JP2000053708A - Production of methacrylic polymer with excellent production stability - Google Patents

Production of methacrylic polymer with excellent production stability

Info

Publication number
JP2000053708A
JP2000053708A JP22265298A JP22265298A JP2000053708A JP 2000053708 A JP2000053708 A JP 2000053708A JP 22265298 A JP22265298 A JP 22265298A JP 22265298 A JP22265298 A JP 22265298A JP 2000053708 A JP2000053708 A JP 2000053708A
Authority
JP
Japan
Prior art keywords
reactor
polymer
polymerization
weight
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22265298A
Other languages
Japanese (ja)
Inventor
Tetsuo Nakamoto
哲生 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP22265298A priority Critical patent/JP2000053708A/en
Publication of JP2000053708A publication Critical patent/JP2000053708A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate

Abstract

PROBLEM TO BE SOLVED: To stably obtain the subject methacrylic polymer that has excellent thermal stability and optical properties in high productivity by continuous solution polymerization under specific conditions using specific amounts of monomers, a specific amount of non-polymerizable solvent and a specific free-radical initiator. SOLUTION: (A) Methyl methacrylate monomer, (B) an acrylic alkyl ester monomer of a 1-8 alkyl carbon atoms and (C) a non-polymerizable solvent are purified by distillation so that the distillate mixture satisfies formula I and formula II [A is the parts by weight of the component A, B is the parts by weight of the component B and C is the parts by weight of the component C]. Then, the feed solution comprising the distillate mixture, (D) a free-radical initiator with a half-life of 5.55×10-5-2.30 hours and (E) a chain transfer agent is brought into contact with gaseous nitrogen counter-currently to reduce the dissolved oxygen concentration less than 1 ppm, then passed through a filter with a permeation particle size of <=2 μm to remove solid foreign substances. Finally, the purified feed solution is continuously fed into the reactor to effect continuous polymerization reaction, as the temperature in the reactor, the mean residence time, the polymer concentration and the like are controlled, then the reaction mixture is driven away and treated under reduced pressure to remove the volatile components.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学的透明性、耐
候性に優れた、射出成形、押出成形等の熱成形用の材料
に適したメタクリル系重合体の生産性に優れた製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a methacrylic polymer which is excellent in optical transparency and weather resistance and is suitable for a material for thermoforming such as injection molding and extrusion molding and has excellent productivity. .

【0002】[0002]

【従来の技術】メチルメタクリレート重合体またはメチ
ルメタクリレートを主成分とするメタクリル系共重合体
からなるアクリル樹脂は、その卓越した透明性、耐候
性、そして良好な機械的性質、表面硬度、加工性並びに
成形品における外観の美麗さ等によって、例えば、各種
光学レンズ、光ディスク、導光板等の光学用途、照明器
具、看板、各種装飾品、銘板、テーブルウェアー、自動
車用テールランプ等の外装部品やエクステリア用品等の
屋外用途に広く使用されている。
2. Description of the Related Art An acrylic resin comprising a methyl methacrylate polymer or a methacrylic copolymer containing methyl methacrylate as a main component has excellent transparency, weather resistance, and good mechanical properties, surface hardness, workability, and the like. Depending on the beauty of the appearance of the molded product, for example, optical applications such as various optical lenses, optical disks, light guide plates, lighting equipment, signboards, various decorative products, nameplates, tableware, exterior parts such as tail lamps for automobiles, exterior products, etc. Widely used for outdoor applications.

【0003】これらのメタクリル系重合体のうち一般に
塊状重合、溶液重合法により製造されたメタクリル系重
合体は、懸濁重合法により製造されたメタクリル系重合
体と比較して、不純物が少なく光学特性は良好な重合体
を製造することが可能であるだけでなく、生産性に優れ
た連続プロセスが可能である。このため、連続塊状重
合、連続溶液重合法は特に高品質な重合体を高生産性条
件下に製造可能なプロセスとして注目され、技術の高度
化が求められている。
[0003] Of these methacrylic polymers, methacrylic polymers generally produced by bulk polymerization and solution polymerization have less impurities and optical properties than methacrylic polymers produced by suspension polymerization. Not only can produce a good polymer, but also can provide a continuous process with excellent productivity. For this reason, continuous bulk polymerization and continuous solution polymerization are particularly attracting attention as processes capable of producing high-quality polymers under high productivity conditions, and advanced techniques are required.

【0004】一方、そのメタクリル系樹脂を射出成形に
より成形する場合に発生する問題点としては、成形品の
銀状痕(シルバーストリークス)や、気泡の発生、耐熱
変形性の低下、発生ガスによる作業環境の悪化等があっ
た。これらの問題は一般に成形時の溶融樹脂の温度を低
下させることにより、抑制されることが多いが、その場
合には溶融流動性の低下により大型や薄肉形状の成形品
の成形が困難になったり、成形品の残留歪みが製品品質
を低下させる等の理由により、その用途が制限される場
合があった。
On the other hand, problems that occur when the methacrylic resin is molded by injection molding include silver marks (silver streaks) of molded products, generation of bubbles, reduction in heat-resistant deformation, and generation of gas. The work environment deteriorated. In general, these problems are often suppressed by lowering the temperature of the molten resin at the time of molding, but in that case, molding of large or thin-walled molded products becomes difficult due to a decrease in melt fluidity. In some cases, the use of the molded product is limited due to reasons such as a decrease in product quality due to residual distortion of the molded product.

【0005】これらの問題は、メタクリル系重合体で
は、熱分解温度と重合体が成形加工に必要な溶融流動性
を示す温度が近接しているために、成形時に重合体の分
解反応が生じることに起因するメタクリル樹脂固有の問
題点と考えられている。また、メタクリル系樹脂は他樹
脂と比較して光学特性、耐候性に優れるものの、成形時
の熱履歴による黄変、屋外暴露による黄変の傾向を示す
ことは明らかであり、光学特性、耐候性の改良された重
合体を製造できる製造方法の開発は尚、重要な課題であ
る。
[0005] These problems are caused by the fact that in the case of methacrylic polymers, the decomposition reaction of the polymer occurs during molding because the thermal decomposition temperature is close to the temperature at which the polymer exhibits the melt fluidity required for molding. It is considered to be a problem inherent to the methacrylic resin caused by the above. Although methacrylic resins have better optical properties and weather resistance than other resins, it is clear that they show yellowing due to heat history during molding and yellowing due to outdoor exposure. Development of a production method capable of producing an improved polymer is still an important issue.

【0006】従来、連続重合法において重合体の熱安定
性および光学特性改良法として、塊状重合(特開昭54
−42035号公報)、溶液重合法(特開昭63−57
613号公報)における種々の製造技術が提案されてい
る。特開昭54−42035号公報においては、未反応
揮発分を原料として再使用する原料サイクル型プロセス
において、回収揮発成分から低重合度重合体を除去し、
且つ、不純物濃度を一定範囲に制御することにより、重
合体の光学特性を改良する技術が開示されている。ま
た、特開昭63−57613号公報には、10〜25重
量%の不活性重合溶媒を含有する供給液に不活性ガスを
導入して溶存酸素濃度を1ppm以下にした後、0.5
μm以下のフィルタ−でろ過して供給し、特定の条件で
重合させる方法が提案されている。
Conventionally, as a method for improving the thermal stability and optical properties of a polymer in a continuous polymerization method, bulk polymerization (JP-A-54
-42035), a solution polymerization method (JP-A-63-57).
613) has been proposed. JP-A-54-42035 discloses that in a raw material cycle type process in which unreacted volatiles are reused as a raw material, a low-polymerization degree polymer is removed from recovered volatile components,
In addition, there is disclosed a technique for improving the optical characteristics of a polymer by controlling the impurity concentration within a certain range. Japanese Patent Application Laid-Open No. 63-57613 discloses that an inert gas is introduced into a feed solution containing 10 to 25% by weight of an inert polymerization solvent to reduce the dissolved oxygen concentration to 1 ppm or less.
A method has been proposed in which the mixture is supplied after being filtered through a filter of μm or less and polymerized under specific conditions.

【0007】さらに、特開平3−111408号公報に
は、連続塊状重合において反応器にモノマー混合物を供
給するに際し、モノマーに不活性ガスを導入したモノマ
ー中の溶存酸素を1ppm以下とした後、反応器に供給
し特定の条件下に安定に連続重合させる技術が開示され
ている。しかし、重合体の熱分解性については記載され
ていない。
Further, Japanese Patent Application Laid-Open No. 3-111408 discloses that when supplying a monomer mixture to a reactor in continuous bulk polymerization, the dissolved oxygen in the monomer obtained by introducing an inert gas into the monomer is reduced to 1 ppm or less. There has been disclosed a technique in which the mixture is supplied to a vessel to stably and continuously polymerize under specific conditions. However, there is no description about the thermal decomposability of the polymer.

【0008】特公平8−19193号公報には、特定条
件下の連続塊状重合法で製造され、二重結合末端含有量
が特定範囲内である重合体が、耐熱分解性、光学特性に
優れることが開示されている。しかし、同号公報中に
は、重合体の耐熱分解性と重合時の条件については開示
されていない。
Japanese Patent Publication No. Hei 8-19193 discloses that a polymer produced by a continuous bulk polymerization method under specific conditions and having a double bond terminal content within a specific range is excellent in thermal decomposition resistance and optical properties. Is disclosed. However, the publication does not disclose the thermal decomposition resistance of the polymer and the conditions at the time of polymerization.

【0009】一方、連続的重合方法における生産性は、
重合設備の規模と、反応機内での平均滞留時間、および
反応機最終出口における単量体の反応転化率が重要であ
り、平均滞留時間が短く、また反応機最終出口における
単量体の反応転化率が高いほど生産性に優れた製造方法
と言い得る。また、反応器最終出口における重合体濃度
が一定の条件で比較すると平均滞留時間が短いほど、重
合設備の規模を小さくすることができ生産性に優れた製
造方法と言える。
On the other hand, the productivity in the continuous polymerization method is as follows:
The scale of the polymerization equipment, the average residence time in the reactor, and the reaction conversion of the monomer at the final outlet of the reactor are important, the average residence time is short, and the reaction conversion of the monomer at the final exit of the reactor is important. The higher the rate, the better the productivity. Further, when the polymer concentration at the final outlet of the reactor is compared under a constant condition, it can be said that the shorter the average residence time, the smaller the scale of the polymerization equipment and the more excellent the productivity.

【0010】従って、反応器最終出口での重合体濃度s
(重量分率)と反応機内平均滞留時間τ(時間)の比の
値s/τは、重合反応器の規模(反応機内反応液の全重
量)が同一の条件下での生産性を表す指標である。一般
に、重合反応の形式、組成、重合転化率が近似の条件で
は、反応器内滞留時間、重合体の熱安定性は相反する傾
向を示すことが知られているが、生産性と重合体の熱安
定性のバランスを改良するための方法については知見が
少なく重要な技術的課題である。
Therefore, the polymer concentration s at the final outlet of the reactor s
The value s / τ of the ratio between the (weight fraction) and the average residence time τ (time) in the reactor is an index representing the productivity under the same conditions of the polymerization reactor (the total weight of the reaction solution in the reactor). It is. In general, it is known that the polymerization reaction type, composition, and polymerization conversion rate under similar conditions, the residence time in the reactor, and the thermal stability of the polymer tend to be contradictory. Methods for improving the balance of thermal stability are important technical issues with little knowledge.

【0011】例えば、特公平8−19193号公報中実
施例、比較例には、反応器内滞留時間が5、6.7時
間、重合率46〜59%の例が開示されているが、反応
器内での重合速度が異なる一般的な条件下で熱安定性を
制御するための方法については記載されていない。ま
た、生産性の指標であるs/τの値は実施例中0.11
(1/時間)が最大である。同号公報中には、完全混合
重合反応器を用いた連続重合プロセスにおいて溶存酸素
濃度、微小異物含有量の制御により、重合体の着色が低
減されることが示されているが、重合過程での生産性と
の関係については記載されていない。
For example, Examples and Comparative Examples in JP-B-8-19193 disclose examples in which the residence time in the reactor is 5,6.7 hours and the polymerization rate is 46 to 59%. No method is described for controlling thermal stability under general conditions with different polymerization rates in the vessel. The value of s / τ, which is an index of productivity, is 0.11 in the examples.
(1 / hour) is the largest. In the same publication, it is shown that in a continuous polymerization process using a complete mixed polymerization reactor, the coloring of the polymer is reduced by controlling the dissolved oxygen concentration and the content of minute foreign substances. There is no description of its relationship to productivity.

【0012】また、溶媒の濃度として適する範囲とし
て、10〜25重量%、実施例としては、溶媒としてエ
チルベンゼン20重量%が挙げられている。溶媒量が1
0重量%未満であれば、重合反応系の粘度が高く、重合
系の安定制御が困難であると記載されているが、溶媒の
含有量以外の因子については記載されていない。また、
重合条件と重合体の熱安定性の関係についても記載され
ていない。
Further, a suitable range for the concentration of the solvent is 10 to 25% by weight, and as an example, 20% by weight of ethylbenzene is mentioned as the solvent. 1 solvent
If the amount is less than 0% by weight, it is described that the viscosity of the polymerization reaction system is high and it is difficult to control the stability of the polymerization system. However, there is no description about factors other than the content of the solvent. Also,
It also does not describe the relationship between the polymerization conditions and the thermal stability of the polymer.

【0013】一方、特開平8−253507号公報に
は、熱成形時におけるシルバーストリークスや発泡、着
色および臭気等の発生の少ない、耐熱分解性に優れたメ
タクリル樹脂の製造方法として、ラジカル開始剤の半減
期、平均滞留時間、ラジカル開始剤濃度、連鎖移動剤濃
度、モノマー転化率を特定範囲内とした溶媒量29〜5
重量%である1段完全混合槽を使用した製造方法が開示
されている。
On the other hand, Japanese Patent Application Laid-Open No. Hei 8-253507 discloses a method for producing a methacrylic resin which is less likely to generate silver streaks, foaming, coloring and odor during thermoforming and which is excellent in thermal decomposition resistance, as a radical initiator. The amount of the solvent 29 to 5 with the half-life, average residence time, radical initiator concentration, chain transfer agent concentration and monomer conversion of
A production method using a one-stage complete mixing tank, which is a percentage by weight, is disclosed.

【0014】そこでは溶媒量の限定理由として、5重量
%未満では重合の自動促進効果による重合速度の異常加
速化現象が生じやすく、安定に重合が維持できなくなる
と記載され、溶媒が重合安定性に寄与すると記載されて
いるが、重合を安定に制御するための溶媒量以外の要因
については全く記載されていない。また、実施例より計
算されるs/τの値の最大値は0.132(1/時間)
である。
[0014] As the reason for limiting the amount of the solvent, it is described that if the amount is less than 5% by weight, the phenomenon of abnormal acceleration of the polymerization rate due to the effect of automatically promoting the polymerization is likely to occur, and the polymerization cannot be maintained stably. However, there is no description other than the amount of solvent for stably controlling the polymerization. The maximum value of s / τ calculated from the embodiment is 0.132 (1 / hour).
It is.

【0015】以上例示したようにs/τの値は小さい程
工業的価値が高いことは自明であるにもかかわらず従来
開示されている範囲では、熱安定性を実用可能レベルに
保つ為に、s/τが一定範囲値以下に限られていたとい
うことができる。一方、熱安定性のレベルに制限が無い
場合には生産性への制限が少ないと考えられ、s/τが
大きく、生産性に優れた連続塊状重合法が、特開平7−
126308号公報に開示されている。同号公報中に
は、完全混合型反応槽内を満液状態とし、実質的に熱の
出入りのない断熱状態とし、特定条件で連続塊状重合す
る製造方法が開示され、実施例中に、s/τが0.33
〜1.34(1/時間)と従来より高生産性の製造条件
が記載され、重合安定性についての記載は見られるもの
の重合体の熱安定性については全く記載されず、重合体
色度についても重合反応との具体的関係は明らかにされ
ていない。
As exemplified above, it is obvious that the smaller the value of s / τ is, the higher the industrial value is, but in order to keep the thermal stability at a practicable level within the conventionally disclosed range, It can be said that s / τ was limited to a certain range value or less. On the other hand, when there is no restriction on the level of thermal stability, it is considered that there is little restriction on the productivity, and a continuous bulk polymerization method having a large s / τ and excellent productivity is disclosed in
No. 126308. The same publication discloses a production method in which the inside of a complete mixing type reaction tank is filled with water, and is in an adiabatic state where heat does not flow in and out, and continuous bulk polymerization is performed under specific conditions. / Τ is 0.33
製造 1.34 (1 / hour), which describes the production conditions of higher productivity than before, and the description of polymerization stability is seen, but the thermal stability of the polymer is not described at all, and the chromaticity of the polymer is not described. However, the specific relationship with the polymerization reaction has not been clarified.

【0016】以上のように、耐熱分解性に優れたメタク
リル系重合体を連続溶液重合法によって安定に製造する
ための製造技術については、生産性の制限の大きい限ら
れた条件範囲について知られるのみであった。特にs/
τが0.2(1/時間)以上の高生産性を有し、且つ熱
安定性に優れた重合体を製造するための連続溶液重合技
術は得られていないのが現状であった。したがって、光
学特性、耐候性および熱安定性において優れた高品質の
重合体を従来より高い生産性で製造することが可能な連
続溶液重合技術は未だ未確立であり、その確立が強く望
まれていた。
As described above, the production technology for stably producing a methacrylic polymer having excellent thermal decomposition resistance by a continuous solution polymerization method is known only in a limited condition range in which productivity is largely limited. Met. Especially s /
At present, a continuous solution polymerization technique for producing a polymer having a high productivity of τ of 0.2 (1 / hour) or more and having excellent thermal stability has not been obtained. Therefore, a continuous solution polymerization technique capable of producing a high quality polymer excellent in optical properties, weather resistance and thermal stability with higher productivity than before has not yet been established, and its establishment is strongly desired. Was.

【0017】[0017]

【発明が解決しようとする課題】本発明は、上記した要
望に応えるものであって、光学特性、耐候性に優れたメ
タクリル系重合体を高い生産性で製造可能にする連続溶
液重合法を提供することを課題とするものである。
SUMMARY OF THE INVENTION The present invention meets the above-mentioned demands and provides a continuous solution polymerization method capable of producing a methacrylic polymer excellent in optical properties and weather resistance with high productivity. The task is to do so.

【0018】[0018]

【課題を解決するための手段】本発明者らは上記課題を
解決する方法を見いだすべく鋭意検討した結果、特定量
の単量体、特定量の非重合性溶媒、特定範囲の半減期を
有する遊離基発生剤を用いた、特定条件下の連続溶液重
合法により、熱安定性、光学特性が優れたメタクリル系
重合体を従来より高い生産性で安定的に製造できること
を見出し本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to find a method for solving the above-mentioned problems, and have found that they have a specific amount of monomer, a specific amount of non-polymerizable solvent, and a specific range of half-life. Using a free radical generator, a continuous solution polymerization method under specific conditions, it has been found that a methacrylic polymer having excellent heat stability and optical properties can be stably produced with higher productivity than ever before, and the present invention has been completed. Reached.

【0019】即ち、本発明は、メタクリル酸メチル単量
体、アルキル基の炭素数が1〜8であるアクリル酸アル
キルエステル単量体および非重合性溶媒を、夫々下記式 0.70≦A/(A+B)≦0.998 0.050≦C/(A+B+C)≦0.100 (式中Aはメタクリル酸メチル単量体の重量部、Bはメ
タクリル酸アルキルエステル単量体の重量部、Cは非重
合性溶媒の重量部である。)を満足する重量部有する蒸
留精製された混合物と、反応器中における半減期が5.
55×10-5〜2.30時間である遊離基発生剤と、連
鎖移動剤とからなる供給液を気体窒素と向流接触させる
ことにより、溶存酸素含有量を1ppm以下とし、且つ
透過粒径2μm以下のフィルターを通過させることによ
り、固形状異物を除去した後、連続的に反応器に供給
し、反応器内を130〜170℃に保ち均一に攪拌混合
しながら、反応器中における反応液の平均滞留時間を
0.3〜1.9時間、遊離基発生剤の半減期と反応器中
の反応液の平均滞留時間の比を5.0×10-4〜2.5
0、反応器中の重合体濃度(重量分率)を0.40〜
0.70、全供給液中の遊離基発生剤の発生遊離基換算
濃度(mol・g-1)と反応器中の重合液のポリマー濃
度(重量分率)の比を0.5×10-6〜6.0×10-6
mol・g-1、そして重合体の数平均分子量を2.5×
104〜15.0×104の範囲内に夫々制御して連続的
に重合反応させ、次いで反応器より反応液を連続的に払
い出し減圧脱揮処理することを特徴とするメタクリル系
重合体の製造方法、
That is, according to the present invention, a methyl methacrylate monomer, an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms and a non-polymerizable solvent are each represented by the following formula: 0.70 ≦ A / (A + B) ≦ 0.998 0.050 ≦ C / (A + B + C) ≦ 0.100 (where A is parts by weight of methyl methacrylate monomer, B is parts by weight of alkyl methacrylate monomer, and C is (A part by weight of a non-polymerizable solvent), and a half-life in a reactor of 5.
The dissolved oxygen content is reduced to 1 ppm or less, and the permeation particle size is reduced by bringing a feed solution comprising a free radical generator, which is 55 × 10 −5 to 2.30 hours, and a chain transfer agent into countercurrent contact with gaseous nitrogen. After removing solid foreign matter by passing through a filter of 2 μm or less, the reaction liquid in the reactor is continuously supplied to the reactor, and uniformly stirred and mixed while keeping the inside of the reactor at 130 to 170 ° C. And the ratio of the half-life of the free radical generator to the average residence time of the reaction solution in the reactor is from 5.0 × 10 -4 to 2.5.
0, the polymer concentration (weight fraction) in the reactor is 0.40 to 0.40.
0.70, the ratio of the concentration of the generated free radicals (mol · g −1 ) of the free radical generator in the whole supply liquid to the polymer concentration (weight fraction) of the polymerization liquid in the reactor is 0.5 × 10 − 6 to 6.0 × 10 -6
mol · g −1 , and the number average molecular weight of the polymer is 2.5 ×
A methacrylic polymer characterized in that the polymerization reaction is continuously controlled in the range of 10 4 to 15.0 × 10 4 , and then the reaction solution is continuously discharged from the reactor and subjected to devolatilization under reduced pressure. Production method,

【0020】及び用いる非重合性溶媒が、エチルベンゼ
ン、トルエン、o−キシレン、m−キシレン、p−キシ
レンより選ばれた一種以上の溶媒である上記のメタクリ
ル系重合体の製造方法を提供するものである。
And a method for producing the above methacrylic polymer, wherein the non-polymerizable solvent used is at least one solvent selected from ethylbenzene, toluene, o-xylene, m-xylene and p-xylene. is there.

【0021】以下本発明を詳しく説明する。本発明のメ
タクリル系重合体の製造方法は、メタクリル酸メチル単
量体、アルキル基の炭素数が1〜8であるアクリル酸ア
ルキルエステル単量体および非重合性溶媒を、夫々下記
式 0.70≦A/(A+B)≦0.998 0.050≦C/(A+B+C)≦0.100 (式中Aはメタクリル酸メチル単量体の重量部、Bはア
クリル酸アルキルエステル単量体の重量部、Cは非重合
性溶媒の重量部である。)を満足する重量部有する蒸留
精製された原料と、反応器中における半減期が5.55
×10-5〜0.60時間である遊離基発生剤と、連鎖移
動剤とからなる供給液を気体窒素と向流接触させること
により、溶存酸素含有量を1ppm以下とし、且つ透過
粒径2μm以下のフィルターを通過させることにより、
固形状異物を除去した後、連続的に反応器に供給するこ
とにより実施される。
Hereinafter, the present invention will be described in detail. In the method for producing a methacrylic polymer of the present invention, a methyl methacrylate monomer, an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms, and a non-polymerizable solvent are each represented by the following formula 0.70 ≦ A / (A + B) ≦ 0.998 0.050 ≦ C / (A + B + C) ≦ 0.100 (where A is the weight part of the methyl methacrylate monomer, B is the weight part of the alkyl acrylate monomer) , C are parts by weight of the non-polymerizable solvent), and a half-life in the reactor of 5.55 in the reactor.
× a 10 -5 to 0.60 hours at a free radical generator, by a feed consisting of a chain transfer agent contacting gaseous nitrogen countercurrent, the dissolved oxygen content and 1ppm or less, and transmittance particle size 2μm By passing through the following filters,
After the removal of the solid foreign matter, it is carried out by continuously feeding the reactor.

【0022】反応器への供給液中のアルキル基の炭素数
が1〜8であるアクリル酸アルキルエステル単量体は製
造される重合体の耐熱分解性、溶融流動性を付与する為
の成分である。
The alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms in the liquid supplied to the reactor is a component for imparting heat decomposition resistance and melt fluidity of the polymer to be produced. is there.

【0023】供給液の組成は、Aをメタクリル酸メチル
単量体の重量部、Bをアルキル基の炭素数が1〜8であ
るアクリル酸アルキルエステル単量体の重量部とすると
き、 0.70≦A/(A+B)≦0.998 を満足することが必要である。上記のA/(A+B)は
得られる供給液中の単量体成分全体に占めるメタクリル
酸メチル単量体の割合を表わし、A/(A+B)の値が
0.70未満であると、得られる重合体のメタクリル系
重合体としての特徴が損なわれるため好ましくなく、一
方、A/(A+B)の値が0.998を越えると、アル
キル酸エステル単量体を共重合させる効果が少なく好ま
しくない。
The composition of the feed solution is as follows: when A is a part by weight of a methyl methacrylate monomer and B is a part by weight of an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms. It is necessary to satisfy 70 ≦ A / (A + B) ≦ 0.998. The above A / (A + B) represents the ratio of the methyl methacrylate monomer to the total monomer components in the obtained feed solution, and is obtained when the value of A / (A + B) is less than 0.70. Since the characteristics of the polymer as a methacrylic polymer are impaired, it is not preferable. On the other hand, if the value of A / (A + B) exceeds 0.998, the effect of copolymerizing the alkyl ester monomer is small, which is not preferable.

【0024】アルキル基の炭素数が1〜8であるアクリ
ル酸アルキルエステルの例としては、アクリル酸メチ
ル、アクリル酸エチル、アクリル酸n−プロピル、アク
リル酸sec−プロピル、アクリル酸tert−プロピ
ル、アクリル酸n−ブチル、アクリル酸sec−ブチ
ル、アクリル酸tert−ブチル、アクリル酸n−プロ
ピル、アクリル酸sec−プロピル等が挙げられる。こ
れらのうち、アクリル酸メチル、アクリル酸エチルが共
重合による耐熱分解性、溶融流動性改良効果の点で特に
好ましい。
Examples of the alkyl acrylate having an alkyl group having 1 to 8 carbon atoms include methyl acrylate, ethyl acrylate, n-propyl acrylate, sec-propyl acrylate, tert-propyl acrylate, and acryl acrylate. N-butyl acid, sec-butyl acrylate, tert-butyl acrylate, n-propyl acrylate, sec-propyl acrylate and the like. Of these, methyl acrylate and ethyl acrylate are particularly preferred in view of the effects of improving the thermal decomposition resistance and the melt fluidity by copolymerization.

【0025】本発明において、反応器への供給液中の非
重合性溶媒は、重合体の熱安定性改良及び重合反応の安
定制御の為に必要な成分であって、単量体成分とラジカ
ル重合における共重合性を有しない有機化合物である。
本発明に使用する非重合性溶媒の具体例としては、トル
エン、o−キシレン、m−キシレン、p−キシレン、エ
チルベンゼン等の芳香族化合物、オクタン、デカン、シ
クロヘキサン等の脂肪族化合物、デカリン等の脂環族化
合物、酢酸ブチル、酢酸ペンチル等のエステル化合物、
メタノール、エタノール等のアルコール類等が挙げられ
る。特に重合安定性の観点からは、トルエン、o−キシ
レン、m−キシレン、p−キシレン、エチルベンゼンが
好ましい。
In the present invention, the non-polymerizable solvent in the liquid supplied to the reactor is a component necessary for improving the thermal stability of the polymer and controlling the stability of the polymerization reaction. An organic compound having no copolymerizability in polymerization.
Specific examples of the non-polymerizable solvent used in the present invention include toluene, o-xylene, m-xylene, p-xylene, aromatic compounds such as ethylbenzene, octane, decane, aliphatic compounds such as cyclohexane, decalin and the like. Alicyclic compounds, butyl acetate, ester compounds such as pentyl acetate,
Examples include alcohols such as methanol and ethanol. Particularly, from the viewpoint of polymerization stability, toluene, o-xylene, m-xylene, p-xylene and ethylbenzene are preferred.

【0026】本発明において、反応器への供給液中のA
をメタクリル酸メチル単量体の重量部、Bをアルキル基
の炭素数が1〜8であるアクリル酸アルキルエステル単
量体の重量部、Cを非重合性溶媒の重量部とするとき、 0.050≦C/(A+B+C)≦0.100 好ましくは、 0.055≦C/(A+B+C)≦0.095 であることが必要である。C/(A+B+C)の値が
0.100を越えると、重合体の光学的透明性、耐候
性、熱安定性が低下する傾向が現れ好ましくない。一
方、C/(A+B+C)の値が0.050未満である
と、安定に重合反応させ得る条件の巾が狭くなり好まし
くない。
In the present invention, A in the feed to the reactor
Is a weight part of a methyl methacrylate monomer, B is a weight part of an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms, and C is a weight part of a non-polymerizable solvent. 050 ≦ C / (A + B + C) ≦ 0.100 Preferably, 0.055 ≦ C / (A + B + C) ≦ 0.095. If the value of C / (A + B + C) exceeds 0.100, the optical transparency, weather resistance and thermal stability of the polymer tend to decrease, which is not preferable. On the other hand, when the value of C / (A + B + C) is less than 0.050, the range of conditions under which the polymerization reaction can be stably performed becomes narrow, which is not preferable.

【0027】本発明において、反応器への供給される遊
離基発生剤は、アクリル系重合体のラジカル重合の開始
反応を生じる成分であって、重合反応器中における半減
期が5.55×10-5〜2.3時間であることが必要で
ある。半減期が5.55×10-5時間未満であると、同
一の生産レート条件での比較において得られる重合体の
熱安定性が低下する傾向が現れ好ましくなく、一方、半
減期が2.3時間を越えると重合反応の安定制御性が低
下する傾向が現れ好ましくない。
In the present invention, the free radical generator supplied to the reactor is a component which initiates the radical polymerization of the acrylic polymer, and has a half life of 5.55 × 10 5 in the polymerization reactor. -5 to 2.3 hours. If the half-life is less than 5.55 × 10 −5 hours, the thermal stability of the polymer obtained under the same production rate conditions tends to decrease, which is not preferable, while the half-life is 2.3. If the time is exceeded, the stability controllability of the polymerization reaction tends to decrease, which is not preferable.

【0028】本発明に用いられる遊離基発生剤の例とし
ては、例えば、ジ−tert−ブチルパーオキシド、ジ
−クミルパーオキシド、メチルエチルケトンパーオキシ
ド、ジ−tert−ブチルパーフタレート、ジ−ter
t−ブチルパーベンゾエート、tert−ブチルパーア
セテート、2,5−ジメチル−2,5−ジ(tert−
ブチルパーオキシ)ヘキサン、1,1−ビス(t−ブチ
ルパーオキシ)−3,3,5−トリメチルシクロヘキサ
ン、ジ−tert−アミルパーオキシド、ベンゾイルパ
ーオキシド、クメンハイドロパーオキシド及びラウリル
パーオキシドなどの有機過酸化物、アゾビスイソブタノ
ールジアセテート、1、1’−アゾビスシクロヘキサン
カルボニトリル、2−フェニルアゾ2,4−ジメチル−
4−メトキシバレロニトリル、2−シアノ−2,2プロ
ピルアゾホルムアシド及び2,2’−アゾビスイソブチ
ロニトリル等のアゾ系化合物等が挙げられる。これらは
単独または二種以上組み合わせて使用できる。
Examples of the free radical generator used in the present invention include, for example, di-tert-butyl peroxide, di-cumyl peroxide, methyl ethyl ketone peroxide, di-tert-butyl perphthalate, di-tert-butyl peroxide.
t-butyl perbenzoate, tert-butyl peracetate, 2,5-dimethyl-2,5-di (tert-butyl perbenzoate)
Butylperoxy) hexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, di-tert-amyl peroxide, benzoyl peroxide, cumene hydroperoxide and lauryl peroxide. Organic peroxide, azobisisobutanol diacetate, 1,1′-azobiscyclohexanecarbonitrile, 2-phenylazo 2,4-dimethyl-
Examples include azo compounds such as 4-methoxyvaleronitrile, 2-cyano-2,2-propylazoformamide and 2,2′-azobisisobutyronitrile. These can be used alone or in combination of two or more.

【0029】遊離基発生剤は反応器中における発生遊離
基換算濃度I(mol・g-1)と反応器中の重合液の重
合体濃度s(重量分率)の比I/sが0.5×10-6
6.0×10-6mol・g-1、好ましくは0.6×10
-6〜5.5×10-6mol・g-1なる比率で反応器に供
給される。
The free radical generator has a ratio I / s of the concentration I (mol · g −1 ) in terms of free radicals generated in the reactor to the polymer concentration s (weight fraction) of the polymerization liquid in the reactor of 0. 5 × 10 -6 ~
6.0 × 10 −6 mol · g −1 , preferably 0.6 × 10
−6 to 5.5 × 10 −6 mol · g −1 is supplied to the reactor.

【0030】ここで、遊離基発生剤の発生遊離基換算濃
度は以下のように定義される量をいう。すなわち、遊離
基発生剤が有機過酸化物の場合、供給液中全体に基づく
遊離基発生剤濃度と遊離基発生剤の活性酸素量とから求
めることができ、[発生遊離基換算濃度(mol・
-1)]=[遊離基発生剤濃度(mol・g-1)]×
[(遊離基発生剤の活性酸素量/16)/100]で算
出される。[活性酸素量(%)]は[遊離基発生剤単位
重量あたり発生するRO・ラジカルO原子の重量]×1
00(%)で定義される。
Here, the concentration of the generated free radical in terms of the generated free radical refers to an amount defined as follows. That is, when the free radical generator is an organic peroxide, it can be determined from the concentration of the free radical generator based on the whole in the feed solution and the amount of active oxygen of the free radical generator.
g −1 )] = [free radical generator concentration (mol · g −1 )] ×
It is calculated by [(amount of active oxygen of free radical generator / 16) / 100]. [Amount of active oxygen (%)] is [weight of RO / radical O atom generated per unit weight of free radical generator] × 1
It is defined as 00 (%).

【0031】これらは、用いる遊離基発生剤の化学構造
および純度からの計算、または、開始剤の完全分解時の
生成物の分析等により決定することができる。また、ア
ゾ系化合物その他の場合も開始剤1モル当たり発生する
遊離基モル数をもとに同様にして求められる。
These can be determined by calculation from the chemical structure and purity of the free radical generator used, or by analysis of the product at the time of complete decomposition of the initiator. In the case of an azo compound or the like, it can be similarly determined based on the number of moles of free radicals generated per mole of the initiator.

【0032】尚、上述のI/sの値が0.5×10-6
ol・g-1未満であれば、重合速度が低く生産性に劣り
好ましくなく、一方、6.0×10-6mol・g-1を越
えると重合体の光学的透明性、耐候性および熱安定性が
低下する傾向が現れ、好ましくない。
The value of I / s is 0.5 × 10 −6 m.
If it is less than ol · g −1 , the polymerization rate is low and productivity is inferior, and if it exceeds 6.0 × 10 −6 mol · g −1 , the optical transparency, weather resistance and heat The stability tends to decrease, which is not preferable.

【0033】本発明の重合体の製造方法においては、供
給液を反応器に供給するに際し、供給液を蒸留精製し、
且つ気体窒素と供給液を向流接触させることにより、供
給液中の溶存酸素濃度を1ppm以下とし、且つ供給液
を透過粒径2μm以下のフィルターを通過させることに
より、固形状異物を除去する。上述の操作により、光学
特性、耐候性の特に優れた重合体を製造することができ
る。
In the method for producing a polymer according to the present invention, when the feed solution is supplied to the reactor, the feed solution is purified by distillation.
In addition, the gaseous nitrogen and the supply liquid are brought into countercurrent contact to reduce the concentration of dissolved oxygen in the supply liquid to 1 ppm or less, and the foreign matter is removed by passing the supply liquid through a filter having a transmission particle size of 2 μm or less. By the above operation, a polymer having particularly excellent optical properties and weather resistance can be produced.

【0034】供給液原料であるメタクリル酸メチル単量
体、アクリル酸エステル単量体、不活性重合溶媒の蒸留
精製は、単量体、非重合性溶媒に含まれる不純物およ
び、異物の除去に有効であり、重合体の光学的透明性、
重合体に含まれる異物を除去させる効果がある。その
際、蒸留精製は、例えば、充填塔式、棚段式などの蒸留
塔により実施する。蒸留の方式は原料混合物を蒸留塔の
中段または上段より供給し、蒸留塔ボトム液をリボイラ
ー等の加熱器で加熱しながら蒸留し、蒸留塔の塔頂部よ
り流出するメタクリル酸メチルを主成分とする単量体及
び非重合性溶媒の蒸気をコンデンサーにて凝縮すること
によって実施する。
The distillation purification of the methyl methacrylate monomer, acrylic acid ester monomer, and inert polymerization solvent, which are the feed liquid raw materials, is effective in removing impurities and foreign substances contained in the monomer and non-polymerizable solvent. Is the optical transparency of the polymer,
It has the effect of removing foreign substances contained in the polymer. At that time, the distillation purification is carried out, for example, by a packed column type, a tray type distillation column or the like. The distillation method supplies the raw material mixture from the middle or upper stage of the distillation column, distills while heating the distillation column bottom liquid with a heater such as a reboiler, and mainly contains methyl methacrylate flowing out from the top of the distillation column. It is carried out by condensing the vapors of the monomer and the non-polymerizable solvent in a condenser.

【0035】この際、使用する非重合性溶媒の沸点が単
量体より高い場合、蒸留塔ボトム液に濃縮された高沸点
の不純物、異物、単量体の貯蔵安定化のために添加され
た重合禁止剤等は、蒸留塔ボトム液を連続してあるいは
断続して取り出すと同時に取り出した量の溶媒を追加す
ることによって除去することができる。なお、原料の一
部として、重合反応後の反応液から脱揮分離回収された
未反応単量体および非重合性溶媒をリサイクル使用する
際、回収された未反応単量体を蒸留精製することによ
り、メタクリル酸メチルダイマー、オリゴマーを除去す
ることができる。
At this time, when the non-polymerizable solvent used has a higher boiling point than that of the monomer, the non-polymerizable solvent is added to stabilize the storage of the high boiling impurities, foreign substances, and monomer concentrated in the bottom of the distillation column. The polymerization inhibitor or the like can be removed by continuously or intermittently removing the bottom liquid of the distillation column and adding the removed solvent at the same time. As a part of the raw material, when the unreacted monomer and the non-polymerizable solvent recovered and devolatilized and recovered from the reaction solution after the polymerization reaction are recycled, the recovered unreacted monomer may be purified by distillation. As a result, methyl methacrylate dimer and oligomer can be removed.

【0036】蒸留精製された供給液は、更に向流接触塔
を用いて向流接触させることにより、不活性ガスと置換
し、供給液中の溶存酸素濃度を1ppm以下とする。タ
ンク中における不活性ガスバブリング法では溶存酸素濃
度は10〜20ppmであるが、向流接触法により、達
成不可能な溶存酸素濃度1ppm以下にすることが可能
である。
The feed liquid purified by distillation is further subjected to countercurrent contact using a countercurrent contact tower to replace the inert gas, thereby reducing the concentration of dissolved oxygen in the feed liquid to 1 ppm or less. Although the dissolved oxygen concentration in the inert gas bubbling method in the tank is 10 to 20 ppm, the dissolved oxygen concentration which cannot be achieved by the countercurrent contact method can be reduced to 1 ppm or less.

【0037】本発明においては、供給原料の蒸留精製の
際、固形状異物が低減されるが、溶存酸素濃度を1pp
m以下とした後、更に透過粒径2μm以下のフィルター
で濾過することにより残留する異物を除去することが必
要である。フィルターの種類は、供給液に対し化学的に
安定であり、供給液を汚染することがなく、且つ供給液
から固形状異物を除去できる構造を有するものであれば
特に制限はなく、例えば細孔濾過器、限外濾過膜等が挙
げられる。この様な濾過処理によって、得られる重合体
中の2μm以上の粒子径を有する固形状異物の含有量を
低減させ、重合体の黄色度および耐候性を向上させるこ
とができる。
In the present invention, when the feedstock is purified by distillation, the amount of solid foreign matter is reduced, but the dissolved oxygen concentration is reduced to 1 pp.
m or less, it is necessary to remove the remaining foreign matter by filtering through a filter having a transmission particle size of 2 μm or less. The type of the filter is not particularly limited as long as it is chemically stable to the supply liquid, does not contaminate the supply liquid, and has a structure capable of removing solid foreign matter from the supply liquid. Examples include a filter and an ultrafiltration membrane. By such a filtration treatment, the content of solid foreign matters having a particle diameter of 2 μm or more in the obtained polymer can be reduced, and the yellowness and weather resistance of the polymer can be improved.

【0038】本発明のための重合反応器としては、混合
装置、温度調節装置を備え、連続的に原料の供給と反応
液の排出を行わせしめることのできる供給口と排出口を
備えた反応器を用いる。本発明における反応器は均一に
攪拌混合する為、攪拌器を備えることが必要であり、使
用できる攪拌翼の例としては、ダブルヘリカルリボン
翼、ピッチドパドル、タービン、アンカー型等が挙げら
れる。
As the polymerization reactor for the present invention, a reactor equipped with a mixing device and a temperature control device, and having a supply port and a discharge port capable of continuously supplying raw materials and discharging the reaction solution is provided. Is used. The reactor in the present invention needs to be provided with a stirrer in order to stir and mix uniformly, and examples of stirring blades that can be used include a double helical ribbon blade, a pitched paddle, a turbine, and an anchor type.

【0039】本発明における反応熱の除去方法として
は、反応器上部に凝縮器を設け、反応器内部の圧力を制
御して反応液を沸騰させ、凝縮器で上記を凝縮循環させ
ることにより、蒸発潜熱により反応熱を除熱する方法、
反応器に供給される供給液の温度を低温に制御すること
により、供給液の顕熱により反応熱を除去する方法、反
応液外部に設けた外部冷却装置に反応液を循環させ熱交
換によって反応液を冷却する方法等何れの方法であって
もよく、これらのうち複数の除熱方式を併用することも
できる。
As a method of removing the reaction heat in the present invention, a condenser is provided at the upper part of the reactor, the pressure inside the reactor is controlled to boil the reaction solution, and the above is condensed and circulated by the condenser to evaporate. A method of removing the heat of reaction by latent heat,
A method of removing the reaction heat by sensible heat of the supply liquid by controlling the temperature of the supply liquid supplied to the reactor to a low temperature, and circulating the reaction liquid to an external cooling device provided outside the reaction liquid to react by heat exchange Any method such as a method of cooling a liquid may be used, and a plurality of heat removal methods may be used in combination.

【0040】本発明における重合反応器中の圧力につい
ては反応器の設計上の上限以内、制限以内でれば特に制
限はなく、反応液の除熱方式に応じて内圧を適宜調節し
た条件下で反応をおこなうことができる。
The pressure in the polymerization reactor in the present invention is not particularly limited as long as it is within the upper limit of the design of the reactor and within the limit, and under the condition that the internal pressure is appropriately adjusted according to the heat removal system of the reaction solution. The reaction can take place.

【0041】本発明における重合反応器内の温度は、1
30〜170℃、好ましくは135〜160℃であるこ
とが必要である。反応器内温度が130℃未満であれば
反応器内の粘度上昇により重合制御の安定性が低下し、
また得られる重合体の熱安定性が低下する傾向が現れ好
ましくない。一方、反応器内温度が170℃を越える
と、重合体の熱安定性の低下、色度の悪化が現れる傾向
があり好ましくない。
In the present invention, the temperature in the polymerization reactor is 1
It needs to be 30 to 170 ° C, preferably 135 to 160 ° C. If the temperature in the reactor is lower than 130 ° C., the stability of the polymerization control decreases due to an increase in the viscosity in the reactor,
Further, the thermal stability of the obtained polymer tends to decrease, which is not preferable. On the other hand, if the temperature in the reactor exceeds 170 ° C., the thermal stability of the polymer tends to decrease, and the chromaticity tends to deteriorate.

【0042】本発明における反応器中の反応液の平均滞
留時間は0.3〜1.9時間、好ましくは0.5〜1.
8時間であることが必要である。平均滞留時間が0.5
時間未満であれば、重合反応の安定制御性体が低下する
傾向が現れ好ましく、一方、平均滞留時間が1.9時間
を越えると生産性が低下する為好ましくない。
In the present invention, the average residence time of the reaction solution in the reactor is 0.3 to 1.9 hours, preferably 0.5 to 1.
It needs to be 8 hours. Average residence time 0.5
If the time is shorter than the above, the stability controlling body of the polymerization reaction tends to decrease, and if the average residence time exceeds 1.9 hours, the productivity decreases, which is not preferable.

【0043】本発明において、反応器中の反応液中の重
合体の重量分率は0.40〜0.70、好ましくは0.
45〜0.65の範囲に制御することが必要である。重
合体の重量分率が0.40未満であれば、重合体の生産
速度に劣り、且つ重合後の脱揮回収時の負荷、重合体単
位重量当たりに必要とされる未反応成分回収の為のエネ
ルギー消費が過大となる為、好ましくない。
In the present invention, the weight fraction of the polymer in the reaction solution in the reactor is 0.40 to 0.70, preferably 0.1 to 0.70.
It is necessary to control in the range of 45 to 0.65. When the weight fraction of the polymer is less than 0.40, the production rate of the polymer is inferior, and the load at the time of devolatilization and recovery after polymerization and the recovery of unreacted components required per unit weight of the polymer are required. Energy consumption becomes excessive, which is not preferable.

【0044】一般に、連続的重合方法においては、重合
設備の規模と、反応機内での平均滞留時間、および反応
機最終出口における単量体の反応転化率が重要であり、
平均滞留時間が短く、また反応機最終出口における単量
体の反応転化率が高いほど生産性に優れた製造方法と言
い得る。また、反応機最終出口における重合体濃度が一
定の条件で比較すると平均滞留時間が短いほど、重合設
備の規模を小さくすることができ生産性に優れた製造方
法と言い得る。
In general, in a continuous polymerization method, the scale of the polymerization equipment, the average residence time in the reactor, and the reaction conversion of the monomer at the final outlet of the reactor are important.
It can be said that the shorter the average residence time and the higher the reaction conversion of the monomer at the final outlet of the reactor, the better the productivity. Further, when the polymer concentration at the final outlet of the reactor is compared under a constant condition, it can be said that the shorter the average residence time, the smaller the scale of the polymerization equipment and the more excellent the productivity.

【0045】従って、反応機最終出口での重合体濃度
(重量分率)と反応機内平均滞留時間の比の値は、重合
反応器の規模(反応機内反応液の全重量)が同一の条件
下での生産性を表す指標と考えられる。本発明における
反応器内重合体濃度s(重量分率)と、反応器内滞留時
間τ(時間)の比s/τは0.21〜2.33(1/時
間)の範囲であり、本発明によれば従来技術による製造
方法と比較して高い生産性で製造することができる。
Therefore, the value of the ratio between the polymer concentration (weight fraction) at the final outlet of the reactor and the average residence time in the reactor is determined under the condition that the scale of the polymerization reactor (total weight of the reaction solution in the reactor) is the same. It is considered to be an index indicating productivity in The ratio s / τ of the polymer concentration s (weight fraction) in the reactor and the residence time τ (time) in the reactor in the present invention is in the range of 0.21 to 2.33 (1 / hour). According to the invention, it is possible to manufacture with higher productivity as compared with the manufacturing method according to the prior art.

【0046】本発明において、反応器への供給液中の遊
離基発生剤の反応器中の半減期と反応器内平均滞留時間
の比は5.0×10-4〜2.50、好ましくは1.0×
10 -3〜2.0であることが必要である。上述の比の値
が5.0×10-4未満であれば、得られる重合体の熱安
定性が低下する傾向が現れ、一方、2.50を越える
と、重合安定性の低下、即ち転化率の制御性に劣る傾向
が現れ好ましくない。
In the present invention, the reaction in the liquid fed to the reactor is
Half-life of the radical generator in the reactor and average residence time in the reactor
Is 5.0 × 10-Four~ 2.50, preferably 1.0x
10 -32.02.0. The above ratio value
Is 5.0 × 10-FourIf it is less than the heat resistance of the obtained polymer,
The qualitative tendency tends to decrease, while exceeding 2.50
And a decrease in polymerization stability, that is, a tendency of poor controllability of the conversion.
Appears, which is not preferable.

【0047】本発明において、供給液中の遊離基発生剤
の発生遊離基換算濃度I(mol・g-1)と反応器中の
重合液濃度s(重量分率)の比I/sは0.5×10-6
〜6.0×10-6mol・g-1、好ましくは、0.6×
10-6〜5.5×10-6mol・g-1の範囲内であるこ
とが必要である。上述の比率は、重合体の熱分解性の指
標として重要であって、0.5×10-6mol・g-1
満とする為には、生産性の低い条件に重合反応を制御す
る必要があり好ましくなく、一方、6.0×10-6mo
l・g-1を越えると熱安定性が低下し、従来のメタクリ
ル系重合体と比較して成形加工時にシルバーストリーク
ス等の不良を発生する傾向が大きくなり、好ましくな
い。
In the present invention, the ratio I / s of the concentration I (mol · g −1 ) of the generated free radical in the feed liquid to the concentration s (weight fraction) of the polymerization liquid in the reactor is 0. .5 × 10 -6
66.0 × 10 −6 mol · g −1 , preferably 0.6 ×
It is necessary to be in the range of 10 −6 to 5.5 × 10 −6 mol · g −1 . The above-mentioned ratio is important as an index of the thermal decomposability of the polymer. In order to make the ratio less than 0.5 × 10 −6 mol · g −1 , it is necessary to control the polymerization reaction under low productivity conditions. Is undesirable, while 6.0 × 10 −6 mo
If the value exceeds l · g −1 , the thermal stability decreases, and the tendency to generate defects such as silver streaks during molding becomes greater than that of conventional methacrylic polymers, which is not preferable.

【0048】本発明のメタクリル系重合体の製造方法に
おいて、連鎖移動剤は重合体の分子量の調節のために添
加される成分であり、反応器への供給液中にしめる含有
量は、反応器中の重合体の数平均分子量が2.5×10
4〜15×104、好ましくは3.0×104〜12×1
4の範囲内となるように添加濃度を調節する。本発明
において、反応器中の重合体の数平均重合度が、2.5
×104未満であれば、成形して得られる成形品の機械
的強度が低下する傾向が現れ好ましくなく、一方、15
×104を越えると、重合反応の安定制御可能な重合条
件範囲が狭くなり、好ましくない。
In the method for producing a methacrylic polymer according to the present invention, the chain transfer agent is a component added for controlling the molecular weight of the polymer. Having a number average molecular weight of 2.5 × 10
4 to 15 × 10 4 , preferably 3.0 × 10 4 to 12 × 1
0 falls within the fourth range as to adjust the addition concentration. In the present invention, the number average polymerization degree of the polymer in the reactor is 2.5
If it is less than × 10 4 , the mechanical strength of a molded product obtained by molding tends to decrease, which is not preferable.
If it exceeds × 10 4 , the range of polymerization conditions under which the polymerization reaction can be stably controlled becomes narrow, which is not preferable.

【0049】本発明において重合体の数平均分子量は、
ゲルパーミュエーション(GPC)法により測定される
数値であって、分子量分布の狭い標準ポリメチルメタク
リレート(PMMA)を標準試料として較正されたゲル
パーミュエーションクロマトグラフにより、試料のPM
MA換算分子量分布を測定したデータから算出される数
値である。
In the present invention, the number average molecular weight of the polymer is
It is a numerical value measured by a gel permeation (GPC) method, and the PM of the sample is determined by a gel permeation chromatograph calibrated using standard polymethyl methacrylate (PMMA) having a narrow molecular weight distribution as a standard sample.
It is a numerical value calculated from data obtained by measuring the molecular weight distribution in terms of MA.

【0050】本発明において反応器に供給される供給液
中の連鎖移動剤の濃度は、重合体の数平均分子量が前述
の範囲内となるよう目標とする分子量に応じて設定す
る。本発明における連鎖移動剤は、分子量調節の為に、
単量体、非重合性溶媒、遊離基発生剤以外に反応器に供
給される化合物であり、重合条件、アクリル系重合体の
分子量の目標値に応じて、濃度を決定し、反応器に供給
される。
In the present invention, the concentration of the chain transfer agent in the supply liquid supplied to the reactor is set according to the target molecular weight so that the number average molecular weight of the polymer falls within the above-mentioned range. The chain transfer agent in the present invention, for controlling the molecular weight,
A compound that is supplied to the reactor in addition to the monomer, non-polymerizable solvent, and free radical generator.The concentration is determined according to the polymerization conditions and the target value of the molecular weight of the acrylic polymer, and then supplied to the reactor. Is done.

【0051】連鎖移動剤の例としては、メチルメルカプ
タン、エチルメルカプタン、プロピルメルカプタン、イ
ソプロピル、n−ブチルメルカプタン、イソブチルメル
カプタン、t−ブチルメルカプタン、n−オクチルメル
カプタン、n−ドデシルメルカプタン、sec−ドデシ
ルメルカプタン、t−ブチルメルカプタンなどのアルキ
ル基または置換アルキル基を有する第一級、第二級及び
第三級メルカプタン、フェニルメルカプタン、チオクレ
ゾールなどの芳香族メルカプタン、チオグリコール酸と
そのエステル及びエチレンチオグリコール等が挙げられ
る。これらは単独でまたは二種以上組み合わせて使用で
きる。これらのうち、重合体の色調、反応混合物から分
離除去の容易さの点からn−ブチル、t−ブチルおよび
n−オクチルメルカプタンの使用が特に好ましい。
Examples of the chain transfer agent include methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl, n-butyl mercaptan, isobutyl mercaptan, t-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, sec-dodecyl mercaptan, Primary, secondary and tertiary mercaptans having an alkyl group or a substituted alkyl group such as t-butyl mercaptan, aromatic mercaptans such as phenyl mercaptan, thiocresol, thioglycolic acid and its esters, ethylene thioglycol, etc. No. These can be used alone or in combination of two or more. Of these, use of n-butyl, t-butyl and n-octyl mercaptan is particularly preferred in view of the color tone of the polymer and the ease of separation and removal from the reaction mixture.

【0052】本発明において連続的に反応器より払い出
された反応液は、脱揮して重合物を取り出すと同時に揮
発分である未反応メタクリル酸メチルを主成分とする単
量体及び溶媒を分離する。脱揮装置としては、多段ベン
ト付き押出機、脱揮タンク等を使用することができる。
特に、該反応液を200〜290℃の温度に加熱し、上
部に十分な空間を有し、且つ200〜280℃、20〜
100torrの温度、真空下の脱揮タンクにフィード
して重合物を取り出すと同時に未反応メタクリル酸メチ
ルを主成分とする単量体および非重合性溶媒からなる揮
発成分を分離する方法が好ましい。
In the present invention, the reaction solution continuously discharged from the reactor is devolatilized to take out the polymer, and at the same time, the monomer and the solvent mainly composed of unreacted methyl methacrylate, which is a volatile component, are removed. To separate. As the devolatilizing device, an extruder with a multi-stage vent, a devolatilizing tank, or the like can be used.
In particular, the reaction solution is heated to a temperature of 200 to 290 ° C, has a sufficient space above, and is heated to a temperature of 200 to 280 ° C,
A method of feeding a polymer to a devolatilization tank under vacuum at a temperature of 100 torr to remove a polymer and simultaneously separating volatile components composed of a monomer mainly composed of unreacted methyl methacrylate and a non-polymerizable solvent is preferable.

【0053】この減圧下に保持された脱揮タンクに重合
液を導入する方法は、揮発成分の瞬間的な揮発とそれに
よる発泡を生じて、極めて大きな蒸発面積を形成し、高
沸点の溶媒を使用しても効率的に短時間で揮発成分が除
去され、重合体中に残存する未反応単量体、ダイマー、
オリゴマーおよび非重合性溶媒等の揮発分の量が少な
く、光学的透明性に優れた重合体が得られる点で優れた
脱揮方式である。この脱揮工程において、重合体に含ま
れる非重合性溶媒の含有量を2〜500ppm、好まし
くは、2〜300ppmの範囲内に制御することができ
る。
The method of introducing the polymerization liquid into the devolatilization tank held under reduced pressure involves the instantaneous volatilization of volatile components and the resulting foaming, forming an extremely large evaporation area and removing the solvent having a high boiling point. Even when used, volatile components are efficiently removed in a short time, and unreacted monomers, dimers,
This is an excellent devolatilization method in that the amount of volatile components such as oligomers and non-polymerizable solvents is small, and a polymer having excellent optical transparency is obtained. In this devolatilization step, the content of the non-polymerizable solvent contained in the polymer can be controlled within the range of 2 to 500 ppm, preferably 2 to 300 ppm.

【0054】以上に説明した本発明の溶液重合プロセス
で用いられる連続重合装置の工程図の一例を図1(前半
部)及び図2(後半部)に示す。
One example of a process diagram of a continuous polymerization apparatus used in the solution polymerization process of the present invention described above is shown in FIG. 1 (first half) and FIG. 2 (second half).

【0055】本発明のメタクリル系重合体の製造方法に
おいて、重合体の改良の為、必要に応じて、離型剤、酸
化防止剤、光拡散剤、染料、顔料、蛍光増白剤、滑剤、
耐衝撃改質剤等を製造過程の各段階において重合体に添
加することができる。
In the method for producing a methacrylic polymer of the present invention, a releasing agent, an antioxidant, a light diffusing agent, a dye, a pigment, a fluorescent brightener, a lubricant,
Impact modifiers and the like can be added to the polymer at each stage of the manufacturing process.

【0056】[0056]

【発明の実施の形態】以下実施例により本発明の実施の
形態を説明するが、本発明はこれにより何ら制限を受け
るものではない。なお,実施例、比較例における重合体
の数平均分子量、熱分解性およびシルバーストリークス
発生率は以下に記載する方法に従い測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to examples, but the present invention is not limited by these examples. In addition, the number average molecular weight, the thermal decomposability, and the occurrence rate of silver streaks of the polymers in Examples and Comparative Examples were measured according to the methods described below.

【0057】(1)重合体の数平均分子量 重合反応中の重合反応器から、反応液を抜き出し、ゲル
パーミュエーションクロマトグラフィー(GPC)を用
いて以下のように決定した。反応液2gを20gのアセ
トンに完全に溶解した後、2000gのn−ヘキサンに
再沈殿させポリマーを分離し、真空乾燥しポリマー試料
とした。ポリマー試料20mgを、テトラヒドロフラ
ン:THF40cm3に溶解し、試料溶液とした。得ら
れたクロマトグラムは、標準PMMA(ポリマーラボラ
トリーズ社製)により作成した校正線により、分子量分
布に換算し、数平均分子量を算出した。
(1) Number average molecular weight of polymer The reaction solution was withdrawn from the polymerization reactor during the polymerization reaction, and determined as follows using gel permeation chromatography (GPC). After completely dissolving 2 g of the reaction solution in 20 g of acetone, the polymer was separated by reprecipitation in 2,000 g of n-hexane, and dried under vacuum to obtain a polymer sample. 20 mg of a polymer sample was dissolved in 40 cm 3 of tetrahydrofuran: THF to obtain a sample solution. The obtained chromatogram was converted into a molecular weight distribution using a calibration line created by standard PMMA (manufactured by Polymer Laboratories), and the number average molecular weight was calculated.

【0058】[GPC測定条件]装置:トーソー製HL
C8120、カラム:トーソー製TSKgel、sup
erHM−M2本直列、溶媒:テトラヒドロフラン(T
HF)、カラム温度:40℃、流量:0.2cm3/分
[GPC measurement conditions] Apparatus: HL manufactured by Tosoh
C8120, column: Tosoh TSKgel, sup
erHM-M2 in series, solvent: tetrahydrofuran (T
HF), column temperature: 40 ° C., flow rate: 0.2 cm 3 / min

【0059】(2)重合体の射出成形および成形片の色
度評価 東芝機械製射出成形機IS−75S型により、シリンダ
ー温度設定250℃において15×20×220mmの
試験片を成形した。試験片は成形サイクル安定後4ショ
ット成形して作成し、試験片を厚さ方向に4本重ね、長
さ方向の空気(試験片無し)を基準とする黄色度ΔYI
(光路長220mm)を色差計(日本電色工業製TC−
1500MC型)により測定した。
(2) Injection molding of polymer and evaluation of chromaticity of molded piece A 15 × 20 × 220 mm test piece was molded at 250 ° C. cylinder temperature using an injection molding machine IS-75S manufactured by Toshiba Machine Co., Ltd. After the molding cycle was stabilized, four shots were formed after the molding cycle was stabilized. Four test pieces were stacked in the thickness direction, and the yellowness ΔYI based on air in the length direction (no test piece)
(Optical path length 220 mm) using a color difference meter (TC-
1500MC type).

【0060】(3)成形品の耐候性評価 (2)で成形した成形片をサンシャインウェザオメータ
ー(SWOM)により、56℃、降雨有りの条件で20
00時間暴露した後の黄色度(ΔYI)を(4)と同様
に測定した。
(3) Evaluation of Weather Resistance of Molded Article The molded piece molded in (2) was subjected to a sunshine weatherometer (SWOM) at a temperature of 56 ° C. under rainfall conditions.
The yellowness (ΔYI) after exposure for 00 hours was measured in the same manner as in (4).

【0061】(4)シルバーストリークス発生率 成形時のシルバーストリークスの発生率を以下の方法に
より評価した。樹脂ペレットを熱風乾燥機により乾燥、
ペレット中の水分濃度を300ppmとなるまで乾燥
後、以下の条件で射出成形テストを実施した。ファナッ
ク製射出成形機T−100D型を用い、シリンダー温度
280℃、金型温度55℃、充填圧力750kgf/c
2の条件でスパイラルフロー長(SFD)評価用の渦
巻き状成形品(厚さ2mm)を成形した。SFDが安定
した後、さらに50ショット成形し、成形品のシルバー
ストリークスおよび発泡の有無を観察した。同法による
測定を2回行い、計100ショット中のシルバーストリ
ークス発生または発泡の観察された回数を記録した。
(4) Generation rate of silver streaks The generation rate of silver streaks during molding was evaluated by the following method. Dry the resin pellets with a hot air dryer,
After drying until the moisture concentration in the pellets became 300 ppm, an injection molding test was performed under the following conditions. Using FANUC injection molding machine T-100D, cylinder temperature 280 ° C, mold temperature 55 ° C, filling pressure 750kgf / c
A spiral molded product (thickness: 2 mm) for evaluation of spiral flow length (SFD) was molded under the condition of m 2 . After the SFD was stabilized, 50 shots were molded further, and the molded product was observed for the presence of silver streaks and foaming. The measurement was performed twice by the same method, and the number of occurrences of silver streaks or foaming observed in a total of 100 shots was recorded.

【0062】[0062]

【実施例】実施例1 メタクリル酸メチル、アクリル酸メチル、エチルベンゼ
ンの混合物を単蒸留により精製した。蒸留条件は、減圧
度80torr、ボトム温度95℃、環流比0.11と
した。蒸留後の混合組成は、メタクリル酸メチル92.
6重量%、アクリル酸メチル1.9重量%、及びエチル
ベンゼン5.5重量%であった。
Example 1 A mixture of methyl methacrylate, methyl acrylate and ethylbenzene was purified by simple distillation. The distillation conditions were as follows: the degree of pressure reduction was 80 torr, the bottom temperature was 95 ° C., and the reflux ratio was 0.11. The mixed composition after the distillation was methyl methacrylate.
6% by weight, 1.9% by weight of methyl acrylate, and 5.5% by weight of ethylbenzene.

【0063】この混合物に遊離基発生剤として、1,1
−ビス(t−ブチルパーオキシ)−3,3,5−トリメ
チルシクロヘキサンを128ppm、及びn−オクチル
メルカプタンを1720ppmとなる量だけ連続的に添
加混合して供給液とし、この混合物を窒素交流接触塔
(窒素:供給液の供給重量比=1/10000)により、
脱酸素させ溶存酸素濃度を2ppm以下とし、透過粒径
2μmサイズのフィルターを通過させた後、ピッチドパ
ドル翼攪拌機付き10L完全混合型重合反応機に連続的
に供給、反応機内液温度155℃、反応機内平均滞留時
間1.00時間の条件で重合し、重合液を反応機から連
続的に払い出し、次いで重合液を加熱板の間隙を通過さ
せて熱交換させ260℃に加熱し、脱揮タンクに流延落
下させた。反応器中における反応器内平均滞留時間
(τ)は1.00hrであり、反応器中における遊離基
発生剤の半減期(θ)は0.0083hrであるから、
θ/τは0.0083であった。
As a free radical generator, 1,1
-Bis (t-butylperoxy) -3,3,5-trimethylcyclohexane was continuously added and mixed in an amount of 128 ppm and n-octylmercaptan in an amount of 1720 ppm to form a supply solution. (Nitrogen: supply weight ratio of supply liquid = 1/10000)
After passing through a filter having a permeation particle size of 2 μm after being deoxygenated and having a dissolved oxygen concentration of 2 ppm or less, it is continuously supplied to a 10 L complete mixing type polymerization reactor equipped with a pitched paddle blade stirrer. The polymerization was carried out under the condition of an average residence time of 1.00 hour, the polymerization liquid was continuously discharged from the reactor, and then the polymerization liquid was passed through the gap between the heating plates to exchange heat and heated to 260 ° C. It was dropped. Since the average residence time (τ) in the reactor in the reactor is 1.00 hr and the half-life (θ) of the free radical generator in the reactor is 0.0083 hr,
θ / τ was 0.0083.

【0064】脱揮タンクは、真空脱揮により内圧を30
torr、温度を230℃に維持し、未反応単量体及
び、重合溶媒を分離回収した。重合体は脱揮タンク下部
のギアポンプにより払い出し、押し出しダイスより押し
出し、ストランドをストランドカッターにより、ペレタ
イズしてペレットとして回収する方法により、連続的に
10日間の運転を行い、重合体を製造し、サンプリング
した。重合反応器への供給液組成、反応条件、重合体の
特性を表1に示した。ペレットの生産速度と供給液供給
速度から求めた反応器内の重合体の重量分率sは0.5
7であった。したがって、生産速度の指標であるs/τ
は0.57hr-1であり、優れた特性の重合体を安定且
つ高生産性条件下で生産することが可能であることが分
かる。
The internal pressure of the devolatilization tank was reduced to 30 by vacuum devolatilization.
The torr and the temperature were maintained at 230 ° C., and the unreacted monomer and the polymerization solvent were separated and recovered. The polymer is discharged by a gear pump at the bottom of the devolatilization tank, extruded from an extrusion die, and the strand is pelletized by a strand cutter and recovered as pellets. did. Table 1 shows the composition of the liquid supplied to the polymerization reactor, the reaction conditions, and the characteristics of the polymer. The weight fraction s of the polymer in the reactor determined from the pellet production rate and the feed liquid supply rate is 0.5.
It was 7. Therefore, s / τ which is an index of the production speed
Is 0.57 hr -1 , which indicates that a polymer having excellent characteristics can be produced stably under high productivity conditions.

【0065】実施例2〜8 実施例1における条件を表1に示した様に変更した以外
は、実施例1と同様な操作を行った。各例とも、連続的
に10日間の運転を行い、重合体を製造し、サンプリン
グした。重合反応器への供給液組成、反応条件、重合体
の特性を表1に示す。実施例1と同様に優れた特性の重
合体を安定且つ高生産性条件下で生産することが可能で
あることが分かる。
Examples 2 to 8 The same operation as in Example 1 was performed except that the conditions in Example 1 were changed as shown in Table 1. In each case, the operation was continuously performed for 10 days to produce a polymer, which was sampled. Table 1 shows the composition of the liquid supplied to the polymerization reactor, the reaction conditions, and the characteristics of the polymer. It can be seen that a polymer having excellent properties can be produced stably and under high productivity conditions as in Example 1.

【0066】比較例1 供給液の組成および、重合条件を表1に示したように変
更し対外は実施例1と同様の操作により、連続的に10
日間の運転を行い、重合体ペレットを得た。重合体の特
性を表1に示す。重合体特性の内、シルバー発生率が高
く成形性に劣る結果となった。
COMPARATIVE EXAMPLE 1 The composition of the feed solution and the polymerization conditions were changed as shown in Table 1.
The operation was performed for one day to obtain polymer pellets. Table 1 shows the properties of the polymer. Among the polymer characteristics, the silver generation rate was high and the moldability was poor.

【0067】比較例2 供給液の組成および、重合条件を表1に示したように変
更し対外は実施例1と同様の操作を行った。重合開始
後、反応機中の重合体重量分率と反応器内温度が不安定
となった為、運転を停止した。
Comparative Example 2 The composition of the feed solution and the polymerization conditions were changed as shown in Table 1, and the same operation as in Example 1 was performed on the outside. After the polymerization was started, the operation was stopped because the polymer weight fraction in the reactor and the temperature inside the reactor became unstable.

【0068】実施例9 実施例1の実施後、回収された未反応単量体、非重合性
溶媒からなる混合物(以下リサイクル液という)43.
0重量%と新たなメタクリル酸メチル55.8重量%及
び新たなアクリル酸メチル1.2重量%からなる混合物
を蒸留塔に連続フィードして、ボトム温度90℃、圧力
70torrの条件で連続的に蒸留した。蒸留された単
量体を主とする混合物の組成は、メタクリル酸メチル9
2.6重量%、アクリル酸メチル1.9重量%、エチル
ベンゼン5.5重量%であった。
Example 9 A mixture of the unreacted monomer and the non-polymerizable solvent recovered after the operation of Example 1 (hereinafter referred to as recycle liquid) 43.
A mixture consisting of 0% by weight, 55.8% by weight of new methyl methacrylate and 1.2% by weight of new methyl acrylate is continuously fed to the distillation column, and continuously fed at a bottom temperature of 90 ° C. and a pressure of 70 torr. Distilled. The composition of the mixture mainly composed of the distilled monomers is methyl methacrylate 9
2.6% by weight, 1.9% by weight of methyl acrylate, and 5.5% by weight of ethylbenzene.

【0069】この混合物に1,1−ビス(t−ブチルパ
ーオキシ)−3,3,5−トリメチルシクロヘキサンが
107ppm、及びn−オクチルメルカプタンが193
0ppmになる量だけ夫々連続的に追加混合して供給液
とし、窒素交流接触塔により脱酸素させた後、透過粒径
2μmサイズのフィルターを通過させ重合反応器に連続
的に供給、反応機内液温度155℃、反応機内平均滞留
時間1.00hrの条件で重合し、重合液を反応機から
連続的に払い出し、次いで重合液を加熱板の間隙を通過
させて熱交換させ260℃に加熱し、脱揮タンクに流延
落下させた。
To this mixture, 107 ppm of 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane and 193 of n-octylmercaptan were added.
The mixture was continuously added to an amount of 0 ppm to form a supply liquid, and after being deoxygenated by a nitrogen AC contact tower, passed through a filter having a permeation particle size of 2 μm and continuously supplied to the polymerization reactor. Polymerization was performed under the conditions of a temperature of 155 ° C. and an average residence time in the reactor of 1.00 hr, the polymer solution was continuously discharged from the reactor, and then the polymer solution was passed through a gap of a heating plate, heat-exchanged, and heated to 260 ° C. It was cast and dropped into a devolatilization tank.

【0070】反応器に供給される直前の供給液中の酸素
濃度は0.2ppm以下であった。脱揮タンクは、真空
脱揮により内圧を30トール、温度を230℃に維持
し、未反応単量体及び、重合溶媒を分離した。重合体は
脱揮タンク下部のギアポンプにより払い出し、押し出し
ダイスより押し出し、ストランドをストランドカッター
により、ペレタイズしてペレットとして回収した。脱揮
により分離回収した未反応単量体および溶媒の組成は、
実施例3と同等であった。回収されたリサイクル液はタ
ンクに貯蔵し、リサイクル液として再使用する方法によ
り、連続的に10日間の運転を行い、重合体を製造し、
サンプリングした。
The oxygen concentration in the feed immediately before being fed to the reactor was 0.2 ppm or less. The devolatilization tank maintained the internal pressure at 30 Torr and the temperature at 230 ° C. by vacuum devolatilization to separate the unreacted monomer and the polymerization solvent. The polymer was discharged by a gear pump below the devolatilizing tank, extruded from an extrusion die, and the strand was pelletized by a strand cutter and collected as pellets. The composition of the unreacted monomer and solvent separated and recovered by devolatilization is
It was equivalent to Example 3. The collected recycle liquid is stored in a tank and operated continuously for 10 days by a method of reusing it as a recycle liquid to produce a polymer.
Sampled.

【0071】その際、リサイクル液の組成の変化に応じ
て、リサイクル液と新たな単量体の混合比率を調製し
て、供給液の組成を表2中記載の組成に維持させた。運
転期間中の蒸留塔ボトムでのポリマー生成による粘度の
上昇は見られず、精留塔ボトムのリボイラーは連続的に
安定運転が可能であった。重合体の評価結果を表2中に
示す。実施例1と同様、優れた特性の重合体が得られ
た。
At that time, the mixing ratio of the recycled liquid and the new monomer was adjusted according to the change in the composition of the recycled liquid, and the composition of the feed liquid was maintained at the composition shown in Table 2. No increase in viscosity due to polymer formation at the bottom of the distillation column was observed during the operation period, and the reboiler at the bottom of the rectification column was capable of continuous stable operation. The evaluation results of the polymer are shown in Table 2. As in Example 1, a polymer having excellent characteristics was obtained.

【0072】実施例10 供給液組成、重合条件を表2記載の様に変更する以外は
実施例9と同様の操作を行い、連続的に10日間の運転
を行い、重合体を製造し、サンプリングした。運転期間
中の蒸留塔ボトムでのポリマー生成による粘度の上昇は
見られず、精留塔ボトムのリボイラーは連続的に安定運
転が可能であった。重合体の評価結果を表2中に示す。
生産性の指標であるs/τ値は0.57であり、実施例
2と同様、優れた特性の重合体を安定且つ高生産性条件
下で生産することが可能であった。
Example 10 The same operation as in Example 9 was carried out except that the composition of the feed solution and the polymerization conditions were changed as shown in Table 2, and the operation was continuously performed for 10 days to produce a polymer. did. No increase in viscosity due to polymer formation at the bottom of the distillation column was observed during the operation period, and the reboiler at the bottom of the rectification column was capable of continuous stable operation. The evaluation results of the polymer are shown in Table 2.
The s / τ value, which is an index of productivity, was 0.57. As in Example 2, it was possible to produce a polymer having excellent characteristics stably and under high productivity conditions.

【0073】実施例11 供給液組成、重合条件を表2記載の様に変更する以外は
実施例9と同様の操作を行い、連続的に10日間の運転
を行い、重合体を製造し、サンプリングした。運転期間
中の蒸留塔ボトムでのポリマー生成による粘度の上昇は
見られず、精留塔ボトムのリボイラーは連続的に安定運
転が可能であった。重合体の評価結果を表2中に示す。
生産性の指標であるs/τ値は0.95であり、実施例
5と同様、優れた特性の重合体を安定且つ高生産性条件
下で生産することが可能であった。
Example 11 The same operation as in Example 9 was carried out except that the composition of the feed solution and the polymerization conditions were changed as shown in Table 2, and the operation was continuously performed for 10 days to produce a polymer. did. No increase in viscosity due to polymer formation at the bottom of the distillation column was observed during the operation period, and the reboiler at the bottom of the rectification column was capable of continuous stable operation. The evaluation results of the polymer are shown in Table 2.
The s / τ value, which is an index of productivity, was 0.95. As in Example 5, it was possible to produce a polymer having excellent characteristics under stable and high productivity conditions.

【0074】比較例3 供給液の向流接触塔での脱酸素を行わない以外は実施例
1と同様の操作を行い、重合体ペレットを得た。反応器
へ供給される前の供給液中の酸素濃度は10ppmであ
った。重合体の特性を表2中に示す。重合体の光学特
性、耐候性が劣る結果となった。
Comparative Example 3 A polymer pellet was obtained in the same manner as in Example 1 except that the supply liquid was not deoxygenated in the countercurrent contact tower. The oxygen concentration in the feed before being fed to the reactor was 10 ppm. The properties of the polymer are shown in Table 2. The result was inferior optical properties and weather resistance of the polymer.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【表2】 [Table 2]

【0077】[0077]

【発明の効果】本発明は、光学的透明性、耐候性および
耐熱分解性に優れ、射出成形、押出成形等の熱成形用の
材料に適したメタクリル系重合体の生産性および安定生
産性に優れた製造方法を提供したという効果を奏する。
Industrial Applicability According to the present invention, it is possible to improve the productivity and stable productivity of a methacrylic polymer excellent in optical transparency, weather resistance and thermal decomposition resistance and suitable for materials for thermoforming such as injection molding and extrusion molding. This has the effect of providing an excellent manufacturing method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶液重合プロセスでの連続重合装置の
一例を示す工程図(前半部)である。
FIG. 1 is a process diagram (first half) showing an example of a continuous polymerization apparatus in a solution polymerization process of the present invention.

【図2】本発明の溶液重合プロセスでの連続重合装置の
一例を示す工程図(後半部)である。
FIG. 2 is a process diagram (second half) showing an example of a continuous polymerization apparatus in the solution polymerization process of the present invention.

【符号の説明】[Explanation of symbols]

1 新たな単量体の供給ライン 2 回収揮発分貯蔵タンク 3 回収揮発分供給ライン 4 定量ポンプ 5 精留塔 6 コンデンサー 7 高沸分払い出しライン 8 連鎖移動剤供給ライン 9 向流接触塔 10 窒素供給ライン 11 バッファータンク 12 遊離基発生剤供給ライン 13 フィルター 14 完全混合型反応器 15 払い出しポンプ 16 ポリマー加熱板 17 脱揮タンク 18 コンデンサー 19 回収揮発分送液ライン 20 真空ポンプ 21 ポリマー押し出しダイス 22 ストランドバス 23 ストランドカッター REFERENCE SIGNS LIST 1 New monomer supply line 2 Recovered volatiles storage tank 3 Recovered volatiles supply line 4 Metering pump 5 Rectification tower 6 Condenser 7 High boiling point discharge line 8 Chain transfer agent supply line 9 Countercurrent contact tower 10 Nitrogen supply Line 11 Buffer tank 12 Free radical generator supply line 13 Filter 14 Complete mixing type reactor 15 Dispense pump 16 Polymer heating plate 17 Devolatilization tank 18 Condenser 19 Recovered volatile liquid sending line 20 Vacuum pump 21 Polymer extrusion die 22 Strand bath 23 Strand cutter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08F 220/14 C08F 220/14 //(C08F 220/14 220:10) Fターム(参考) 4J011 AA04 AA05 AB02 AB05 AB08 BA01 HA03 HA10 HB02 HB05 HB10 HB12 HB22 4J015 AA01 BA03 4J100 AL03P AL03Q CA04 DA01 FA03 FA04 FA19 FA28 FA30 FA37 FA39 FA41 FA47 GB05 GD01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08F 220/14 C08F 220/14 // (C08F 220/14 220: 10) F-term (Reference) 4J011 AA04 AA05 AB02 AB05 AB08 BA01 HA03 HA10 HB02 HB05 HB10 HB12 HB22 4J015 AA01 BA03 4J100 AL03P AL03Q CA04 DA01 FA03 FA04 FA19 FA28 FA30 FA37 FA39 FA41 FA47 GB05 GD01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 メタクリル酸メチル単量体、アルキル基
の炭素数が1〜8であるアクリル酸アルキルエステル単
量体および非重合性溶媒を、夫々下記式 0.70≦A/(A+B)≦0.998 0.050≦C/(A+B+C)≦0.100 (式中Aはメタクリル酸メチル単量体の重量部、Bはア
クリル酸アルキルエステル単量体の重量部、Cは非重合
性溶媒の重量部を表わす。)を満足する重量部有する蒸
留精製された混合物と、反応器中における半減期が5.
55×10-5〜2.30時間である遊離基発生剤と、連
鎖移動剤とからなる供給液を気体窒素と向流接触させる
ことにより、溶存酸素含有量を1ppm以下とし、且つ
透過粒径2μm以下のフィルターを通過させることによ
り、固形状異物を除去した後、連続的に反応器に供給
し、反応器内を130〜170℃に保ち均一に攪拌混合
しながら、反応器中における反応液の平均滞留時間を
0.3〜1.9時間、遊離基発生剤の半減期と反応器中
の反応液の平均滞留時間の比を5.0×10-4〜2.5
0、反応器中の重合体濃度(重量分率)を0.40〜
0.70、全供給液中の遊離基発生剤の発生遊離基換算
濃度(mol・g-1)と反応器中の重合液のポリマー濃
度(重量分率)の比を0.5×10-6〜6.0×10-6
mol・g-1、そして重合体の数平均分子量を2.5×
104〜15.0×104の範囲内に夫々制御して連続的
に重合反応させ、次いで反応器より反応液を連続的に払
い出し減圧脱揮処理することを特徴とするメタクリル系
重合体の製造方法。
1. A methyl methacrylate monomer, an alkyl acrylate monomer having an alkyl group having 1 to 8 carbon atoms and a non-polymerizable solvent are each represented by the following formula: 0.70 ≦ A / (A + B) ≦ 0.998 0.050 ≦ C / (A + B + C) ≦ 0.100 (where A is part by weight of methyl methacrylate monomer, B is part by weight of alkyl acrylate monomer, and C is non-polymerizable solvent And a half-life in a reactor of 5.50 parts by weight.
The dissolved oxygen content is reduced to 1 ppm or less, and the permeation particle size is reduced by bringing a feed solution comprising a free radical generator, which is 55 × 10 −5 to 2.30 hours, and a chain transfer agent into countercurrent contact with gaseous nitrogen. After removing solid foreign matter by passing through a filter of 2 μm or less, the reaction liquid in the reactor is continuously supplied to the reactor, and uniformly stirred and mixed while keeping the inside of the reactor at 130 to 170 ° C. And the ratio of the half-life of the free radical generator to the average residence time of the reaction solution in the reactor is from 5.0 × 10 -4 to 2.5.
0, the polymer concentration (weight fraction) in the reactor is 0.40 to 0.40.
0.70, the ratio of the concentration of the generated free radicals (mol · g −1 ) of the free radical generator in the whole supply liquid to the polymer concentration (weight fraction) of the polymerization liquid in the reactor is 0.5 × 10 − 6 to 6.0 × 10 -6
mol · g −1 , and the number average molecular weight of the polymer is 2.5 ×
A methacrylic polymer characterized in that the polymerization reaction is continuously controlled in the range of 10 4 to 15.0 × 10 4 , and then the reaction solution is continuously discharged from the reactor and subjected to devolatilization under reduced pressure. Production method.
【請求項2】 非重合性溶媒が、エチルベンゼン、トル
エン、o−キシレン、m−キシレン、p−キシレンより
選ばれた一種以上の溶媒である請求項1記載のメタクリ
ル系重合体の製造方法。
2. The method for producing a methacrylic polymer according to claim 1, wherein the non-polymerizable solvent is at least one solvent selected from ethylbenzene, toluene, o-xylene, m-xylene, and p-xylene.
JP22265298A 1998-08-06 1998-08-06 Production of methacrylic polymer with excellent production stability Pending JP2000053708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22265298A JP2000053708A (en) 1998-08-06 1998-08-06 Production of methacrylic polymer with excellent production stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22265298A JP2000053708A (en) 1998-08-06 1998-08-06 Production of methacrylic polymer with excellent production stability

Publications (1)

Publication Number Publication Date
JP2000053708A true JP2000053708A (en) 2000-02-22

Family

ID=16785817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22265298A Pending JP2000053708A (en) 1998-08-06 1998-08-06 Production of methacrylic polymer with excellent production stability

Country Status (1)

Country Link
JP (1) JP2000053708A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074822A1 (en) * 2001-03-15 2002-09-26 Toagosei Co., Ltd. Process for producing copolymer
WO2009125764A1 (en) 2008-04-08 2009-10-15 住友化学株式会社 Methacrylic resin composition for hot plate melt-bonding, use of the same for hot plate melt-bonding, and melt-bonding method
KR101172967B1 (en) 2007-08-21 2012-08-09 가부시키가이샤 닛폰 쇼쿠바이 Process for production of acrylic resin pellet, and process for production of film
JP2012251064A (en) * 2011-06-02 2012-12-20 Mitsubishi Rayon Co Ltd Acrylic polymer and method for producing the same
WO2013161265A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition
KR20150004872A (en) * 2012-04-27 2015-01-13 가부시키가이샤 구라레 (meth)acrylic resin composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074822A1 (en) * 2001-03-15 2002-09-26 Toagosei Co., Ltd. Process for producing copolymer
US7163992B2 (en) 2001-03-15 2007-01-16 Toagosei Co., Ltd. Methods for manufacturing a copolymer with a high yield by reacting a vinyl monomer and a macromonomer
CN104057554A (en) * 2007-08-21 2014-09-24 株式会社日本触媒 Process for production of acrylic resin pellet, and process for production of film
KR101172967B1 (en) 2007-08-21 2012-08-09 가부시키가이샤 닛폰 쇼쿠바이 Process for production of acrylic resin pellet, and process for production of film
WO2009125764A1 (en) 2008-04-08 2009-10-15 住友化学株式会社 Methacrylic resin composition for hot plate melt-bonding, use of the same for hot plate melt-bonding, and melt-bonding method
JP2012251064A (en) * 2011-06-02 2012-12-20 Mitsubishi Rayon Co Ltd Acrylic polymer and method for producing the same
WO2013161265A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition
CN104271663A (en) * 2012-04-27 2015-01-07 株式会社可乐丽 (meth) acrylic resin composition
KR20150004871A (en) * 2012-04-27 2015-01-13 가부시키가이샤 구라레 (meth)acrylic resin composition
KR20150004872A (en) * 2012-04-27 2015-01-13 가부시키가이샤 구라레 (meth)acrylic resin composition
JPWO2013161265A1 (en) * 2012-04-27 2015-12-21 株式会社クラレ (Meth) acrylic resin composition
TWI568751B (en) * 2012-04-27 2017-02-01 可樂麗股份有限公司 (meth) acrylic resin composition
KR101958051B1 (en) * 2012-04-27 2019-03-13 주식회사 쿠라레 (meth)acrylic resin composition
KR101958052B1 (en) * 2012-04-27 2019-03-13 주식회사 쿠라레 (meth)acrylic resin composition

Similar Documents

Publication Publication Date Title
JP3628518B2 (en) Methacrylic polymer and process for producing the same
JP3395291B2 (en) Method for producing methacrylic polymer
KR100427376B1 (en) Process for Preparing Polymer
US5599888A (en) Process for preparing methyl methacrylate polymer
CN1137161C (en) Process for producing copolymer
CN101724120B (en) Preparation method of (methyl) acrylic polymer
JP2000053708A (en) Production of methacrylic polymer with excellent production stability
JP2000053709A (en) Continuous production of methacrylic polymer
JP3937111B2 (en) Method for producing polymer
JP3801124B2 (en) Method for producing methacrylic polymer
JP3013951B2 (en) Acrylic resin manufacturing method
JP3565229B2 (en) Method for producing methacrylic resin
JP3636554B2 (en) Method for removing impurities in continuous solution polymerization
JPS6357613A (en) Methacrylate resin and its production
JP3779777B2 (en) Method for producing methacrylic resin
JP2001342263A (en) Resin molding for optical material and light guide plate comprising the same
JP3628124B2 (en) Method for removing impurities in continuous bulk polymerization
JP3779776B2 (en) Method for producing methacrylic resin with excellent optical quality
JPH10152505A (en) Production of styrene-methyl methacrylate-based polymer
US20140309383A1 (en) Method for producing methacrylic-based polymer
JPH06239938A (en) Production of methacrylic resin
JPH07206906A (en) Methacrylic resin having resistance to thermal decomposition and its production
JPH1087737A (en) Removal of impurity in continuous solution polymerization
WO2020085474A1 (en) Method for producing methacrylic resin composition
JPH07206905A (en) Methacrylic resin having resistance to thermal decomposition and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050803

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20050803

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408