WO2011142384A1 - Method for producing methacrylic polymer - Google Patents

Method for producing methacrylic polymer Download PDF

Info

Publication number
WO2011142384A1
WO2011142384A1 PCT/JP2011/060842 JP2011060842W WO2011142384A1 WO 2011142384 A1 WO2011142384 A1 WO 2011142384A1 JP 2011060842 W JP2011060842 W JP 2011060842W WO 2011142384 A1 WO2011142384 A1 WO 2011142384A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
syrup
acrylate
meth
monomer
Prior art date
Application number
PCT/JP2011/060842
Other languages
French (fr)
Japanese (ja)
Inventor
昌大 林田
壽晃 好村
大輔 野中
裕介 森田
光弘 松尾
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020127032390A priority Critical patent/KR101780846B1/en
Priority to CN201180023792.9A priority patent/CN102933610B/en
Priority to JP2011521392A priority patent/JP5786712B2/en
Publication of WO2011142384A1 publication Critical patent/WO2011142384A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate

Definitions

  • the present invention relates to a method for producing a methacrylic polymer capable of realizing a high monomer conversion rate and productivity.
  • Patent Document 1 and Patent Document 2 describe productivity and physical properties in the production of acrylic resin by performing polymerization in a completely mixed reactor and then polymerizing in a tubular reactor such as a plug flow reactor. A method for producing a balanced acrylic resin is disclosed.
  • Patent Document 1 discloses a method for producing an acrylic resin in which productivity and physical properties are balanced by using a tubular reactor subsequent to a tank reactor in the production of an acrylic resin.
  • productivity and physical properties are balanced by using a tubular reactor subsequent to a tank reactor in the production of an acrylic resin.
  • the ultimate polymerization rate is 72%, but there is no description of a method for further increasing the polymerization rate.
  • Patent Document 2 describes that the polymerization is terminated using the equilibrium polymerization rate, and the ultimate polymerization rate is determined by the final temperature of the polymer.
  • the ultimate polymerization rate is 68%, but it is considered that an ultimate polymerization rate exceeding this value cannot be achieved.
  • factors that determine the equilibrium polymerization rate there is no mention of factors that determine the equilibrium polymerization rate.
  • An object of the present invention is to provide a method for producing a methacrylic polymer capable of realizing a high monomer conversion (attainment polymerization rate) and productivity in bulk polymerization of methacrylic monomers.
  • the monomer conversion rate can be improved by adding a predetermined amount of initiator in the polymerization in the tubular reactor. It was also found that the monomer conversion rate can be improved by increasing the amount of methyl acrylate used as a copolymerization component of the methacrylic polymer, despite the same amount of initiator used as before.
  • the present inventors adjust the concentration of the radical polymerization initiator and the concentration of the alkyl (meth) acrylate in the second polymerization downstream thereof after the polymerization in the complete mixing reactor to a predetermined range. As a result, it was found that the monomer conversion can be improved, and the present invention has been completed.
  • the present invention supplies methyl methacrylate alone or a monomer containing alkyl methacrylate (meth) acrylate other than methyl methacrylate and methyl methacrylate to the fully mixed reactor (A), and performs polymerization with the first radical polymerization initiator, Obtaining a first syrup (a), Step (b) of supplying the first syrup and the second radical polymerization initiator to the reactor (B) arranged downstream of the fully mixed reactor (A) to perform polymerization to obtain the second syrup.
  • the present invention it is possible to provide a method for producing a methacrylic polymer capable of realizing a high monomer conversion rate and productivity even in bulk polymerization of a methacrylic monomer.
  • a methacrylic monomer is polymerized to produce a methacrylic polymer.
  • the “methacrylic polymer” means a homopolymer of methyl methacrylate or a copolymer of copolymerization components (monomers) such as methyl methacrylate and alkyl (meth) acrylate other than methyl methacrylate.
  • (Meth) acrylate means acrylate or metallate.
  • Examples of the polymerization method include a bulk polymerization method, a suspension polymerization method, and a solution polymerization method.
  • the bulk polymerization method is preferred from the viewpoint of monomer conversion and productivity.
  • the polymerization method may be a continuous method or a batch method.
  • alkyl (meth) acrylates other than methyl methacrylate as a copolymer component include methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, tert-butyl (meth) acrylate, sec-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, tridecyl (meth) ) Acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylate.
  • methyl acrylate, ethyl acrylate, and butyl acrylate are preferable. Only 1 type may be used for the alkyl (meth) acrylate which is a copolymerization component, and 2 or more types may be used together.
  • monomers other than alkyl (meth) acrylate can be used in combination as a copolymerization component.
  • specific examples of such monomers include methacrylic acid, acrylic acid, crotonic acid, vinyl benzoic acid, fumaric acid, itaconic acid, maleic acid, citraconic acid and other monobasic acid or dibasic vinyl monomers; maleic anhydride, etc.
  • Lolactone ring-opening adduct ethylene oxide ring-opening adduct to (meth) acrylic acid, propylene oxide ring-opening adduct to (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate or 2-hydroxypropyl (meth) ) (Meth) acrylic acid ester having a hydroxyl
  • the amount of alkyl (meth) acrylate other than methyl methacrylate is preferably 0.5 to 20% by mass. Moreover, when using monomers other than alkyl (meth) acrylate together as a copolymerization component, the amount is preferably 20% by mass or less. Further, the monomer used for the polymerization is preferably composed of 80 to 99.5% by mass of methyl methacrylate and 0.5 to 20% by mass of alkyl (meth) acrylate other than methyl methacrylate.
  • alkyl (meth) acrylate When the content of alkyl (meth) acrylate is 0.5% by mass or more, the thermal stability of the methacrylic polymer obtained is improved, the thermal decomposition of the resin is difficult to proceed during molding, generation of bubbles in the molded product, etc. , No appearance defects. Further, when the alkyl (meth) acrylate content is 20% by mass or less, the heat resistance of the resulting methacrylic polymer is improved, and the molded product is not deformed by heat and is used well for general purposes. it can.
  • Step (a) in the present invention is a step of supplying the above-mentioned monomer to the complete mixing reactor (A) and performing polymerization with the first radical polymerization initiator to obtain the first syrup.
  • the first radical polymerization initiator may be any one that decomposes at the temperature of the reaction system in step (a) to generate radicals.
  • tert-butylperoxy-3,5,5-trimethylhexanate tert-butylperoxylaurate
  • tert-butylperoxyisopropylmonocarbonate tert-hexylperoxyisopropylmonocarbonate
  • tert-butyl peroxyacetate 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane
  • 1,1-bis (tert-butylperoxy) cyclohexane 1,1-bis (tert-butylperoxy 2-ethylhexanate
  • Tert-butylperoxyisobutyrate tert-hexyl-hexylperoxy 2-ethylhexanate
  • di-tert-butyl peroxide 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane Etc.
  • the radical polymerization initiator preferably has a half-life of 10 seconds to 30 minutes with respect to the temperature used. If the half-life is moderately long, the radical polymerization initiator is uniformly diffused in the polymerization system and then decomposed to suppress the generation of oligomers that are easily thermally decomposed. Also, if the half-life is reasonably short, when the operation is stopped in an emergency, the reaction solution becomes so viscous that it is difficult to restart.
  • the amount of the first radical polymerization initiator used may be appropriately determined according to various conditions such as the polymerization temperature of the reaction system in step (a), the average residence time of the reactants, and the target monomer conversion rate.
  • the first radical polymerization initiator is used in an amount of 5.0 ⁇ 10 ⁇ 5 mol or less per 1 mol of the monomer in order to obtain a methacrylic polymer having a small amount of terminal double bonds and excellent thermal decomposition resistance. In view of industrial productivity, 5.0 ⁇ 10 ⁇ 6 mol or more is preferable.
  • a chain transfer agent can also be used for the polymerization in step (a).
  • a mercaptan compound include alkyl groups or substituted alkyl groups such as n-butyl mercaptan, isobutyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, sec-butyl mercaptan, sec-dodecyl mercaptan, and tert-butyl mercaptan.
  • a chain transfer agent may use only 1 type and may use 2 or more types together.
  • the amount of chain transfer agent used is an appropriate degree of polymerization that can be processed while maintaining product strength (generally the range of industrial use as a molding material is the polymer after the final removal of volatiles. In terms of weight average molecular weight of from 70,000 to 150,000), and from the viewpoint of producing a methacrylic polymer having excellent thermal decomposition resistance, 0.01 to 1 mol% is preferable to 100 mol% of the monomer. 0.05 to 0.5 mol% is more preferable.
  • an inert solvent is used.
  • an inert solvent include methanol, ethanol, toluene, xylene, acetone, methyl isobutyl ketone, ethylbenzene, methyl ethyl ketone, and butyl acetate.
  • methanol, toluene, ethylbenzene, and butyl acetate are preferable. Only 1 type may be used for an inert solvent and it may use 2 or more types together.
  • the amount of the inert solvent used is preferably less than 5% by mass in the reaction solution composition. It is more preferable to carry out bulk polymerization without using an inert solvent. However, if the amount of the inert solvent used is less than 5% by mass in the reaction solution composition, the thermal decomposition resistance is hardly impaired and the same as in bulk polymerization. By utilizing the gel effect, the monomer conversion can be effectively increased by using a small amount of radical polymerization initiator.
  • the complete mixing reactor (A) is an apparatus for reacting the supplied raw materials in a state of being uniformly mixed by a stirring device or the like.
  • the fully mixed reactor (A) may be a batch tank reactor or a continuous tube reactor.
  • a tank reactor equipped with a supply port, a discharge port, and a stirring device can be used.
  • the stirrer preferably has mixing performance over the entire reaction zone.
  • a plug flow reactor is preferable, and a jacketed tubular reactor having a static mixer built therein is more preferable. If the static mixer is installed, the reaction can be made uniform and the flow of the reaction liquid can be stabilized by the stirring effect.
  • As the static mixer a static mixer manufactured by Noritake Co., Ltd. and a through-the mixer manufactured by Sumitomo Heavy Industries, Ltd. are suitable. Only one type of complete mixing reactor (A) may be used, or two or more types may be used in combination. One type of reactor may be connected in series.
  • the raw material composition containing the monomer and the first radical polymerization initiator is heated in an appropriate condition in the fully mixed reactor (A) to polymerize a part of the methacrylic monomer, Get the first syrup.
  • the polymerization temperature may be appropriately set within a range in which a first syrup having a desired monomer conversion rate is obtained.
  • a tank reactor as the complete mixing reactor (A)
  • it can be selected from the range of 110 to 180 ° C. (preferably 120 to 160 ° C.), for example.
  • step (a) is carried out in a tubular reactor following the tank reactor, for example, an inlet temperature of 110 to 170 ° C.
  • the monomer conversion in the first syrup obtained in the step (a) is preferably 35 to 70% by mass, more preferably 45 to 60% by mass.
  • the upper limit of these ranges is significant in that the uniformity in the tank is maintained in the tank reactor, mixing and heat transfer in the tank are sufficiently achieved, and stable operation is performed. Further, the lower limit value is significant in terms of improving productivity by setting a sufficient monomer conversion rate.
  • the temperature of the first syrup obtained in step (a) is preferably 110 to 180 ° C, more preferably 120 to 160 ° C.
  • the lower limit of these ranges is significant in that it suppresses the formation of dimers and maintains the transparency and mechanical strength of the polymer after removal of volatiles.
  • the upper limit is significant in that it suppresses the acceleration phenomenon of the polymerization rate due to the gel effect, and operates stably at a high monomer conversion rate.
  • polymerization can be performed as follows.
  • an inert gas such as nitrogen
  • the dissolved oxygen concentration is set to 2 mass ppm or less, more preferably 1 mass ppm or less.
  • the first syrup is extracted from the fully mixed reactor (A), and then supplied to the reactor (B) arranged thereafter.
  • the first syrup may be cooled before being sent to the reactor (B).
  • Step (b) In the step (b) of the present invention, the reactor (B) in which the first syrup and the second radical polymerization initiator obtained in the above step (a) are arranged downstream of the complete mixing reactor (A).
  • the second syrup is obtained by performing polymerization by supplying to the polymer.
  • the content of the alkyl (meth) acrylate other than methyl methacrylate in the monomer is x [mass%], and the second content relative to the first syrup supply amount per unit time in the reactor (B).
  • x and y satisfy the following formula.
  • the monomer conversion rate can be increased in a short time. Further, by satisfying the relationship of 8.5x + 123 ⁇ y, it becomes possible to produce a methacrylic polymer having excellent thermal stability. When the thermal stability is excellent, the thermal decomposition of the resin is difficult to proceed during molding, and appearance defects such as generation of bubbles in the molded product are eliminated.
  • the second radical polymerization initiator for example, the same one as the first radical polymerization initiator can be used.
  • the amount of the second radical polymerization initiator used may be the same as that of the first radical polymerization initiator as long as the above formula is satisfied.
  • the second radical polymerization initiator is preferably a higher temperature decomposition type radical polymerization initiator than the first radical polymerization initiator. Specifically, it is preferable to use a radical polymerization initiator having a half-life longer than that of the first radical polymerization initiator at the average temperature in step (b) as the second radical polymerization initiator.
  • a radical polymerization initiator having a longer half-life than the first radical polymerization initiator at the average temperature in step (b), and the same as the first radical polymerization initiator A radical polymerization initiator can also be used in combination. By using two kinds of radical polymerization initiators in combination, the amount of polymerization initiator necessary for obtaining the same monomer conversion rate can be reduced.
  • the second radical polymerization initiator can be added in multiple portions.
  • the total of the mass ratio [ppm] of the second radical polymerization initiator to syrup supplied per unit time in each time is defined as y [ppm].
  • reactor (B) Specific examples of the reactor (B) are the same as the specific examples of the complete mixing reactor (A) described above, but a tubular reactor is particularly preferable. Only one type of reactor (B) may be used, or two or more types may be used in combination. One type of reactor may be connected in series.
  • the composition containing the first syrup and the second radical polymerization initiator is heated in an appropriate condition in the reactor (B), and one monomer present in the first syrup is obtained.
  • the part is polymerized to obtain a second syrup.
  • the polymerization temperature may be appropriately set so that the second syrup has a desired monomer conversion rate.
  • the monomer conversion rate in the second syrup obtained in the step (b) is preferably 50 to 90% by mass, and more preferably 70 to 80% by mass.
  • the upper limit of these ranges is significant in that the viscosity of syrup is moderately suppressed and the pressure loss when flowing in the process is reduced.
  • the lower limit is significant in that it reduces the residual monomer and reduces the burden on the subsequent devolatilization process.
  • the temperature of the inner wall of the reactor (B) is preferably from 125 to 210 ° C, more preferably from 150 to 195 ° C.
  • the lower limit of these ranges is significant in that the monomer conversion is 70% or more.
  • the upper limit is significant in that the polymer in the process maintains fluidity and performs stable operation.
  • the step (c) in the present invention is a step for removing the methacrylic polymer by devolatilizing the second syrup obtained in the above step (b). By this step (c), the amount of residual monomer in the methacrylic polymer is reduced and the heat resistance is improved.
  • Step (c) can be performed, for example, by putting the second syrup into a devolatilizing extruder.
  • the second syrup may remain at the temperature obtained in step (b) or may be further heated. When the second syrup is further heated, it is preferable that the temperature does not exceed 250 ° C.
  • the second syrup is discharged under a reduced pressure of 0.0001 to 0.1 MPa to continuously separate and remove most of the volatiles mainly composed of methacrylic monomers.
  • the content of the monomer in the methacrylic polymer obtained by separating and removing volatiles is preferably 0.3% by mass or less, and the content of the monomer dimer as a by-product of the polymerization reaction is 0.1% by mass. % Or less is preferable, and the content of the mercaptan compound is preferably 50 ppm by mass or less.
  • volatiles such as unreacted methacrylic monomers are condensed and recovered by a condenser and reused as a raw material in the step (a). At this time, it is more preferable to reuse as a raw material of the step (a) after separating and removing high-boiling components such as a dimer of a methacrylic monomer contained in the volatile matter by distillation.
  • the methacrylic polymer thus produced can be used as a molding material, for example.
  • lubricants such as higher alcohols and higher fatty acid esters, ultraviolet absorbers, heat stabilizers, colorants, antistatic agents and the like can be added.
  • the molecular weight of the polymer was measured by the following method.
  • Tosoh HLC-8020 was used as the GPC apparatus, and two Tosoh GMHXL were used as the columns. Tetrahydrofuran (THF) was used as a solvent, a calibration curve was made using TSK standard polystyrene manufactured by Tosoh Corporation, and a solution having a concentration of 0.1 g / dl dissolved by standing was used.
  • the weight average molecular weight Mw was determined by a GPC data processing device (data device SC-80 / 10 manufactured by Tosoh Corporation).
  • PS-60E manufactured by Nissei Plastic Industry Co., Ltd.
  • the molding temperature was set to 300 ° C.
  • a spiral molded body was produced, and the appearance was observed.
  • Example 1 The present invention was implemented as follows using the apparatus shown in FIG.
  • Step (a) Nitrogen was introduced into the purified monomer mixture consisting of 98% by mass of methyl methacrylate and 2% by mass of methyl acrylate, so that the dissolved oxygen was 0.5 ppm.
  • this monomer mixture 0.157 mol% (0.23 mass%) of n-octyl mercaptan as a chain transfer agent and 1,1-bis (tert-butylperoxy) 3 as a first radical initiator , 3,5-trimethylcyclohexane 2.67 ⁇ 10 ⁇ 5 mol / monomer 1 mol (80 ppm) mixed raw material composition as a first reactor 11 controlled at a polymerization temperature of 135 ° C.
  • the mixture was continuously fed while stirring and mixing, and the polymerization was carried out with an average residence time in the reaction zone of the raw material composition of 2.5 hours to obtain a first syrup.
  • the half-life of 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane) at this polymerization temperature (135 ° C.) is 230 seconds.
  • Step (b) Subsequently, the first syrup is continuously extracted from the first reactor 11 by the gear pump 31, and the second radical initiator is started with an initiator charging device 21 (a pipe equipped with an SMX through the mixer manufactured by Sumitomo Heavy Industries, Ltd.). 1,1-bis (tert-butylperoxy) 3,3,5-trimethylsiloxane was added so that the mass ratio to the amount of syrup supplied per unit time was 40 ppm, and this was the second reactor 12. Polymerization was carried out by supplying the reactor to a tubular reactor (plug flow reactor) equipped with a static mixer manufactured by Noritake Campan Co., Ltd., with an inner wall temperature of 150 ° C. and an average residence time of syrup of 20 minutes. The half-life of 1,1-bis (tert-butylperoxy) 3,3,5-trimethylsiloxane at this temperature (150 ° C.) is 54 seconds.
  • an initiator charging device 21 a pipe equipped with an SMX through the mixer manufactured by Sumitom
  • the syrup polymerized in the second reactor 12 is led to an initiator charging device 22 of the same type as described above, and di-t-butyl peroxide is further added as a second radical initiator in a mass ratio with respect to the supply amount of syrup per unit time.
  • di-t-butyl peroxide is further added as a second radical initiator in a mass ratio with respect to the supply amount of syrup per unit time.
  • polymerization was carried out with an inner wall temperature of 170 ° C., an internal pressure of 25 kg / cm 2 G, and an average residence time of 20 minutes to obtain a second syrup.
  • the half-life of di-t-butyl peroxide at this temperature (170 ° C.) is 250 seconds.
  • Step (c) the second syrup is continuously supplied from the outlet of the second reactor 12 to the devolatilizing extruder 14 (bent extruder type extruder) at 195 ° C., and the unreacted monomer is the main component at 270 ° C. Volatiles were separated and removed to obtain a methacrylic polymer.
  • Example 2 The amount of initiator added to the second reactor 12 [first reactor (B)] was changed to 60 ppm, and the amount of initiator added to the third reactor 13 [second reactor (B)] was changed to 60 ppm. Except that, the same operation as in Example 1 was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate relative to the raw material charged was 80% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. Moreover, when said moldability evaluation was performed about the obtained methacrylic polymer, presence of a bubble was not recognized but the external appearance of the molded article was favorable. The results are shown in Table 1.
  • Example 3 The amount of methyl methacrylate in the monomer mixture was changed to 85% by mass, the amount of methyl acrylate was changed to 15% by mass, and the amount of initiator added to the second reactor 12 [first reactor (B)] was 20 ppm. The same operation as in Example 1 was performed except that the amount of initiator added to the reactor 13 [second reactor (B)] was changed to 15 ppm. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate relative to the raw material charged was 73% by mass.
  • Example 4 The amount of initiator added to the second reactor 12 [first reactor (B)] was changed to 60 ppm, and the amount of initiator added to the third reactor 13 [second reactor (B)] was changed to 60 ppm. Except that, the same operation as in Example 3 was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate with respect to the raw material charged was 77% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. Moreover, when said moldability evaluation was performed about the obtained methacrylic polymer, presence of a bubble was not recognized but the external appearance of the molded article was favorable. The results are shown in Table 1.
  • Example 5 The amount of initiator added to the second reactor 12 [first reactor (B)] was changed to 100 ppm, and the amount of initiator added to the third reactor 13 [second reactor (B)] was changed to 100 ppm. Except that, the same operation as in Example 3 was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate relative to the raw material charged was 83% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. Moreover, when said moldability evaluation was performed about the obtained methacrylic polymer, presence of a bubble was not recognized but the external appearance of the molded article was favorable. The results are shown in Table 1.
  • Example 3 except that the amount of initiator added to the second reactor 12 [first reactor (B)] and the third reactor 13 [second reactor (B)] was changed to no addition. The same operation was performed.
  • the monomer conversion rate with respect to the raw material charged was as low as 50% by mass, and the amount of resin obtained per unit time was small. Less. The results are shown in Table 1.
  • Table 1 shows the conditions of each Example and each Comparative Example and the characteristics of the obtained polymer.
  • MMA methyl methacrylate
  • MA methyl acrylate
  • I 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane
  • Ha di-t-butyl peroxide
  • F n-octyl mercaptan

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Disclosed is a method for producing a methacrylic polymer that satisfies the formula. The method comprises a step (a) for obtaining a first syrup by supplying methyl methacrylate and, if desired, another monomer containing an alkyl (meth)acrylate to a complete mixing reactor (A) (11) and carrying out polymerization using a first radical polymerization initiator, a step (b) for obtaining a second syrup by supplying the first syrup and a second radical polymerization initiator to reactors (B) (12, 13) disposed downstream of the reactor (A) and carrying out polymerization, and a volatilizing/removing step (c) for the second syrup. 8.5x + 123 ≥ y ≥ -2.6 + 45 [y is the mass ratio (ppm) of the amount of the second radical polymerization initiators supplied to the amount of the first radical syrup supplied per unit time to the reactor (B), and x is the alkyl (meth)acrylate content (% by mass) in the monomer.]

Description

メタクリル系重合体の製造方法Method for producing methacrylic polymer
 本発明は、高いモノマー転化率及び生産性を実現可能なメタクリル系重合体の製造方法に関する。 The present invention relates to a method for producing a methacrylic polymer capable of realizing a high monomer conversion rate and productivity.
 メタクリル系樹脂の工業的生産方法には、懸濁重合による方法と塊状重合による方法がある。塊状重合法では、懸濁重合法で用いられる分散剤等の添加剤の使用が無く、透明性に優れた樹脂の製造が可能であることが知られている。特許文献1及び特許文献2は、アクリル樹脂の製造において、完全混合型反応器内で重合を行い、引き続いてプラグフロー型反応器等の管型反応器内で重合することで、生産性と物性のバランスの取れたアクリル樹脂の製造方法を開示している。 There are two methods for industrial production of methacrylic resins: suspension polymerization and bulk polymerization. In the bulk polymerization method, it is known that an additive such as a dispersant used in the suspension polymerization method is not used, and a resin having excellent transparency can be produced. Patent Document 1 and Patent Document 2 describe productivity and physical properties in the production of acrylic resin by performing polymerization in a completely mixed reactor and then polymerizing in a tubular reactor such as a plug flow reactor. A method for producing a balanced acrylic resin is disclosed.
特開2000-26507号公報JP 2000-26507 A 特開2003-2912号公報JP 2003-2912 A
 特許文献1は、アクリル樹脂の製造において、槽型反応器に引き続き、管型反応器を用いることで、生産性と物性のバランスの取れたアクリル樹脂の製造方法を開示している。この文献には、到達重合率72%を最高値とした実施例の記載があるが、さらに重合率を上げる方法についての記載は無い。 Patent Document 1 discloses a method for producing an acrylic resin in which productivity and physical properties are balanced by using a tubular reactor subsequent to a tank reactor in the production of an acrylic resin. In this document, there is a description of an example in which the ultimate polymerization rate is 72%, but there is no description of a method for further increasing the polymerization rate.
 特許文献2には、平衡重合率を利用して重合停止を行うことについての記載があり、重合体の最終温度によって到達重合率が決まる。この文献には、到達重合率68%を最高値とした実施例の記載があるが、これを超える到達重合率を達成することはできないと考えられる。また、平衡重合率を決定する因子については、全く述べられていない。 Patent Document 2 describes that the polymerization is terminated using the equilibrium polymerization rate, and the ultimate polymerization rate is determined by the final temperature of the polymer. In this document, there is a description of an example in which the ultimate polymerization rate is 68%, but it is considered that an ultimate polymerization rate exceeding this value cannot be achieved. In addition, there is no mention of factors that determine the equilibrium polymerization rate.
 本発明の目的は、メタクリル系モノマーの塊状重合等において、高いモノマー転化率(到達重合率)及び生産性を実現可能なメタクリル系重合体の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a methacrylic polymer capable of realizing a high monomer conversion (attainment polymerization rate) and productivity in bulk polymerization of methacrylic monomers.
 平衡重合率に基く考え方に従えば、管型反応器に添加する開始剤量を増量しても重合体の到達重合率は向上できないと考えられていた。しかし、本発明者らが鋭意検討した結果、管型反応器での重合において開始剤を所定の量を添加することで、モノマー転化率を向上できることが分かった。また、メタクリル系重合体の共重合成分として用いられるアクリル酸メチルの添加量を増加させることで、従来と同量の開始剤使用量にも関わらず、モノマー転化率を向上できることが分かった。これらの知見に基き本発明者らは、完全混合型反応器の重合後、その下流での第二の重合におけるラジカル重合開始剤濃度及びアルキル(メタ)アクリレートの濃度を所定の範囲に調整することによりモノマー転化率を向上出来ることを見出し、本発明を完成するに至った。 According to the idea based on the equilibrium polymerization rate, it was considered that the ultimate polymerization rate of the polymer could not be improved even if the amount of initiator added to the tubular reactor was increased. However, as a result of intensive studies by the present inventors, it has been found that the monomer conversion rate can be improved by adding a predetermined amount of initiator in the polymerization in the tubular reactor. It was also found that the monomer conversion rate can be improved by increasing the amount of methyl acrylate used as a copolymerization component of the methacrylic polymer, despite the same amount of initiator used as before. Based on these findings, the present inventors adjust the concentration of the radical polymerization initiator and the concentration of the alkyl (meth) acrylate in the second polymerization downstream thereof after the polymerization in the complete mixing reactor to a predetermined range. As a result, it was found that the monomer conversion can be improved, and the present invention has been completed.
 すなわち本発明は、メチルメタクリレート単独又はメチルメタクリレートとメチルメタクリレート以外のアルキル(メタ)アクリレートを含むモノマーを完全混合型反応器(A)に供給して、第一のラジカル重合開始剤により重合を行い、第一のシラップを得る工程(a)、
 完全混合型反応器(A)の下流に配置された反応器(B)に第一のシラップ及び第二のラジカル重合開始剤を供給して重合を行い、第二のシラップを得る工程(b)、及び
 第二のシラップを脱揮する工程(c)
を順次行いメタクリル系重合体を製造する方法であって、
 前記モノマー中のメチルメタクリレート以外のアルキル(メタ)アクリレートの含有量をx[質量%]、前記反応器(B)における単位時間あたりの第一のシラップ供給量に対する単位時間あたりの第二のラジカル重合開始剤供給量の質量比をy[ppm]としたとき、xとyが以下の式を満たすことを特徴とするメタクリル系重合体の製造方法である。
That is, the present invention supplies methyl methacrylate alone or a monomer containing alkyl methacrylate (meth) acrylate other than methyl methacrylate and methyl methacrylate to the fully mixed reactor (A), and performs polymerization with the first radical polymerization initiator, Obtaining a first syrup (a),
Step (b) of supplying the first syrup and the second radical polymerization initiator to the reactor (B) arranged downstream of the fully mixed reactor (A) to perform polymerization to obtain the second syrup. And (c) devolatilizing the second syrup
In order to produce a methacrylic polymer,
The content of alkyl (meth) acrylate other than methyl methacrylate in the monomer is x [mass%], the second radical polymerization per unit time with respect to the first syrup supply amount per unit time in the reactor (B) When the mass ratio of the initiator supply amount is y [ppm], x and y satisfy the following formula: A method for producing a methacrylic polymer.
 8.5x+123≧y≧-2.6x+45 8.5x + 123 ≧ y ≧ −2.6x + 45
 本発明によれば、メタクリル系モノマーの塊状重合等であっても、高いモノマー転化率及び生産性を実現可能なメタクリル系重合体の製造方法を提供できる。 According to the present invention, it is possible to provide a method for producing a methacrylic polymer capable of realizing a high monomer conversion rate and productivity even in bulk polymerization of a methacrylic monomer.
実施例で使用した装置の概略構成図である。It is a schematic block diagram of the apparatus used in the Example.
 本発明では、メタクリル系モノマーを重合して、メタクリル系重合体を製造する。「メタクリル系重合体」とは、メチルメタクリレートの単独重合体又はメチルメタクリレートとメチルメタクリレート以外のアルキル(メタ)アクリレート等の共重合成分(モノマー)の共重合体を意味する。また、「(メタ)アクリレート」とは、アクリレート又はメタリレートを意味する。 In the present invention, a methacrylic monomer is polymerized to produce a methacrylic polymer. The “methacrylic polymer” means a homopolymer of methyl methacrylate or a copolymer of copolymerization components (monomers) such as methyl methacrylate and alkyl (meth) acrylate other than methyl methacrylate. “(Meth) acrylate” means acrylate or metallate.
 重合方法としては、例えば、塊状重合法、懸濁重合法、溶液重合法が挙げられる。特にモノマー転化率及び生産性の点から、塊状重合法が好ましい。その重合方法は、連続式でもよく、バッチ式でもよい。 Examples of the polymerization method include a bulk polymerization method, a suspension polymerization method, and a solution polymerization method. In particular, the bulk polymerization method is preferred from the viewpoint of monomer conversion and productivity. The polymerization method may be a continuous method or a batch method.
 共重合成分であるメチルメタクリレート以外のアルキル(メタ)アクリレートの具体例としては、メチルアクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートが挙げられる。中でも、メチルアクリレート、エチルアクリレート、ブチルアクリレートが好ましい。共重合成分であるアルキル(メタ)アクリレートは、1種のみを使用してもよく、2種以上を併用してもよい。 Specific examples of alkyl (meth) acrylates other than methyl methacrylate as a copolymer component include methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, tert-butyl (meth) acrylate, sec-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, tridecyl (meth) ) Acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylate. Of these, methyl acrylate, ethyl acrylate, and butyl acrylate are preferable. Only 1 type may be used for the alkyl (meth) acrylate which is a copolymerization component, and 2 or more types may be used together.
 さらに共重合成分として、アルキル(メタ)アクリレート以外のモノマーを併用することもできる。そのようなモノマーの具体例としては、メタクリル酸、アクリル酸、クロトン酸、ビニル安息香酸、フマール酸、イタコン酸、マレイン酸、シトラコン酸等の一塩基酸又は二塩基酸ビニルモノマー;無水マレイン酸等の二塩基酸無水物ビニルモノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル基を有する(メタ)アクリル酸エステル;2-ヒドロキシエチル(メタ)アクリレートへのβ-ブチロラクトン開環付加物、2-ヒドロキシエチル(メタ)アクリレートへのε-カプロラクトン開環付加物、(メタ)アクリル酸へのエチレンオキシドの開環付加物、(メタ)アクリル酸へのプロピレンオキシドの開環付加物、2-ヒドロキシエチル(メタ)アクリレート又は2-ヒドロキシプロピル(メタ)アクリレートの2量体や3量体等の末端に水酸基を有する(メタ)アクリル酸エステル;4-ヒドロキシブチルビニルエーテル、p-ヒドロキシスチレン等の他の水酸基含有ビニルモノマー;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボロニル(メタ)アクリレート、スチレン;o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン等のスチレン系モノマー;アクリロニトリル、メタクリロニトリル、酢酸ビニル、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、アリルグリシジルエーテル等のエポキシ基含有ビニルモノマー、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、N-メトキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-エトキシメチルアクリルアミド、N-プロポキシメチルアクリルアミド、N-ブトキシメチルアクリルアミド;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル基を有する(メタ)アクリレート;が挙げられる。 Furthermore, monomers other than alkyl (meth) acrylate can be used in combination as a copolymerization component. Specific examples of such monomers include methacrylic acid, acrylic acid, crotonic acid, vinyl benzoic acid, fumaric acid, itaconic acid, maleic acid, citraconic acid and other monobasic acid or dibasic vinyl monomers; maleic anhydride, etc. Dihydroxy anhydride vinyl monomer of 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl ( (Meth) acrylate, (meth) acrylic acid ester having a hydroxyalkyl group such as 6-hydroxyhexyl (meth) acrylate; β-butyrolactone ring-opening adduct to 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl (meta) ) Ε-Cap to acrylate Lolactone ring-opening adduct, ethylene oxide ring-opening adduct to (meth) acrylic acid, propylene oxide ring-opening adduct to (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate or 2-hydroxypropyl (meth) ) (Meth) acrylic acid ester having a hydroxyl group at the terminal of acrylate dimer or trimer; other hydroxyl group-containing vinyl monomers such as 4-hydroxybutyl vinyl ether and p-hydroxystyrene; phenyl (meth) acrylate, benzyl (Meth) acrylate, isobornyl (meth) acrylate, styrene; o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butyl Styrene such as styrene and p-tert-butylstyrene Monomers: Epoxy group-containing vinyl monomers such as acrylonitrile, methacrylonitrile, vinyl acetate, glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, allyl glycidyl ether, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, N-methoxymethylacrylamide, N-methoxymethylmethacrylamide, N-ethoxymethylacrylamide, N-propoxymethylacrylamide, N-butoxymethylacrylamide; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4 -(Meth) acrylates having a hydroxyalkyl group such as hydroxybutyl (meth) acrylate;
 重合に使用するモノマー中、メチルメタクリレート以外のアルキル(メタ)アクリレートの量は、0.5~20質量%が好ましい。また、アルキル(メタ)アクリレート以外のモノマーを共重合成分として併用する場合、その量は20質量%以下が好ましい。さらに、重合に使用するモノマーは、メチルメタクリレート80~99.5質量%と、メチルメタクリレート以外のアルキル(メタ)アクリレート0.5~20質量%とからなることが好ましい。アルキル(メタ)アクリレートの含有量が0.5質量%以上であると得られるメタクリル系重合体の熱安定性が良くなり、成形時に樹脂の熱分解が進みにくく、成形品中の気泡の発生等、外観不良が無くなる。また、アルキル(メタ)アクリレートの含有量が20質量%以下であると、得られるメタクリル系重合体の耐熱性が良くなり、この成形品は熱による変形が無く、一般的な用途で良好に使用できる。 In the monomer used for polymerization, the amount of alkyl (meth) acrylate other than methyl methacrylate is preferably 0.5 to 20% by mass. Moreover, when using monomers other than alkyl (meth) acrylate together as a copolymerization component, the amount is preferably 20% by mass or less. Further, the monomer used for the polymerization is preferably composed of 80 to 99.5% by mass of methyl methacrylate and 0.5 to 20% by mass of alkyl (meth) acrylate other than methyl methacrylate. When the content of alkyl (meth) acrylate is 0.5% by mass or more, the thermal stability of the methacrylic polymer obtained is improved, the thermal decomposition of the resin is difficult to proceed during molding, generation of bubbles in the molded product, etc. , No appearance defects. Further, when the alkyl (meth) acrylate content is 20% by mass or less, the heat resistance of the resulting methacrylic polymer is improved, and the molded product is not deformed by heat and is used well for general purposes. it can.
 [工程(a)]
 本発明における工程(a)は、上述したモノマーを完全混合型反応器(A)に供給して、第一のラジカル重合開始剤により重合を行い、第一のシラップを得る工程である。
[Step (a)]
Step (a) in the present invention is a step of supplying the above-mentioned monomer to the complete mixing reactor (A) and performing polymerization with the first radical polymerization initiator to obtain the first syrup.
 第一のラジカル重合開始剤は、工程(a)における反応系の温度で分解してラジカルを発生するものであればよい。 The first radical polymerization initiator may be any one that decomposes at the temperature of the reaction system in step (a) to generate radicals.
 その具体例としては、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサネート、tert-ブチルパーオキシラウレート、tert-ブチルパーオキシイソプロピルモノカーボネート、tert-ヘキシルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシアセテート、1,1-ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、tert-ブチルパーオキシ2-エチルヘキサネート、tert-ブチルパーオキシイソブチレート、tert-ヘキシル-ヘキシルパーオキシ2-エチルヘキサネート、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン等の有機過酸化物;2-(カルバモイルアゾ)-イソブチロニトリル、1,1'-アゾビス(1-シクロヘキサンカルボニトリル)、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルブチロニトリル)、ジメチル2,2'-アゾビスイソブチレート、2,2'-アゾビス(2,4,4-トリメチルペンタン)、2,2'-アゾビス(2-メチルプロパン)等のアゾ化合物;過硫酸カリウム等の過硫酸塩;レドックス系重合開始剤;が挙げられる。第一のラジカル重合開始剤は、1種のみを使用してもよく、2種以上を併用してもよい。 Specific examples thereof include tert-butylperoxy-3,5,5-trimethylhexanate, tert-butylperoxylaurate, tert-butylperoxyisopropylmonocarbonate, tert-hexylperoxyisopropylmonocarbonate, tert- Butyl peroxyacetate, 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, tert-butylperoxy 2-ethylhexanate , Tert-butylperoxyisobutyrate, tert-hexyl-hexylperoxy 2-ethylhexanate, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane Etc. 2- (carbamoylazo) -isobutyronitrile, 1,1′-azobis (1-cyclohexanecarbonitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis ( 2-methylbutyronitrile), dimethyl 2,2′-azobisisobutyrate, 2,2′-azobis (2,4,4-trimethylpentane), 2,2′-azobis (2-methylpropane), etc. Azo compounds; persulfates such as potassium persulfate; redox polymerization initiators. Only 1 type may be used for a 1st radical polymerization initiator, and it may use 2 or more types together.
 ラジカル重合開始剤は、使用する温度に対する半減期が10秒以上30分以下のものが好ましい。半減期が適度に長ければ、ラジカル重合開始剤が重合系内に均一に拡散した後に分解し、熱分解し易いオリゴマーの発生が抑制される。また、半減期が適度に短ければ、非常時に運転が停止した場合、反応液が高粘度となって再スタート困難という問題が生じ難くなる。 The radical polymerization initiator preferably has a half-life of 10 seconds to 30 minutes with respect to the temperature used. If the half-life is moderately long, the radical polymerization initiator is uniformly diffused in the polymerization system and then decomposed to suppress the generation of oligomers that are easily thermally decomposed. Also, if the half-life is reasonably short, when the operation is stopped in an emergency, the reaction solution becomes so viscous that it is difficult to restart.
 第一のラジカル重合開始剤の使用量は、工程(a)における反応系の重合温度、反応物の平均滞在時間、目標とするモノマー転化率等の諸条件に応じて適宜決めればよい。特に第一のラジカル重合開始剤の使用量は、末端二重結合量の少ない耐熱分解性に優れたメタクリル系重合体を得る点から、モノマー1モルに対して5.0×10-5モル以下が好ましく、また工業的生産性の点から5.0×10-6モル以上が好ましい。 The amount of the first radical polymerization initiator used may be appropriately determined according to various conditions such as the polymerization temperature of the reaction system in step (a), the average residence time of the reactants, and the target monomer conversion rate. In particular, the first radical polymerization initiator is used in an amount of 5.0 × 10 −5 mol or less per 1 mol of the monomer in order to obtain a methacrylic polymer having a small amount of terminal double bonds and excellent thermal decomposition resistance. In view of industrial productivity, 5.0 × 10 −6 mol or more is preferable.
 工程(a)の重合には、連鎖移動剤も使用できる。特に、メルカプタン化合物を使用することが好ましい。メルカプタン化合物の具体例としては、n-ブチルメルカプタン、イソブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、sec-ブチルメルカプタン、sec-ドデシルメルカプタン、tert-ブチルメルカプタン等のアルキル基又は置換アルキル基を有する第1級、第2級又は第3級メルカプタン;フェニルメルカプタン、チオクレゾール、4-tert-ブチル-O-チオクレゾール等の芳香族メルカプタン;チオグリコール酸とそのエステル;エチレンチオグリコール等の炭素数3~18のメルカプタンが挙げられる。中でも、tert-ブチルメルカプタン、n-ブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタンが好ましい。連鎖移動剤は、1種のみを使用してもよく、2種以上を併用してもよい。 A chain transfer agent can also be used for the polymerization in step (a). In particular, it is preferable to use a mercaptan compound. Specific examples of mercaptan compounds include alkyl groups or substituted alkyl groups such as n-butyl mercaptan, isobutyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, sec-butyl mercaptan, sec-dodecyl mercaptan, and tert-butyl mercaptan. Primary, secondary or tertiary mercaptans; aromatic mercaptans such as phenyl mercaptan, thiocresol, 4-tert-butyl-O-thiocresol; thioglycolic acid and its esters; carbon number 3 such as ethylenethioglycol -18 mercaptans. Of these, tert-butyl mercaptan, n-butyl mercaptan, n-octyl mercaptan, and n-dodecyl mercaptan are preferable. A chain transfer agent may use only 1 type and may use 2 or more types together.
 連鎖移動剤の使用量は、製品強度を保ちつつ成形加工が可能な適度な重合度(一般的に成形材料として工業的に使用される範囲は、最終的に揮発分を除去した後の重合体の重量平均分子量が7万~15万である)を得ると共に、耐熱分解性に優れたメタクリル系重合体を製造する点から、モノマー100モル%に対してに0.01~1モル%が好ましく、0.05~0.5モル%がより好ましい。 The amount of chain transfer agent used is an appropriate degree of polymerization that can be processed while maintaining product strength (generally the range of industrial use as a molding material is the polymer after the final removal of volatiles. In terms of weight average molecular weight of from 70,000 to 150,000), and from the viewpoint of producing a methacrylic polymer having excellent thermal decomposition resistance, 0.01 to 1 mol% is preferable to 100 mol% of the monomer. 0.05 to 0.5 mol% is more preferable.
 工程(a)を溶液重合で行う場合は、不活性溶媒を使用する。その具体例としては、メタノール、エタノール、トルエン、キシレン、アセトン、メチルイソブチルケトン、エチルベンゼン、メチルエチルケトン、酢酸ブチルが挙げられる。中でも、メタノール、トルエン、エチルベンゼン、酢酸ブチルが好ましい。不活性溶媒は1種のみを使用してもよく、2種以上を併用してもよい。 When using step (a) by solution polymerization, an inert solvent is used. Specific examples thereof include methanol, ethanol, toluene, xylene, acetone, methyl isobutyl ketone, ethylbenzene, methyl ethyl ketone, and butyl acetate. Of these, methanol, toluene, ethylbenzene, and butyl acetate are preferable. Only 1 type may be used for an inert solvent and it may use 2 or more types together.
 不活性溶媒の使用量は、反応液組成物中5質量%未満であることが好ましい。不活性溶媒を使用しない塊状重合を行うことがより好ましいが、不活性溶媒の使用量が反応液組成物中5質量%未満であれば、耐熱分解性をほとんど損なうことなく、また塊状重合と同様にゲル効果を利用することにより少量のラジカル重合開始剤の使用によって効果的にモノマー転化率を高めることができる。 The amount of the inert solvent used is preferably less than 5% by mass in the reaction solution composition. It is more preferable to carry out bulk polymerization without using an inert solvent. However, if the amount of the inert solvent used is less than 5% by mass in the reaction solution composition, the thermal decomposition resistance is hardly impaired and the same as in bulk polymerization. By utilizing the gel effect, the monomer conversion can be effectively increased by using a small amount of radical polymerization initiator.
 完全混合型反応器(A)とは、供給した原料を攪拌装置等により均一に混合した状態で反応させる装置である。完全混合型反応器(A)は、バッチ式の槽型反応器でもよく、連続式の管型反応器でもよい。槽型反応器としては、供給口、取り出し口及び攪拌装置を備えた槽型反応装置を用いることができる。攪拌装置は反応域全体にわたる混合性能を持つことが好ましい。管型反応器としては、プラグフロー型反応器が好ましく、スタティックミキサーを内装したジャケット付き管型反応器であることがより好ましい。スタティックミキサーが内装されていると、攪拌効果により反応の均一化と反応液の流れを安定化させることができる。スタティックミキサーとしては、ノリタケカンパニー(株)社製のスタティックミキサーや、住友重機械(株)社製のスルーザミキサーが好適である。完全混合型反応器(A)は1種のみを使用してもよく、2種以上を併用してもよい。また、1種の反応器を直列に接続してもよい。 The complete mixing reactor (A) is an apparatus for reacting the supplied raw materials in a state of being uniformly mixed by a stirring device or the like. The fully mixed reactor (A) may be a batch tank reactor or a continuous tube reactor. As the tank reactor, a tank reactor equipped with a supply port, a discharge port, and a stirring device can be used. The stirrer preferably has mixing performance over the entire reaction zone. As the tubular reactor, a plug flow reactor is preferable, and a jacketed tubular reactor having a static mixer built therein is more preferable. If the static mixer is installed, the reaction can be made uniform and the flow of the reaction liquid can be stabilized by the stirring effect. As the static mixer, a static mixer manufactured by Noritake Co., Ltd. and a through-the mixer manufactured by Sumitomo Heavy Industries, Ltd. are suitable. Only one type of complete mixing reactor (A) may be used, or two or more types may be used in combination. One type of reactor may be connected in series.
 工程(a)では、完全混合型反応器(A)内でモノマーと第一のラジカル重合開始剤とを含む原料組成物を適度な条件で加熱して、メタクリル系モノマーの一部を重合し、第一のシラップを得る。重合温度は、所望のモノマー転化率を有する第一のシラップが得られる範囲で適宜設定すればよい。完全混合型反応器(A)として槽型反応器を用いて工程(a)を実施する場合は、例えば110~180℃(好ましくは120~160℃)の範囲から選択できる。槽型反応器に引き続きさらに管型反応器で工程(a)を実施する場合は、例えば、入口温度110~170℃(好ましくは120~140℃)、出口温度120~180℃(好ましくは140~160℃)、平均温度115~175℃(好ましくは135~155℃)の範囲から選択できる。 In the step (a), the raw material composition containing the monomer and the first radical polymerization initiator is heated in an appropriate condition in the fully mixed reactor (A) to polymerize a part of the methacrylic monomer, Get the first syrup. The polymerization temperature may be appropriately set within a range in which a first syrup having a desired monomer conversion rate is obtained. When the step (a) is carried out using a tank reactor as the complete mixing reactor (A), it can be selected from the range of 110 to 180 ° C. (preferably 120 to 160 ° C.), for example. When step (a) is carried out in a tubular reactor following the tank reactor, for example, an inlet temperature of 110 to 170 ° C. (preferably 120 to 140 ° C.) and an outlet temperature of 120 to 180 ° C. (preferably 140 to 140 ° C.) 160 ° C.) and an average temperature of 115 to 175 ° C. (preferably 135 to 155 ° C.).
 工程(a)で得られる第一のシラップにおけるモノマー転化率は、35~70質量%が好ましく、45~60質量%がより好ましい。これら範囲の上限値は、槽型反応器において槽内の均一性を保ち、槽内の混合、伝熱を充分に達成し、安定運転を行う点で意義が有る。また下限値は、十分なモノマー転化率にして生産性を向上する点で意義が有る。 The monomer conversion in the first syrup obtained in the step (a) is preferably 35 to 70% by mass, more preferably 45 to 60% by mass. The upper limit of these ranges is significant in that the uniformity in the tank is maintained in the tank reactor, mixing and heat transfer in the tank are sufficiently achieved, and stable operation is performed. Further, the lower limit value is significant in terms of improving productivity by setting a sufficient monomer conversion rate.
 工程(a)で得られる第一のシラップの温度は、110~180℃が好ましく、120~160℃がより好ましい。これら範囲の下限値は、二量体の生成を抑制し揮発分除去後の重合体の透明性、機械的強度を維持する点で意義が有る。また上限値は、ゲル効果による重合速度の加速現象を抑制し、高いモノマー転化率で安定運転する点で意義が有る。 The temperature of the first syrup obtained in step (a) is preferably 110 to 180 ° C, more preferably 120 to 160 ° C. The lower limit of these ranges is significant in that it suppresses the formation of dimers and maintains the transparency and mechanical strength of the polymer after removal of volatiles. The upper limit is significant in that it suppresses the acceleration phenomenon of the polymerization rate due to the gel effect, and operates stably at a high monomer conversion rate.
 槽型反応器内では、例えば、次のように重合することができる。原料モノマーに窒素等不活性ガスを導入する又は原料モノマーを減圧下一定の時間保持することにより、溶存酸素濃度を2質量ppm以下、より好ましくは1質量ppm以下とする。溶存酸素濃度をこのように低くすると、重合反応が安定に進み、また重合工程で長時間、高温に保持されても着色成分をほとんど生じず、高品質な重合体が得られる。 In the tank reactor, for example, polymerization can be performed as follows. By introducing an inert gas such as nitrogen into the raw material monomer or holding the raw material monomer for a certain period of time under reduced pressure, the dissolved oxygen concentration is set to 2 mass ppm or less, more preferably 1 mass ppm or less. When the dissolved oxygen concentration is lowered in this way, the polymerization reaction proceeds stably, and even when kept at a high temperature for a long time in the polymerization step, little colored components are produced, and a high-quality polymer is obtained.
 次いで、完全混合型反応器(A)から第一のシラップを抜き出し、それに引き続き配置された反応器(B)に供給する。第一のシラップは反応器(B)に送る前に冷却してもよい。 Next, the first syrup is extracted from the fully mixed reactor (A), and then supplied to the reactor (B) arranged thereafter. The first syrup may be cooled before being sent to the reactor (B).
 [工程(b)]
 本発明における工程(b)は、上述の工程(a)で得た第一のシラップ及び第二のラジカル重合開始剤を完全混合型反応器(A)の下流に配置された反応器(B)に供給して重合を行い、第二のシラップを得る工程である。
[Step (b)]
In the step (b) of the present invention, the reactor (B) in which the first syrup and the second radical polymerization initiator obtained in the above step (a) are arranged downstream of the complete mixing reactor (A). The second syrup is obtained by performing polymerization by supplying to the polymer.
 この工程(b)においては、モノマー中のメチルメタクリレート以外のアルキル(メタ)アクリレートの含有量をx[質量%]、反応器(B)における単位時間あたりの第一のシラップ供給量に対する第二のラジカル重合開始剤供給量の質量比をy[ppm]としたとき、xとyが、以下の式を満たす。 In this step (b), the content of the alkyl (meth) acrylate other than methyl methacrylate in the monomer is x [mass%], and the second content relative to the first syrup supply amount per unit time in the reactor (B). When the mass ratio of the radical polymerization initiator supply amount is y [ppm], x and y satisfy the following formula.
 8.5x+123≧y≧-2.6x+45 8.5x + 123 ≧ y ≧ −2.6x + 45
 上記の式のうち、y≧-2.6x+45 の関係を満たすことにより、モノマー転化率を短時間で上げることが出来る。また、8.5x+123≧y の関係を満たすことにより、熱安定性に優れるメタクリル系重合体の製造か可能となる。熱安定性が優れると、成形時に樹脂の熱分解が進みにくく、成形品中の気泡の発生等、外観不良が無くなる。 In the above formula, by satisfying the relationship y ≧ −2.6x + 45, the monomer conversion rate can be increased in a short time. Further, by satisfying the relationship of 8.5x + 123 ≧ y, it becomes possible to produce a methacrylic polymer having excellent thermal stability. When the thermal stability is excellent, the thermal decomposition of the resin is difficult to proceed during molding, and appearance defects such as generation of bubbles in the molded product are eliminated.
 第二のラジカル重合開始剤としては、例えば、第一のラジカル重合開始剤と同様のものを用いることができる。第二のラジカル重合開始剤の使用量については、上記式を満たす限り、第一のラジカル重合開始剤と同様で構わない。 As the second radical polymerization initiator, for example, the same one as the first radical polymerization initiator can be used. The amount of the second radical polymerization initiator used may be the same as that of the first radical polymerization initiator as long as the above formula is satisfied.
 工程(b)においては、短時間でモノマー転化率を上げるために工程(a)よりも高温で重合を行うことが好ましい。そのため第二のラジカル重合開始剤は、第一のラジカル重合開始剤より高温分解型のラジカル重合開始剤を用いることも好ましい。具体的には、第二のラジカル重合開始剤として、工程(b)における平均温度における第一のラジカル重合開始剤の半減期より長い半減期を有するラジカル重合開始剤を用いることが好ましい。さらに、第二のラジカル重合開始剤として、工程(b)における平均温度における第一のラジカル重合開始剤の半減期より長い半減期を有するラジカル重合開始剤と、第一のラジカル重合開始剤と同じラジカル重合開始剤とを併用することもできる。2種のラジカル重合開始剤を併用することで、同じモノマー転化率を得るために必要な重合開始剤の量を減らすことができる。 In step (b), it is preferable to perform polymerization at a higher temperature than in step (a) in order to increase the monomer conversion rate in a short time. Therefore, the second radical polymerization initiator is preferably a higher temperature decomposition type radical polymerization initiator than the first radical polymerization initiator. Specifically, it is preferable to use a radical polymerization initiator having a half-life longer than that of the first radical polymerization initiator at the average temperature in step (b) as the second radical polymerization initiator. Furthermore, as the second radical polymerization initiator, a radical polymerization initiator having a longer half-life than the first radical polymerization initiator at the average temperature in step (b), and the same as the first radical polymerization initiator A radical polymerization initiator can also be used in combination. By using two kinds of radical polymerization initiators in combination, the amount of polymerization initiator necessary for obtaining the same monomer conversion rate can be reduced.
 第二のラジカル重合開始剤は、複数回に分けて添加することも可能である。この場合、各回における単位時間あたりに供給されるシラップに対する第二のラジカル重合開始剤の質量比[ppm]の合計をy[ppm]とする。 The second radical polymerization initiator can be added in multiple portions. In this case, the total of the mass ratio [ppm] of the second radical polymerization initiator to syrup supplied per unit time in each time is defined as y [ppm].
 反応器(B)の具体例としては、先に説明した完全混合型反応器(A)の具体例と同様のものが挙げられるが、特に管型反応器が好ましい。反応器(B)は1種のみを使用してもよく、2種以上を併用してもよい。また、1種の反応器を直列に接続してもよい。 Specific examples of the reactor (B) are the same as the specific examples of the complete mixing reactor (A) described above, but a tubular reactor is particularly preferable. Only one type of reactor (B) may be used, or two or more types may be used in combination. One type of reactor may be connected in series.
 工程(b)では、反応器(B)内で第一のシラップと第二のラジカル重合開始剤とを含む組成物を適度な条件で加熱して、第一のシラップ中に存在するモノマーの一部を重合して、第二のシラップを得る。重合温度は、第二のシラップが所望のモノマー転化率となるように適宜設定すればよい。 In the step (b), the composition containing the first syrup and the second radical polymerization initiator is heated in an appropriate condition in the reactor (B), and one monomer present in the first syrup is obtained. The part is polymerized to obtain a second syrup. The polymerization temperature may be appropriately set so that the second syrup has a desired monomer conversion rate.
 工程(b)で得られる第二のシラップにおけるモノマー転化率は、50~90質量%が好ましく、70~80質量%がより好ましい。これら範囲の上限値は、シラップの粘度を適度に抑制し、プロセス内を流動させる際の圧力損失を低減する点で意義が有る。また、下限値は、残存モノマーを少なくしてその後の脱揮工程の負担を低減する点で意義が有る。 The monomer conversion rate in the second syrup obtained in the step (b) is preferably 50 to 90% by mass, and more preferably 70 to 80% by mass. The upper limit of these ranges is significant in that the viscosity of syrup is moderately suppressed and the pressure loss when flowing in the process is reduced. The lower limit is significant in that it reduces the residual monomer and reduces the burden on the subsequent devolatilization process.
 反応器(B)の内壁の温度は、125~210℃が好ましく、150~195℃がより好ましい。これら範囲の下限値は、モノマーの転化率を70%以上とする点で意義が有る。また上限値は、プロセス内での重合体が流動性を維持して安定運転を行う点で意義が有る。 The temperature of the inner wall of the reactor (B) is preferably from 125 to 210 ° C, more preferably from 150 to 195 ° C. The lower limit of these ranges is significant in that the monomer conversion is 70% or more. The upper limit is significant in that the polymer in the process maintains fluidity and performs stable operation.
 [工程(c)]
 本発明における工程(c)は、上述の工程(b)で得た第二のシラップを脱揮して、メタクリル系重合体を取り出す工程である。この工程(c)により、メタクリル系重合体中の残存モノマー量が減少し、耐熱性が向上する。
[Step (c)]
The step (c) in the present invention is a step for removing the methacrylic polymer by devolatilizing the second syrup obtained in the above step (b). By this step (c), the amount of residual monomer in the methacrylic polymer is reduced and the heat resistance is improved.
 工程(c)は、例えば、第二のシラップを脱揮押出機に投入することで実施できる。第二のシラップは、工程(b)で得られた状態の温度のままでもよく、さらに加熱してもよい。第二のシラップをさらに加熱する場合には、250℃を超えない温度とすることが好ましい。脱揮押出機では、第二のシラップを0.0001~0.1MPaの減圧下に放出して、メタクリル系モノマーを主体とする揮発物の大部分を連続的に分離除去することが好ましい。 Step (c) can be performed, for example, by putting the second syrup into a devolatilizing extruder. The second syrup may remain at the temperature obtained in step (b) or may be further heated. When the second syrup is further heated, it is preferable that the temperature does not exceed 250 ° C. In the devolatilizing extruder, it is preferable that the second syrup is discharged under a reduced pressure of 0.0001 to 0.1 MPa to continuously separate and remove most of the volatiles mainly composed of methacrylic monomers.
 揮発物を分離除去して得たメタクリル系重合体中のモノマーの含有量は0.3質量%以下が好ましく、重合反応の副生成物であるモノマーの二量体の含有量は0.1質量%以下が好ましく、前記メルカプタン化合物の含有量は50質量ppm以下が好ましい。 The content of the monomer in the methacrylic polymer obtained by separating and removing volatiles is preferably 0.3% by mass or less, and the content of the monomer dimer as a by-product of the polymerization reaction is 0.1% by mass. % Or less is preferable, and the content of the mercaptan compound is preferably 50 ppm by mass or less.
 未反応のメタクリル系モノマー等の揮発物は、コンデンサで凝縮させて回収した上で、工程(a)の原料として再利用することが、経済性の点から好ましい。このとき、揮発物中に含まれるメタクリル系モノマーの二量体等の高沸点成分を蒸留により分離除去した後に、工程(a)の原料として再利用することがより好ましい。 It is preferable from the viewpoint of economy that volatiles such as unreacted methacrylic monomers are condensed and recovered by a condenser and reused as a raw material in the step (a). At this time, it is more preferable to reuse as a raw material of the step (a) after separating and removing high-boiling components such as a dimer of a methacrylic monomer contained in the volatile matter by distillation.
 このようにして製造されたメタクリル系重合体は、例えば成形材料として用いることができる。その際には、必要に応じて、高級アルコール類、高級脂肪酸エステル類等の滑剤、紫外線吸収剤、熱安定剤、着色剤、帯電防止剤等を添加することができる。 The methacrylic polymer thus produced can be used as a molding material, for example. In that case, if necessary, lubricants such as higher alcohols and higher fatty acid esters, ultraviolet absorbers, heat stabilizers, colorants, antistatic agents and the like can be added.
 以下、本発明を実施例によって更に詳しく説明するが、これらは本発明を限定するものではない。なお、重合体の分子量の測定は以下の方法により行った。 Hereinafter, the present invention will be described in more detail by way of examples, but these examples do not limit the present invention. The molecular weight of the polymer was measured by the following method.
 <GPCによる分子量の測定>
 GPC装置として東ソー社製HLC-8020を用い、カラムとして東ソー社製GMHXLを2本用いた。溶媒はテトラヒドロフラン(THF)を使用し、東ソー社製TSK標準ポリスチレンを用いて検量線を作り、試料としては静置溶解した濃度0.1g/dlの溶液を用いた。重量平均分子量Mwは、GPCデータ処理装置(東ソー社製データ装置SC-80・10)によって求めた。
<Measurement of molecular weight by GPC>
Tosoh HLC-8020 was used as the GPC apparatus, and two Tosoh GMHXL were used as the columns. Tetrahydrofuran (THF) was used as a solvent, a calibration curve was made using TSK standard polystyrene manufactured by Tosoh Corporation, and a solution having a concentration of 0.1 g / dl dissolved by standing was used. The weight average molecular weight Mw was determined by a GPC data processing device (data device SC-80 / 10 manufactured by Tosoh Corporation).
 <成形性の評価>
 成形機としてPS-60E(日精樹脂工業社製)を用い、成形温度は300℃とし、渦状の成型体を作製し、その外観を観察した。
<Evaluation of formability>
PS-60E (manufactured by Nissei Plastic Industry Co., Ltd.) was used as a molding machine, the molding temperature was set to 300 ° C., a spiral molded body was produced, and the appearance was observed.
 <実施例1>
 図1に示す装置を用いて、以下の通り本発明を実施した。
<Example 1>
The present invention was implemented as follows using the apparatus shown in FIG.
 [工程(a)]
 精製されたメチルメタクリレート98質量%とメチルアクリレート2質量%とからなるモノマー混合物に窒素を導入して、溶存酸素を0.5ppmとした。このモノマー混合物に対して、連鎖移動剤としてn-オクチルメルカプタン0.157モル%(0.23質量%)、及び、第一のラジカル開始剤として1,1―ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン2.67×10-5モル/モノマー1モル(80ppm)とを混合した原料組成物を、重合温度135℃に制御された第一リアクター11である完全混合型反応器に攪拌混合しながら連続的に供給し、原料組成物の反応域での平均滞在時間を2.5時間として重合を実施し、第一のシラップを得た。なお、この重合温度(135℃)における1,1―ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン)の半減期は230秒である。
[Step (a)]
Nitrogen was introduced into the purified monomer mixture consisting of 98% by mass of methyl methacrylate and 2% by mass of methyl acrylate, so that the dissolved oxygen was 0.5 ppm. To this monomer mixture, 0.157 mol% (0.23 mass%) of n-octyl mercaptan as a chain transfer agent and 1,1-bis (tert-butylperoxy) 3 as a first radical initiator , 3,5-trimethylcyclohexane 2.67 × 10 −5 mol / monomer 1 mol (80 ppm) mixed raw material composition as a first reactor 11 controlled at a polymerization temperature of 135 ° C. The mixture was continuously fed while stirring and mixing, and the polymerization was carried out with an average residence time in the reaction zone of the raw material composition of 2.5 hours to obtain a first syrup. The half-life of 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane) at this polymerization temperature (135 ° C.) is 230 seconds.
 [工程(b)]
 続いて、ギアポンプ31により第一リアクター11から第一のシラップを連続的に抜き出し、開始剤投入器21(住友重機械工業(株)製SMXスルーザミキサを内装した配管)で、第二のラジカル開始剤として1,1-ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシロキサンを、単位時間あたりのシラップ供給量に対する質量比が40ppmとなるように添加し、これを第二リアクター12であるノリタケカンパニ-(株)製スタティックミキサーを内装した管型反応器(プラグフロー型反応器))に供給し、内壁温度を150℃、シラップの平均滞留時間を20分として重合を実施した。なお、この温度(150℃)における1,1-ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシロキサンの半減期は54秒である。
[Step (b)]
Subsequently, the first syrup is continuously extracted from the first reactor 11 by the gear pump 31, and the second radical initiator is started with an initiator charging device 21 (a pipe equipped with an SMX through the mixer manufactured by Sumitomo Heavy Industries, Ltd.). 1,1-bis (tert-butylperoxy) 3,3,5-trimethylsiloxane was added so that the mass ratio to the amount of syrup supplied per unit time was 40 ppm, and this was the second reactor 12. Polymerization was carried out by supplying the reactor to a tubular reactor (plug flow reactor) equipped with a static mixer manufactured by Noritake Campan Co., Ltd., with an inner wall temperature of 150 ° C. and an average residence time of syrup of 20 minutes. The half-life of 1,1-bis (tert-butylperoxy) 3,3,5-trimethylsiloxane at this temperature (150 ° C.) is 54 seconds.
 引き続き、第二リアクター12で重合したシラップを前記と同タイプの開始剤投入器22に導き、さらなる第二のラジカル開始剤としてジt-ブチルパーオキシドを、単位時間あたりのシラップ供給量に対する質量比が40ppmとなるようにを添加し、これを第二リアクター12と同一の第三リアクター13であるノリタケカンパニ-(株)製スタティックミキサーを内装した管型反応器(プラグフロー型反応器)]に供給し、内壁温度を170℃、内圧を25kg/cm2G、平均滞留時間を20分として重合を実施し、第二のシラップを得た。なお、この温度(170℃)におけるジt-ブチルパーオキシドの半減期は250秒である。 Subsequently, the syrup polymerized in the second reactor 12 is led to an initiator charging device 22 of the same type as described above, and di-t-butyl peroxide is further added as a second radical initiator in a mass ratio with respect to the supply amount of syrup per unit time. Is added to a tubular reactor (plug flow reactor) equipped with a static mixer manufactured by Noritake Campan Co., Ltd., which is the same third reactor 13 as the second reactor 12. Then, polymerization was carried out with an inner wall temperature of 170 ° C., an internal pressure of 25 kg / cm 2 G, and an average residence time of 20 minutes to obtain a second syrup. The half-life of di-t-butyl peroxide at this temperature (170 ° C.) is 250 seconds.
 [工程(c)]
 次に、第二のシラップを195℃で、第二リアクター12の出口から連続的に脱揮押出機14(ベントエクストルーダ型押し出し機)に供給して、270℃で未反応モノマーを主成分とする揮発物を分離除去し、メタクリル系重合体を得た。
[Step (c)]
Next, the second syrup is continuously supplied from the outlet of the second reactor 12 to the devolatilizing extruder 14 (bent extruder type extruder) at 195 ° C., and the unreacted monomer is the main component at 270 ° C. Volatiles were separated and removed to obtain a methacrylic polymer.
 脱揮押出機14から取り出したメタクリル系重合体の量と投入した原料モノマーの積算量を測定したところ、投入した原料に対するモノマー転化率は78質量%であった。また360時間の連続運転においても、重合の制御には問題はなく、運転終了後の反応器内の観察においても装置への付着物や異物の生成等は認められなかった。また、得られたメタクリル系重合体について上記の成形性の評価を行ったところ、気泡の存在は認められず、成形品の外観は良好であった。結果を表1に示す。 When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion ratio relative to the raw material charged was 78% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. Moreover, when said moldability evaluation was performed about the obtained methacrylic polymer, presence of a bubble was not recognized but the external appearance of the molded article was favorable. The results are shown in Table 1.
 <実施例2>
 第二リアクター12[一つ目の反応器(B)]に追加する開始剤量を60ppm、第三リアクター13[二つ目の反応器(B)]に追加する開始剤量を60ppmに変更したこと以外は実施例1と同様の操作を行った。脱揮押出機14から取り出したメタクリル系重合体の量と投入した原料モノマーの積算量を測定したところ、投入した原料に対するモノマー転化率は80質量%であった。また360時間の連続運転においても、重合の制御には問題はなく、運転終了後の反応器内の観察においても装置への付着物や異物の生成等は認められなかった。また、得られたメタクリル系重合体について上記の成形性の評価を行ったところ、気泡の存在は認められず、成形品の外観は良好であった。結果を表1に示す。
<Example 2>
The amount of initiator added to the second reactor 12 [first reactor (B)] was changed to 60 ppm, and the amount of initiator added to the third reactor 13 [second reactor (B)] was changed to 60 ppm. Except that, the same operation as in Example 1 was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate relative to the raw material charged was 80% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. Moreover, when said moldability evaluation was performed about the obtained methacrylic polymer, presence of a bubble was not recognized but the external appearance of the molded article was favorable. The results are shown in Table 1.
 <実施例3>
 モノマー混合物におけるメチルメタクリレートの量を85質量%、メチルアクリレートの量を15質量%に変更し、第二リアクター12[一つ目の反応器(B)]に追加する開始剤量を20ppm、第三リアクター13[二つ目の反応器(B)]に追加する開始剤量を15ppmに変更したこと以外は実施例1と同様の操作を行った。脱揮押出機14から取り出したメタクリル系重合体の量と投入した原料モノマーの積算量を測定したところ、投入した原料に対するモノマー転化率は73質量%であった。また360時間の連続運転においても、重合の制御には問題はなく、運転終了後の反応器内の観察においても装置への付着物や異物の生成等は認められなかった。また、得られたメタクリル系重合体について上記の成形性の評価を行ったところ、気泡の存在は認められず、成形品の外観は良好であった。結果を表1に示す。結果を表1に示す。
<Example 3>
The amount of methyl methacrylate in the monomer mixture was changed to 85% by mass, the amount of methyl acrylate was changed to 15% by mass, and the amount of initiator added to the second reactor 12 [first reactor (B)] was 20 ppm. The same operation as in Example 1 was performed except that the amount of initiator added to the reactor 13 [second reactor (B)] was changed to 15 ppm. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate relative to the raw material charged was 73% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. Moreover, when said moldability evaluation was performed about the obtained methacrylic polymer, presence of a bubble was not recognized but the external appearance of the molded article was favorable. The results are shown in Table 1. The results are shown in Table 1.
 <実施例4>
 第二リアクター12[一つ目の反応器(B)]に追加する開始剤量を60ppm、第三リアクター13[二つ目の反応器(B)]に追加する開始剤量を60ppmに変更したこと以外は実施例3と同様の操作を行った。脱揮押出機14から取り出したメタクリル系重合体の量と投入した原料モノマーの積算量を測定したところ、投入した原料に対するモノマー転化率は77質量%であった。また360時間の連続運転においても、重合の制御には問題はなく、運転終了後の反応器内の観察においても装置への付着物や異物の生成等は認められなかった。また、得られたメタクリル系重合体について上記の成形性の評価を行ったところ、気泡の存在は認められず、成形品の外観は良好であった。結果を表1に示す。
<Example 4>
The amount of initiator added to the second reactor 12 [first reactor (B)] was changed to 60 ppm, and the amount of initiator added to the third reactor 13 [second reactor (B)] was changed to 60 ppm. Except that, the same operation as in Example 3 was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate with respect to the raw material charged was 77% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. Moreover, when said moldability evaluation was performed about the obtained methacrylic polymer, presence of a bubble was not recognized but the external appearance of the molded article was favorable. The results are shown in Table 1.
 <実施例5>
 第二リアクター12[一つ目の反応器(B)]に追加する開始剤量を100ppm、第三リアクター13[二つ目の反応器(B)]に追加する開始剤量を100ppmに変更したこと以外は実施例3と同様の操作を行った。脱揮押出機14から取り出したメタクリル系重合体の量と投入した原料モノマーの積算量を測定したところ、投入した原料に対するモノマー転化率は83質量%であった。また360時間の連続運転においても、重合の制御には問題はなく、運転終了後の反応器内の観察においても装置への付着物や異物の生成等は認められなかった。また、得られたメタクリル系重合体について上記の成形性の評価を行ったところ、気泡の存在は認められず、成形品の外観は良好であった。結果を表1に示す。
<Example 5>
The amount of initiator added to the second reactor 12 [first reactor (B)] was changed to 100 ppm, and the amount of initiator added to the third reactor 13 [second reactor (B)] was changed to 100 ppm. Except that, the same operation as in Example 3 was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate relative to the raw material charged was 83% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. Moreover, when said moldability evaluation was performed about the obtained methacrylic polymer, presence of a bubble was not recognized but the external appearance of the molded article was favorable. The results are shown in Table 1.
 <比較例1>
 第二リアクター12[一つ目の反応器(B)]に追加する開始剤量を20ppm、第三リアクター13[二つ目の反応器(B)]に追加する開始剤量を15ppmに変更したこと以外は実施例1と同様の操作を行った。脱揮押出機14から取り出したメタクリル系重合体の量と投入した原料モノマーの積算量を測定したところ、投入した原料に対するモノマー転化率は68質量%と低く、単位時間当たりに得られる樹脂量が少なくなった。結果を表1に示す。
<Comparative Example 1>
The amount of initiator added to the second reactor 12 [first reactor (B)] was changed to 20 ppm, and the amount of initiator added to the third reactor 13 [second reactor (B)] was changed to 15 ppm. Except that, the same operation as in Example 1 was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the charged raw material monomer were measured, the monomer conversion rate with respect to the charged raw material was as low as 68% by mass, and the amount of resin obtained per unit time was small. Less. The results are shown in Table 1.
 <比較例2>
 第二リアクター12[一つ目の反応器(B)]及び第三リアクター13[二つ目の反応器(B)]に追加する開始剤量を無添加に変更したこと以外は実施例3と同様の操作を行った。脱揮押出機14から取り出したメタクリル系重合体の量と投入した原料モノマーの積算量を測定したところ、投入した原料に対するモノマー転化率は50質量%と低く、単位時間当たりに得られる樹脂量が少なくなった。結果を表1に示す。
<Comparative Example 2>
Example 3 except that the amount of initiator added to the second reactor 12 [first reactor (B)] and the third reactor 13 [second reactor (B)] was changed to no addition. The same operation was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate with respect to the raw material charged was as low as 50% by mass, and the amount of resin obtained per unit time was small. Less. The results are shown in Table 1.
 <比較例3>
 第二リアクター12[一つ目の反応器(B)]に追加する開始剤量を80ppm、第三リアクター13[二つ目の反応器(B)]に追加する開始剤量を80ppmに変更したこと以外は実施例1と同様の操作を行った。脱揮押出機14から取り出したメタクリル系重合体の量と投入した原料モノマーの積算量を測定したところ、投入した原料に対するモノマー転化率は83質量%であった。また360時間の連続運転においても、重合の制御には問題はなく、運転終了後の反応器内の観察においても装置への付着物や異物の生成等は認められなかった。ただし、得られたメタクリル系重合体について上記の成形性の評価を行ったところ、気泡の存在が認められ、成形品の外観はシルバーと呼ばれる白い帯が入り、成形不良であった。結果を表1に示す。
<Comparative Example 3>
The amount of initiator added to the second reactor 12 [first reactor (B)] was changed to 80 ppm, and the amount of initiator added to the third reactor 13 [second reactor (B)] was changed to 80 ppm. Except that, the same operation as in Example 1 was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate relative to the raw material charged was 83% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. However, when the above methacrylic polymer was evaluated for the moldability as described above, the presence of bubbles was recognized, and the appearance of the molded product contained a white band called silver, resulting in poor molding. The results are shown in Table 1.
 <比較例4>
 第二リアクター12[一つ目の反応器(B)]に追加する開始剤量を150ppm、第三リアクター13[二つ目の反応器(B)]に追加する開始剤量を150ppmに変更したこと以外は実施例3と同様の操作を行った。脱揮押出機14から取り出したメタクリル系重合体の量と投入した原料モノマーの積算量を測定したところ、投入した原料に対するモノマー転化率は90質量%であった。また360時間の連続運転においても、重合の制御には問題はなく、運転終了後の反応器内の観察においても装置への付着物や異物の生成等は認められなかった。ただし、得られたメタクリル系重合体について上記の成形性の評価を行ったところ、気泡の存在が認められ、成形品の外観はシルバーと呼ばれる白い帯が入り、成形不良であった。結果を表1に示す。
<Comparative Example 4>
The amount of initiator added to the second reactor 12 [first reactor (B)] was changed to 150 ppm, and the amount of initiator added to the third reactor 13 [second reactor (B)] was changed to 150 ppm. Except that, the same operation as in Example 3 was performed. When the amount of the methacrylic polymer taken out from the devolatilizing extruder 14 and the integrated amount of the raw material monomer charged were measured, the monomer conversion rate relative to the raw material charged was 90% by mass. In addition, in the continuous operation for 360 hours, there was no problem in the control of polymerization, and in the observation in the reactor after the operation was completed, the production of deposits and foreign matters on the apparatus was not recognized. However, when the above methacrylic polymer was evaluated for the moldability as described above, the presence of bubbles was recognized, and the appearance of the molded product contained a white band called silver, resulting in poor molding. The results are shown in Table 1.
 各実施例及び各比較例の条件及び得られた重合体の特性を表1に示す。 Table 1 shows the conditions of each Example and each Comparative Example and the characteristics of the obtained polymer.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表中の略号は以下の通りである。
・「MMA」:メチルメタクリレート、
・「MA」:メチルアクリレート、
・「イ」:1,1―ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、
・「ハ」:ジt-ブチルパーオキシド、
・「F」:n-オクチルメルカプタン
Abbreviations in the table are as follows.
"MMA": methyl methacrylate,
"MA": methyl acrylate,
"I": 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane,
・ "Ha": di-t-butyl peroxide,
・ "F": n-octyl mercaptan
 表から明らかなように、各実施例ではモノマー転化率は十分であったが。各比較例では不十分であった。 As is apparent from the table, the monomer conversion rate was sufficient in each example. Each comparative example was insufficient.
 11  第一リアクター
 12  第二リアクター
 13  第三リアクター
 14  脱揮押出機
 21  開始剤投入器
 22  開始剤投入器
 31  ギアポンプ
11 First Reactor 12 Second Reactor 13 Third Reactor 14 Devolatilizing Extruder 21 Initiator Charger 22 Initiator Charger 31 Gear Pump

Claims (2)

  1.  メチルメタクリレート単独又はメチルメタクリレートとメチルメタクリレート以外のアルキル(メタ)アクリレートを含むモノマーを完全混合型反応器(A)に供給して、第一のラジカル重合開始剤により重合を行い、第一のシラップを得る工程(a)、
     完全混合型反応器(A)の下流に配置された反応器(B)に第一のシラップ及び第二のラジカル重合開始剤を供給して重合を行い、第二のシラップを得る工程(b)、及び
     第二のシラップを脱揮する工程(c)
    を順次行いメタクリル系重合体を製造する方法であって、
     前記モノマー中のメチルメタクリレート以外のアルキル(メタ)アクリレートの含有量をx[質量%]、前記反応器(B)における単位時間あたりの第一のシラップ供給量に対する単位時間あたりの第二のラジカル重合開始剤供給量の質量比をy[ppm]としたとき、xとyが以下の式を満たすことを特徴とするメタクリル系重合体の製造方法。
     8.5x+123≧y≧-2.6x+45
    A monomer containing methyl methacrylate alone or an alkyl (meth) acrylate other than methyl methacrylate and methyl methacrylate is supplied to the fully mixed reactor (A), and polymerization is performed with the first radical polymerization initiator, and the first syrup is formed. Obtaining step (a),
    Step (b) of supplying a first syrup and a second radical polymerization initiator to a reactor (B) arranged downstream of the fully mixed reactor (A) to carry out polymerization to obtain a second syrup. And (c) devolatilizing the second syrup
    In order to produce a methacrylic polymer,
    The content of alkyl (meth) acrylate other than methyl methacrylate in the monomer is x [mass%], and the second radical polymerization per unit time with respect to the first syrup supply amount per unit time in the reactor (B). A method for producing a methacrylic polymer, wherein x and y satisfy the following formula when the mass ratio of the initiator supply amount is y [ppm].
    8.5x + 123 ≧ y ≧ −2.6x + 45
  2.  完全混合型反応器(A)に供給するモノマーが、メチルメタクリレート80~99.5質量%と、メチルメタクリレート以外のアルキル(メタ)アクリレート0.5~20質量%とからなる請求項1記載のメタクリル系重合体の製造方法。
     
    The methacrylic monomer according to claim 1, wherein the monomer fed to the complete mixing reactor (A) comprises 80 to 99.5% by mass of methyl methacrylate and 0.5 to 20% by mass of alkyl (meth) acrylate other than methyl methacrylate. A method for producing a polymer.
PCT/JP2011/060842 2010-05-13 2011-05-11 Method for producing methacrylic polymer WO2011142384A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127032390A KR101780846B1 (en) 2010-05-13 2011-05-11 Method for producing methacrylic polymer
CN201180023792.9A CN102933610B (en) 2010-05-13 2011-05-11 The manufacture method of metha crylic polymer
JP2011521392A JP5786712B2 (en) 2010-05-13 2011-05-11 Method for producing methacrylic polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-111178 2010-05-13
JP2010111178 2010-05-13

Publications (1)

Publication Number Publication Date
WO2011142384A1 true WO2011142384A1 (en) 2011-11-17

Family

ID=44914436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060842 WO2011142384A1 (en) 2010-05-13 2011-05-11 Method for producing methacrylic polymer

Country Status (5)

Country Link
JP (1) JP5786712B2 (en)
KR (1) KR101780846B1 (en)
CN (1) CN102933610B (en)
TW (1) TWI518100B (en)
WO (1) WO2011142384A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517070A (en) * 2022-02-25 2022-05-20 四川中久国峰科技有限公司 High-purity acrylate adhesive, preparation method and application thereof, optical transparent film and preparation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI641623B (en) * 2014-02-06 2018-11-21 Kuraray Co., Ltd. Method for producing (meth) acrylic resin composition
CN111378066B (en) * 2018-12-30 2022-05-06 中国石油天然气股份有限公司 Method for preparing methyl methacrylate polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026507A (en) * 1998-07-14 2000-01-25 Mitsubishi Rayon Co Ltd Methacrylic polymer and its production
JP2003002912A (en) * 2001-06-21 2003-01-08 Mitsubishi Rayon Co Ltd Method for producing methacrylate polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026507A (en) * 1998-07-14 2000-01-25 Mitsubishi Rayon Co Ltd Methacrylic polymer and its production
JP2003002912A (en) * 2001-06-21 2003-01-08 Mitsubishi Rayon Co Ltd Method for producing methacrylate polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517070A (en) * 2022-02-25 2022-05-20 四川中久国峰科技有限公司 High-purity acrylate adhesive, preparation method and application thereof, optical transparent film and preparation method
CN114517070B (en) * 2022-02-25 2022-12-09 四川中久国峰科技有限公司 High-purity acrylate adhesive, preparation method and application thereof, optical transparent film and preparation method

Also Published As

Publication number Publication date
TW201202268A (en) 2012-01-16
CN102933610A (en) 2013-02-13
CN102933610B (en) 2016-03-30
JP5786712B2 (en) 2015-09-30
KR101780846B1 (en) 2017-09-21
KR20130108086A (en) 2013-10-02
JPWO2011142384A1 (en) 2013-07-22
TWI518100B (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP3628518B2 (en) Methacrylic polymer and process for producing the same
JP5790499B2 (en) Apparatus and method for producing methacrylic polymer
EP2248834B1 (en) Process for production of thermoplastic copolymer
CN109232787B (en) Methyl methacrylate-styrene copolymer resin, preparation method and application thereof
WO2011142384A1 (en) Method for producing methacrylic polymer
CN114891147B (en) Methyl methacrylate copolymer and preparation method and application thereof
JP2009191096A (en) Method for producing thermoplastic resin composition
JP5716266B2 (en) Method for producing methacrylic resin
JP2003002912A (en) Method for producing methacrylate polymer
KR101915831B1 (en) Method for manufacturing methacrylic polymer
JP2005082687A (en) Method for producing (meth)acrylic polymer
JP5958577B2 (en) Method for producing methacrylic resin
JP4325475B2 (en) Methacrylic polymer and process for producing the same
JP4256744B2 (en) Method for producing (meth) acrylic polymer
JP2006188612A (en) Method for producing methacrylic resin
JP2010285582A (en) Method for producing thermoplastic resin, thermoplastic resin, and molding
JP2005029677A (en) Method for producing methacrylic polymer
JPH1087706A (en) Production of methacrylic resin
CN101809087A (en) Transparent compositions based on high-impact vinyl aromatic copolymers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023792.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011521392

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005897

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20127032390

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11780641

Country of ref document: EP

Kind code of ref document: A1