは、標準PMMA(ポリマーラボラ
トリーズ社製)により作成した校正線により、分子量分
布に換算し、数平均分子量を算出した。
(1) Number average molecular weight of polymer The reaction solution was taken out of the polymerization reactor during the polymerization reaction, and determined by gel permeation chromatography (GPC) as follows. After completely dissolving 2 g of the reaction solution in 20 g of acetone, the polymer was separated by reprecipitation in 2,000 g of n-hexane, and dried under vacuum to obtain a polymer sample. 20 mg of a polymer sample was dissolved in 40 cm 3 of tetrahydrofuran: THF to obtain a sample solution. The obtained chromatogram was converted into a molecular weight distribution using a calibration line created by standard PMMA (manufactured by Polymer Laboratories), and the number average molecular weight was calculated.

【0057】[GPC測定条件] 装置:トーソー製HLC8120、カラム:トーソー製
TSKgel、superHM−M2本直列、溶媒:テ
トラヒドロフラン(THF)、カラム温度:40℃、流
量:0.2cm3/分
[GPC Measurement Conditions] Apparatus: Tosoh HLC8120, Column: Tosoh TSKgel, superHM-M two in series, solvent: tetrahydrofuran (THF), column temperature: 40 ° C., flow rate: 0.2 cm 3 / min.

【0058】(2)重合体の熱分解性 ガスクロマトグラフにキューリーポイントパイロライザ
ー(日本分析工業製)を接続し、パイロライザーによる
熱分解生成ガスを分析定量する方法により熱分解時に発
生するモノマーを分析定量することにより、熱分解性を
評価した。試料1gを20cm3塩化メチレンに完全に
溶解し、その溶液25μLをパイロホイル(キューリー
点315℃、日本分析工業製)に均一に塗布し、真空乾
燥機により200℃、1時間減圧乾燥し、溶媒を除去し
た。
(2) Thermal Decomposition of Polymer A Curie Point Pyrolyzer (manufactured by Nippon Kagaku Kogyo Co., Ltd.) is connected to a gas chromatograph, and monomers generated during pyrolysis are analyzed by a method of analyzing and quantifying pyrolysis gas generated by the Pyrolyzer. By quantifying, the thermal decomposition property was evaluated. A sample (1 g) was completely dissolved in methylene chloride (20 cm 3 ), 25 μL of the solution was uniformly applied to pyrofoil (Curie point: 315 ° C., manufactured by Nippon Kagaku Kogyo), and dried under reduced pressure at 200 ° C. for 1 hour using a vacuum dryer. Removed.

【0059】パイロホイルをキューリーポイントパイロ
ライザーにセットし、装置内を完全に窒素置換した後
に、加熱時間10秒の設定で試料を加熱、発生MMA単
量体およびアクリル酸アルキルエステル類をガスクロマ
トグラフ法により定量、その合計量を算出した。
After setting the pyrofoil in the Curie Point Pyrolyzer and completely replacing the inside of the apparatus with nitrogen, the sample was heated at a heating time of 10 seconds, and the generated MMA monomer and alkyl acrylate were analyzed by gas chromatography. The quantification and the total amount were calculated.

【0060】(3)シルバーストリークス発生率 高温成形時に発生するシルバーストリークスの発生率を
以下の方法により評価した。重合体ペレットを熱風乾燥
機により、ペレット中の水分濃度を300ppmとなる
まで乾燥し、以下の条件で射出成形テストを実施した。
高温成形時の熱分解で発生するガスによる発泡を以下の
方法により評価した。ファナック製射出成形機T−10
0D型を用い、シリンダー温度300℃、金型温度55
℃、充填圧力750kgf/cm2の条件でスパイラル
フロー長(SFD)評価用の渦巻き状成形品(厚さ2m
m)を成形した。SFDが安定した後、さらに50ショ
ット成形し、成形品のシルバーストリークスおよび発泡
の有無を観察した。同法による測定を2回行い、計10
0ショット中に成形片にシルバーストリークスの観察さ
れた回数を記録し、シルバー発生率(%)とした。
(3) Generation rate of silver streaks The generation rate of silver streaks generated during high-temperature molding was evaluated by the following method. The polymer pellets were dried by a hot air dryer until the water concentration in the pellets became 300 ppm, and an injection molding test was performed under the following conditions.
Foaming by gas generated by thermal decomposition during high-temperature molding was evaluated by the following method. FANUC injection molding machine T-10
Using 0D mold, cylinder temperature 300 ° C, mold temperature 55
At a filling temperature of 750 kgf / cm 2 at 250 ° C. for a spiral flow length (SFD) evaluation.
m) was molded. After the SFD was stabilized, 50 shots were molded further, and the molded product was observed for the presence of silver streaks and foaming. The measurement was performed twice by the same method, and a total of 10
The number of times silver streaks were observed on the molded piece during 0 shot was recorded, and was defined as a silver generation rate (%).

【0061】(4)重合体の射出成形および成形片の色
度評価 東芝機械製射出成形機IS−75S型により、シリンダ
ー温度設定250℃において3×20×220mmの試
験片を成形した。試験片は成形サイクル安定後4ショッ
ト成形して作成し、試験片を厚さ方向に4本重ね、長さ
方向の空気(試験片無し)を基準とする黄色度ΔYI
(光路長220mm)を色差計(日本電色工業製TC−
1500MC型)により測定した。
(4) Injection molding of polymer and evaluation of chromaticity of molded piece A 3 × 20 × 220 mm test piece was molded at 250 ° C. cylinder temperature using an injection molding machine IS-75S manufactured by Toshiba Machine Co., Ltd. After the molding cycle was stabilized, four shots were formed after the molding cycle was stabilized. Four test pieces were stacked in the thickness direction, and the yellowness ΔYI based on air in the length direction (no test piece)
(Optical path length 220 mm) using a color difference meter (TC-
1500MC type).

【0062】(5)成形品の耐候性評価 (4)で成形した成形片をサンシャインウェザオメータ
ー(SWOM)により、56℃、降雨有りの条件で20
00時間暴露した後の黄色度(ΔYI)を(4)と同様
に測定した。
(5) Evaluation of weather resistance of molded product The molded piece molded in (4) was subjected to a sunshine weatherometer (SWOM) at 56 ° C. under rainfall conditions.
The yellowness (ΔYI) after exposure for 00 hours was measured in the same manner as in (4).

【0063】[0063]

【実施例】実施例1 メタクリル酸メチル97.8重量%、アクリル酸メチル
2.0重量%、及びエチルベンゼン0.2重量%の混合
物に、遊離基発生剤として、1,1−ビス(t−ブチル
パーオキシ)−3,3,5−トリメチルシクロヘキサン
を96ppm、及びn−オクチルメルカプタンを204
0ppmとなる量だけ連続的に添加混合してピッチドパ
ドル翼攪拌機付き10L完全混合型重合反応機に連続的
に供給、反応機内液温度155℃、反応機内平均滞留時
間(τ)1.00時間の条件で重合し、重合液を反応機
から連続的に払い出し、次いで重合液を加熱板の間隙を
通過させて熱交換させ260℃に加熱し、脱揮タンクに
流延落下させた。
EXAMPLE 1 A mixture of 97.8% by weight of methyl methacrylate, 2.0% by weight of methyl acrylate, and 0.2% by weight of ethylbenzene was mixed with 1,1-bis (t- 96 ppm of butylperoxy) -3,3,5-trimethylcyclohexane and 204 ppm of n-octylmercaptan
0 ppm was continuously added and mixed and continuously supplied to a 10-L complete mixing type polymerization reactor equipped with a pitched paddle blade stirrer, the liquid temperature in the reactor was 155 ° C, and the average residence time (τ) in the reactor was 1.00 hours. The polymerization liquid was continuously discharged from the reactor, and then the polymerization liquid was passed through the gap between the heating plates to exchange heat, heated to 260 ° C., and cast and dropped into a devolatilization tank.

【0064】反応器中における遊離基発生剤の半減期
(θ)は0.0083hrであり、反応器内平均滞留時
間(τ)は1.00hrであるから、θ/τは0.00
83であった。脱揮タンクは、真空脱揮により内圧を3
0torr、温度を230℃に維持し、未反応単量体及
び、重合溶媒を分離回収した。重合体は脱揮タンク下部
のギアポンプにより払い出し、押し出しダイスより押し
出し、ストランドをストランドカッターにより、ペレタ
イズしてペレットとして回収した。単位時間当たりの生
産されるペレットの重量と、単位時間当たり反応器への
供給される供給液重量の比から反応器中の重合体の重量
分率を計算したところ、その定常値は0.57であっ
た。また、遊離基発生剤の分子量と活性酸素量から求め
た遊離基発生剤の発生遊離基換算濃度(I)は1.26
5mol・g-1であり、I/sは2.22×10-6mo
l・g-1であった。重合反応器への供給液組成、反応条
件、重合体の特性を表1に示した。
Since the half-life (θ) of the free radical generator in the reactor is 0.0083 hr and the average residence time (τ) in the reactor is 1.00 hr, θ / τ is 0.00
83. The devolatilization tank reduces the internal pressure to 3 by vacuum devolatilization.
At 0 torr and the temperature was maintained at 230 ° C., the unreacted monomer and the polymerization solvent were separated and recovered. The polymer was discharged by a gear pump below the devolatilizing tank, extruded from an extrusion die, and the strand was pelletized by a strand cutter and collected as pellets. When the weight fraction of the polymer in the reactor was calculated from the ratio of the weight of the pellets produced per unit time to the weight of the feed liquid supplied to the reactor per unit time, the steady value was 0.57. Met. The concentration (I) of the free radical generator calculated from the molecular weight of the free radical generator and the amount of active oxygen is 1.26.
5 mol · g −1 and I / s is 2.22 × 10 −6 mo
It was 1 · g -1 . Table 1 shows the composition of the liquid supplied to the polymerization reactor, the reaction conditions, and the characteristics of the polymer.

【0065】実施例2〜5 実施例1における重合反応器への供給液組成、反応条件
を表1に示した様に変更した以外は、実施例1と同様な
操作を行ない重合体を得た。その結果を表1に示す。
Examples 2 to 5 The same operation as in Example 1 was carried out except that the composition of the liquid supplied to the polymerization reactor and the reaction conditions in Example 1 were changed as shown in Table 1, to obtain a polymer. . Table 1 shows the results.

【0066】実施例6 実施例3の実施後、回収された未反応単量体、非重合性
溶媒等からなる混合物(以下、リサイクル液と呼ぶ)4
3.0重量%と新たなメタクリル酸メチル55.8重量
%及び新たなアクリル酸メチル1.2重量%からなる混
合物を蒸留塔に連続フィードして、ボトム温度90℃、
圧力70torrの条件で連続的に単蒸留した。蒸留さ
れた単量体を主とする混合物の組成は、メタクリル酸メ
チル96.0重量%、アクリル酸メチル2.0重量%、
エチルベンゼン2.0重量%であった。
Example 6 After the operation of Example 3, a mixture (hereinafter, referred to as a recycle liquid) 4 composed of an unreacted monomer, a non-polymerizable solvent, and the like collected.
A mixture consisting of 3.0% by weight, 55.8% by weight of new methyl methacrylate and 1.2% by weight of new methyl acrylate was continuously fed to the distillation column, and the bottom temperature was 90 ° C.
Continuous simple distillation was carried out under a pressure of 70 torr. The composition of the mixture mainly composed of the distilled monomers is 96.0% by weight of methyl methacrylate, 2.0% by weight of methyl acrylate,
The content of ethylbenzene was 2.0% by weight.

【0067】この混合物に1,1−ビス(t−ブチルパ
ーオキシ)−3,3,5−トリメチルシクロヘキサンが
107ppm、及びn−オクチルメルカプタンが193
0ppmになる量だけ連続的に追加添加混合して供給液
とし、窒素向流接触塔により脱酸素させた後、透過粒径
2μmサイズのフィルターを通過させ重合反応器に連続
的に供給、反応機内液温度155℃、反応機内平均滞留
時間1.00時間の条件で重合し、重合液を反応機から
連続的に払い出し、次いで重合液を加熱板の間隙を通過
させて熱交換させ260℃に加熱し、脱揮タンクに流延
落下させた。
To this mixture, 107 ppm of 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane and 193 of n-octylmercaptan were added.
0 ppm was continuously added and mixed to form a feed solution, which was then deoxygenated by a nitrogen countercurrent contact tower, passed through a filter having a permeation particle size of 2 μm, and continuously fed to the polymerization reactor. Polymerization was carried out under the conditions of a liquid temperature of 155 ° C. and an average residence time in the reactor of 1.00 hour, the polymer solution was continuously discharged from the reactor, and then the polymer solution was passed through the gap between the heating plates to exchange heat and heated to 260 ° C. Then, it was cast and dropped into a devolatilization tank.

【0068】反応器に供給される直前の供給液中の酸素
濃度は0.2ppm以下であった。脱揮タンクは、真空
脱揮により内圧を30トール、温度を230℃に維持
し、未反応単量体及び、重合溶媒を分離した。重合体は
脱揮タンク下部のギアポンプにより払い出し、押し出し
ダイスより押し出し、ストランドをストランドカッター
によりペレタイズしてペレットとして回収した。
The oxygen concentration in the feed solution immediately before being fed to the reactor was 0.2 ppm or less. The devolatilization tank maintained the internal pressure at 30 Torr and the temperature at 230 ° C. by vacuum devolatilization to separate the unreacted monomer and the polymerization solvent. The polymer was discharged by a gear pump below the devolatilization tank, extruded from an extrusion die, and the strands were pelletized by a strand cutter and collected as pellets.

【0069】脱揮により分離回収した未反応単量体およ
び溶媒の組成は、実施例3と同等であった。回収された
リサイクル液はタンクに貯蔵し、リサイクル液として再
使用する方法により、連続的に10日間の運転を行った
後、重合体を製造、サンプリングした。その際、リサイ
クル液の組成の変化に応じて、リサイクル液と新たな単
量体の混合比率を調製して、供給液の組成を実施例3と
同等に維持した。運転期間中の蒸留塔ボトムでのポリマ
ー生成による粘度の上昇は見られず、精留塔ボトムのリ
ボイラーは連続的に安定運転が可能であった。重合体の
評価結果を、表1に示す。重合体特性は実施例3のもの
と比較して、初期ΔYI、暴露後ΔYIにおいて優れる
結果となった。
The compositions of the unreacted monomer and the solvent separated and recovered by devolatilization were the same as in Example 3. The collected recycle solution was stored in a tank, and after operating continuously for 10 days by a method of reusing as a recycle solution, a polymer was produced and sampled. At that time, according to the change in the composition of the recycle solution, the mixing ratio of the recycle solution and the new monomer was adjusted, and the composition of the supply solution was maintained equal to that in Example 3. No increase in viscosity due to polymer formation at the bottom of the distillation column was observed during the operation period, and the reboiler at the bottom of the rectification column was capable of continuous stable operation. Table 1 shows the evaluation results of the polymers. The polymer characteristics were excellent in the initial ΔYI and the ΔYI after exposure as compared with those of Example 3.

【0070】実施例7 実施例4の実施後、回収された未反応単量体を含むリサ
イクル液43.0重量%と新たなメタクリル酸メチル5
5.8重量%及び新たなアクリル酸メチル1.2重量%
からなる混合物を蒸留塔に連続フィードして、ボトム温
度90℃、圧力70torrの条件で連続的に単蒸留し
た。蒸留された単量体を主とする混合物の組成は、メタ
クリル酸メチル94.6重量%、アクリル酸メチル1.
9重量%、エチルベンゼン3.5重量%であった。
Example 7 After the implementation of Example 4, 43.0% by weight of the recycled liquid containing the unreacted monomer recovered and fresh methyl methacrylate 5
5.8% by weight and 1.2% by weight of new methyl acrylate
Was continuously fed to a distillation column, and was continuously subjected to simple distillation under the conditions of a bottom temperature of 90 ° C. and a pressure of 70 torr. The composition of the mixture mainly composed of the distilled monomer was 94.6% by weight of methyl methacrylate and 1.66% by weight of methyl acrylate.
9% by weight and 3.5% by weight of ethylbenzene.

【0071】この混合物に1,1−ビス(t−ブチルパ
ーオキシ)−3,3,5−トリメチルシクロヘキサンが
117ppm、及びn−オクチルメルカプタンが183
0ppmになる量だけ連続的に追加添加混合して供給液
とし、窒素向流接触塔により脱酸素させた後、透過粒径
2μmサイズのフィルターを通過させ重合反応器に連続
的に供給、反応機内液温度155℃、反応機内平均滞留
時間1.00時間の条件で重合し、重合液を反応機から
連続的に払い出し、次いで重合液を加熱板の間隙を通過
させて熱交換させ260℃に加熱し、脱揮タンクに流延
落下させた。反応器に供給される直前の供給液中の酸素
濃度は0.2ppm以下であった。脱揮タンクは、真空
脱揮により内圧を30トール、温度を230℃に維持
し、未反応単量体及び、重合溶媒を分離回収した。
To this mixture, 117 ppm of 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane and 183 ppm of n-octylmercaptan were added.
0 ppm was continuously added and mixed to form a feed solution, which was then deoxygenated by a nitrogen countercurrent contact tower, passed through a filter having a permeation particle size of 2 μm, and continuously fed to the polymerization reactor. Polymerization was carried out under the conditions of a liquid temperature of 155 ° C. and an average residence time in the reactor of 1.00 hour, the polymer solution was continuously discharged from the reactor, and then the polymer solution was passed through the gap between the heating plates to exchange heat and heated to 260 ° C. Then, it was cast and dropped into a devolatilization tank. The oxygen concentration in the supply liquid immediately before being supplied to the reactor was 0.2 ppm or less. The devolatilization tank maintained the internal pressure at 30 Torr and the temperature at 230 ° C. by vacuum devolatilization, and separated and recovered the unreacted monomer and the polymerization solvent.

【0072】重合体は脱揮タンク下部のギアポンプによ
り払い出し、押し出しダイスより押し出し、ストランド
をストランドカッターにより、ペレタイズしてペレット
として回収した。未反応単量体及び重合溶媒は、脱揮タ
ンクに接続された凝縮器により凝縮させて再使用用のリ
サイクル液としてリサイクルタンクに貯蔵し、リサイク
ル液として再使用する方法により、連続的に10日間の
運転を行い、重合体を製造した。その際、リサイクル液
の組成の変化に応じて、リサイクル液と新たな単量体の
混合比率を調製して、供給液の組成を実施例4と同等に
維持した。重合体の評価結果を、表1に示す。重合特性
は実施例4のものと比較して初期ΔYI、暴露後ΔYI
において優れている。
The polymer was discharged by a gear pump below the devolatilizing tank, extruded from an extrusion die, and the strand was pelletized by a strand cutter and collected as pellets. The unreacted monomer and polymerization solvent are condensed by a condenser connected to a devolatilization tank, stored in a recycling tank as a recycle liquid for reuse, and continuously reused as a recycle liquid for 10 days. Was carried out to produce a polymer. At that time, according to the change in the composition of the recycle solution, the mixing ratio of the recycle solution and the new monomer was adjusted, and the composition of the supply solution was maintained equal to that in Example 4. Table 1 shows the evaluation results of the polymers. Polymerization characteristics were ΔYI initial and ΔYI after exposure as compared to those of Example 4.
Excellent in

【0073】比較例1、2 実施例1における供給液組成を表1に示した様に変更し
た以外は、実施例1と同様な条件下で操作を行った。そ
の結果を表1に示す。重合特性は表1に示したように熱
分解性、シルバー発生率、初期および暴露後ΔYI値な
どが実施例1〜7と比較して劣っている。
Comparative Examples 1 and 2 The operation was carried out under the same conditions as in Example 1 except that the composition of the feed solution in Example 1 was changed as shown in Table 1. Table 1 shows the results. As shown in Table 1, the polymerization characteristics are inferior to Examples 1 to 7 in thermal decomposability, silver generation rate, ΔYI value at initial stage and after exposure, and the like.

【0074】実施例8〜12 反応器内滞留時間を変更した条件を検討するため、反応
器への供給液組成、反応条件を表2に示したように変更
した以外は実施例6と同様な操作を行った。連続的に1
0日間の安定運転を行い、重合体を製造しサンプリング
して重合体を得た。重合体の評価結果を表2に示す。重
合特性に優れるとともに、生産性の指標であるs/τは
0.263〜0.316hr-1の範囲であり、生産性に
優れる結果が得られた。
Examples 8 to 12 In order to examine the conditions in which the residence time in the reactor was changed, the same as in Example 6 except that the composition of the liquid to be fed to the reactor and the reaction conditions were changed as shown in Table 2. The operation was performed. 1 continuously
A stable operation was performed for 0 days, and a polymer was produced and sampled to obtain a polymer. Table 2 shows the evaluation results of the polymer. As well as excellent polymerization characteristics, s / τ as an index of productivity was in the range of 0.263 to 0.316 hr -1 , and a result excellent in productivity was obtained.

【0075】比較例3 反応器への供給液組成、反応条件を表2に示したように
変更した以外は、実施例8と同様な操作で重合反応を開
始した。反応開始後、反応器内重合体濃度が不安定とな
り、定常運転が困難となったため運転を中止した。
Comparative Example 3 A polymerization reaction was started in the same manner as in Example 8, except that the composition of the liquid supplied to the reactor and the reaction conditions were changed as shown in Table 2. After the start of the reaction, the operation was stopped because the polymer concentration in the reactor became unstable and the steady operation became difficult.

【0076】比較例4 反応器への供給液組成、反応条件を表2に示したように
変更した以外は、実施例8と同様な操作で重合反応を実
施した。連続的に10日間の安定運転を行い、重合体を
製造し、サンプリングした。重合体の評価結果を表2に
示す。重合体の熱分解性、シルバー発生率、初期ΔY
I、耐候試験暴露後ΔYI値が劣っていた。
Comparative Example 4 A polymerization reaction was carried out in the same manner as in Example 8, except that the composition of the liquid supplied to the reactor and the reaction conditions were changed as shown in Table 2. A stable operation was continuously performed for 10 days to produce a polymer, which was sampled. Table 2 shows the evaluation results of the polymer. Thermal decomposition of polymer, silver generation rate, initial ΔY
I, ΔYI value after exposure to weather test was inferior.

【0077】[0077]

【表1】 [Table 1]

【0078】[0078]

【表2】 [Table 2]

【0079】[0079]

【発明の効果】本発明は、耐熱分解性および光学的透明
性、耐候性に優れ、射出成形、押出成形等の熱成形用の
材料に適したメタクリル系重合体の安定且つ生産性に優
れた製造方法を提供したという効果を奏する。
According to the present invention, a methacrylic polymer which is excellent in thermal decomposition resistance, optical transparency and weather resistance, and is suitable for thermoforming materials such as injection molding and extrusion molding is excellent in stability and productivity. An effect is provided that a manufacturing method is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶液重合プロセスでの連続重合装置の
一例を示す工程図(前半部)である。
FIG. 1 is a process diagram (first half) showing an example of a continuous polymerization apparatus in a solution polymerization process of the present invention.

【図2】本発明の溶液重合プロセスでの連続重合装置の
一例を示す工程図(後半部)である。
FIG. 2 is a process diagram (second half) showing an example of a continuous polymerization apparatus in the solution polymerization process of the present invention.

【符号の説明】[Explanation of symbols]

1 新たな単量体の供給ライン 2 回収揮発分貯蔵タンク 3 回収揮発分供給ライン 4 定量ポンプ 5 精留塔 6 コンデンサー 7 高沸分払い出しライン 8 連鎖移動剤供給ライン 9 向流接触塔 10 窒素供給ライン 11 バッファータンク 12 遊離基発生剤供給ライン 13 フィルター 14 完全混合型反応器 15 払い出しポンプ 16 ポリマー加熱板 17 脱揮タンク 18 コンデンサー 19 回収揮発分送液ライン 20 真空ポンプ 21 ポリマー押し出しダイス 22 ストランドバス 23 ストランドカッター REFERENCE SIGNS LIST 1 New monomer supply line 2 Recovered volatiles storage tank 3 Recovered volatiles supply line 4 Metering pump 5 Rectification tower 6 Condenser 7 High boiling point discharge line 8 Chain transfer agent supply line 9 Countercurrent contact tower 10 Nitrogen supply Line 11 Buffer tank 12 Free radical generator supply line 13 Filter 14 Complete mixing type reactor 15 Dispense pump 16 Polymer heating plate 17 Devolatilization tank 18 Condenser 19 Recovered volatile liquid sending line 20 Vacuum pump 21 Polymer extrusion die 22 Strand bath 23 Strand cutter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08F 220/14 C08F 220/14 //(C08F 220/14 220:10) Fターム(参考) 4J011 AA04 AA05 AB02 AB05 AB08 BA01 BA06 BB01 BB04 HA03 HA10 HB02 HB05 HB06 HB10 HB12 HB22 4J015 AA01 BA03 4J100 AL03P AL03Q CA04 DA01 FA03 FA04 FA19 FA28 FA30 FA37 FA39 FA41 GB05 GD01──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08F 220/14 C08F 220/14 // (C08F 220/14 220: 10) F-term (Reference) 4J011 AA04 AA05 AB02 AB05 AB08 BA01 BA06 BB01 BB04 HA03 HA10 HB02 HB05 HB06 HB10 HB12 HB22 4J015 AA01 BA03 4J100 AL03P AL03Q CA04 DA01 FA03 FA04 FA19 FA28 FA30 FA37 FA39 FA41 GB05 GD01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 メタクリル酸メチル単量体、アルキル基
の炭素数が1〜8であるアクリル酸アルキルエステル単
量体および非重合性溶媒を、夫々下記式 0.70≦A/(A+B)≦0.998 0.001<C/(A+B+C)<0.050 (式中Aはメタクリル酸メチル単量体の重量部、Bはア
クリル酸アルキルエステル単量体の重量部、Cは非重合
性溶媒の重量部である。)を満足する重量部、反応器中
における半減期が5.55×10-5〜0.12時間であ
る遊離基発生剤、および連鎖移動剤を連続的に反応器に
供給し、反応器内を130〜170℃に保ち均一に攪拌
混合しながら、反応器中における反応液の平均滞留時間
を0.5〜1.9時間、遊離基発生剤の半減期と反応器
中の反応液の平均滞留時間の比を5.0×10-4〜0.
50、反応器中の重合体濃度(重量分率)を0.40〜
0.70、全供給液中の遊離基発生剤の発生遊離基換算
濃度(mol・g-1)と反応器中の重合液の重合体濃度
(重量分率)の比を0.5×10-6〜3.0×10-6
ol・g-1、そして重合体の数平均分子量を2.5×1
4〜12.0×104の範囲内に夫々制御して連続的に
重合反応させ、次いで反応器より反応液を連続的に払い
出した後、加熱減圧脱揮処理することを特徴とするメタ
クリル系重合体の製造方法。
1. A methyl methacrylate monomer, an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms and a non-polymerizable solvent are each represented by the following formula: 0.70 ≦ A / (A + B) ≦ 0.998 0.001 <C / (A + B + C) <0.05 (where A is the weight part of the methyl methacrylate monomer, B is the weight part of the alkyl acrylate monomer, C is the non-polymerizable solvent ), A free radical generator having a half-life in the reactor of 5.55 x 10 -5 to 0.12 hours, and a chain transfer agent are continuously fed into the reactor. While supplying and keeping the inside of the reactor at 130 to 170 ° C. while stirring and mixing uniformly, the average residence time of the reaction solution in the reactor is 0.5 to 1.9 hours, the half-life of the free radical generator and the reactor The ratio of the average residence time of the reaction solution in the mixture is from 5.0 × 10 −4 to 0.
50, the polymer concentration (weight fraction) in the reactor is 0.40 to
0.70, the ratio of the concentration of the generated free radicals (mol · g −1 ) of the free radical generator in the whole supply liquid to the polymer concentration (weight fraction) of the polymerization liquid in the reactor was 0.5 × 10 -6 to 3.0 x 10-6 m
ol · g −1 , and the number average molecular weight of the polymer is 2.5 × 1
Methacrylic acid characterized in that the polymerization reaction is controlled continuously within the range of 0 4 to 12.0 × 10 4 , the polymerization reaction is continuously performed, the reaction liquid is continuously discharged from the reactor, and then the mixture is heated and devolatilized under reduced pressure. A method for producing a polymer.
【請求項2】 供給液に使用するメタクリル酸メチル、
アクリル酸エステル、及び非重合性溶媒を蒸留精製し、
供給液中の溶存酸素含有量を1ppm以下とし、且つ透
過粒径2μm以下のフィルターを通過させることによ
り、固形状異物を除去することを特徴とする請求項1記
載のメタクリル系重合体の製造方法。
2. Methyl methacrylate used for the feed liquid,
Acrylic ester and non-polymerizable solvent are purified by distillation,
2. The method for producing a methacrylic polymer according to claim 1, wherein the solid foreign matter is removed by passing a dissolved oxygen content in the supply liquid of 1 ppm or less and passing through a filter having a transmission particle size of 2 μm or less. .
【請求項3】 非重合性溶媒が、エチルベンゼン、トル
エン、o−キシレン、m−キシレン、p−キシレンより
選ばれた一種以上の溶媒である請求項1または2記載の
メタクリル系重合体の製造方法。
3. The method for producing a methacrylic polymer according to claim 1, wherein the non-polymerizable solvent is at least one solvent selected from ethylbenzene, toluene, o-xylene, m-xylene, and p-xylene. .
JP22266698A 1998-08-06 1998-08-06 Continuous production of methacrylic polymer Pending JP2000053709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22266698A JP2000053709A (en) 1998-08-06 1998-08-06 Continuous production of methacrylic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22266698A JP2000053709A (en) 1998-08-06 1998-08-06 Continuous production of methacrylic polymer

Publications (1)

Publication Number Publication Date
JP2000053709A true JP2000053709A (en) 2000-02-22

Family

ID=16786034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22266698A Pending JP2000053709A (en) 1998-08-06 1998-08-06 Continuous production of methacrylic polymer

Country Status (1)

Country Link
JP (1) JP2000053709A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074822A1 (en) * 2001-03-15 2002-09-26 Toagosei Co., Ltd. Process for producing copolymer
JP2003075648A (en) * 2001-09-07 2003-03-12 Denki Kagaku Kogyo Kk Light guide plate
WO2009125764A1 (en) 2008-04-08 2009-10-15 住友化学株式会社 Methacrylic resin composition for hot plate melt-bonding, use of the same for hot plate melt-bonding, and melt-bonding method
WO2013161265A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition
WO2013161266A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition
KR20170124547A (en) * 2015-02-27 2017-11-10 주식회사 쿠라레 Process for producing (meth)acrylic resin composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074822A1 (en) * 2001-03-15 2002-09-26 Toagosei Co., Ltd. Process for producing copolymer
US7163992B2 (en) 2001-03-15 2007-01-16 Toagosei Co., Ltd. Methods for manufacturing a copolymer with a high yield by reacting a vinyl monomer and a macromonomer
JP2003075648A (en) * 2001-09-07 2003-03-12 Denki Kagaku Kogyo Kk Light guide plate
WO2009125764A1 (en) 2008-04-08 2009-10-15 住友化学株式会社 Methacrylic resin composition for hot plate melt-bonding, use of the same for hot plate melt-bonding, and melt-bonding method
WO2013161265A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition
WO2013161266A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition
CN104271663A (en) * 2012-04-27 2015-01-07 株式会社可乐丽 (meth) acrylic resin composition
JPWO2013161265A1 (en) * 2012-04-27 2015-12-21 株式会社クラレ (Meth) acrylic resin composition
JPWO2013161266A1 (en) * 2012-04-27 2015-12-21 株式会社クラレ (Meth) acrylic resin composition
KR20170124547A (en) * 2015-02-27 2017-11-10 주식회사 쿠라레 Process for producing (meth)acrylic resin composition
KR102475938B1 (en) 2015-02-27 2022-12-08 주식회사 쿠라레 Process for producing (meth)acrylic resin composition

Similar Documents

Publication Publication Date Title
JP3628518B2 (en) Methacrylic polymer and process for producing the same
JP3395291B2 (en) Method for producing methacrylic polymer
KR100427376B1 (en) Process for Preparing Polymer
CN1137161C (en) Process for producing copolymer
US5599888A (en) Process for preparing methyl methacrylate polymer
JP2000506918A (en) Multi-step method for producing polymethacrylate molding material with high heating dimensional stability
CN86104340A (en) The method for preparing transparency and heat-proof styrene type multipolymer
JPH03111408A (en) Preparation of methacrylic polymer
JP2000053709A (en) Continuous production of methacrylic polymer
JP2000053708A (en) Production of methacrylic polymer with excellent production stability
JP3801124B2 (en) Method for producing methacrylic polymer
JP3937111B2 (en) Method for producing polymer
JP3565229B2 (en) Method for producing methacrylic resin
JP2004211105A (en) Method of manufacturing methacrylic resin
CN112812219B (en) Methacrylic resin and method for producing same, methacrylic resin composition, molded article, and automobile part
JP2001342263A (en) Resin molding for optical material and light guide plate comprising the same
JP3636554B2 (en) Method for removing impurities in continuous solution polymerization
JPS6357613A (en) Methacrylate resin and its production
JP2009215367A (en) Method for producing methacrylic polymer
JP3628124B2 (en) Method for removing impurities in continuous bulk polymerization
JP3779777B2 (en) Method for producing methacrylic resin
JPH10152505A (en) Production of styrene-methyl methacrylate-based polymer
JP3779776B2 (en) Method for producing methacrylic resin with excellent optical quality
JP3319484B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JPH07206906A (en) Methacrylic resin having resistance to thermal decomposition and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050803

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050803

RD04 Notification of resignation of power of attorney

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20071001

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408