JP5716266B2 - Method for producing methacrylic resin - Google Patents

Method for producing methacrylic resin Download PDF

Info

Publication number
JP5716266B2
JP5716266B2 JP2009188017A JP2009188017A JP5716266B2 JP 5716266 B2 JP5716266 B2 JP 5716266B2 JP 2009188017 A JP2009188017 A JP 2009188017A JP 2009188017 A JP2009188017 A JP 2009188017A JP 5716266 B2 JP5716266 B2 JP 5716266B2
Authority
JP
Japan
Prior art keywords
polymerization
mass
reactor
transfer agent
chain transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009188017A
Other languages
Japanese (ja)
Other versions
JP2011038022A (en
Inventor
慶秀 永渕
慶秀 永渕
壽晃 好村
壽晃 好村
面手 昌樹
昌樹 面手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009188017A priority Critical patent/JP5716266B2/en
Publication of JP2011038022A publication Critical patent/JP2011038022A/en
Application granted granted Critical
Publication of JP5716266B2 publication Critical patent/JP5716266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、メタクリル系樹脂の製造方法に関するものである。   The present invention relates to a method for producing a methacrylic resin.

メタクリル系樹脂は、その優れた透明性、耐候性、耐熱性、機械強度から、種々な分野で用いられている。最近では、メタクリル系樹脂を任意の形状に成型したものが、導光板をはじめ、各種映像系レンズ、光学レンズなどの光学部品として広く使用されている。   Methacrylic resins are used in various fields because of their excellent transparency, weather resistance, heat resistance, and mechanical strength. Recently, a product obtained by molding a methacrylic resin into an arbitrary shape has been widely used as an optical component such as a light guide plate, various video lenses, and optical lenses.

近年、光学部品の大型化により射出成型や押出し成型による生産が増えているが、その生産性を上げるため、加熱溶融した樹脂の固化までの冷却時間を短縮し成型サイクルを短くするために、低温で成型できるように樹脂の流動性の向上が求められている。   In recent years, the production of injection molding and extrusion molding has increased due to the increase in the size of optical components, but in order to increase the productivity, the cooling time until solidification of the heated and melted resin is shortened and the molding cycle is shortened. Therefore, improvement of the fluidity of the resin is demanded so that it can be molded.

しかし、流動性を向上させるために樹脂の低分子量化を行うと、耐熱性、機械強度が低下する問題があった。   However, when the molecular weight of the resin is lowered to improve the fluidity, there is a problem that the heat resistance and the mechanical strength are lowered.

このため、高分子量の重合体に低分子量の重合体を混合し、高分子量の重合体で耐熱性、機械強度を維持しつつ低分子量の重合体で流動性を付与する方法が知られている。例えば、特許文献1には、懸濁重合で低分子量の重合体Bを重合した後に、高分子量の重合体Aの原料となる単量体を追加し重合体Aを懸濁重合し、重合体Aと重合体Bを含むメタクリル系樹脂を製造するする方法が記載されている。   Therefore, a method is known in which a low molecular weight polymer is mixed with a high molecular weight polymer, and fluidity is imparted with the low molecular weight polymer while maintaining heat resistance and mechanical strength with the high molecular weight polymer. . For example, in Patent Document 1, after polymerizing a low molecular weight polymer B by suspension polymerization, a monomer as a raw material for the high molecular weight polymer A is added, and the polymer A is subjected to suspension polymerization. A method for producing a methacrylic resin containing A and polymer B is described.

また、懸濁重合で用いられる分散剤等に起因する異物による透明性の低下を防ぎ、光学用途として透明性に優れたメタクリル系樹脂を製造する方法として、例えば特許文献2、特許文献3には完全混合型反応器とプラグフロー型反応器を直列につないだ重合装置を用い、連続的に重合を行う方法が記載されている。   In addition, as a method for producing a methacrylic resin excellent in transparency as an optical application, preventing a decrease in transparency due to a foreign substance caused by a dispersant used in suspension polymerization, for example, Patent Document 2 and Patent Document 3 include A method is described in which polymerization is carried out continuously using a polymerization apparatus in which a fully mixed reactor and a plug flow reactor are connected in series.

特開2007−291230号公報JP 2007-291230 A 特開平8−253507号公報JP-A-8-253507 特開2000−26507号公報JP 2000-26507 A

しかし、特許文献1記載の方法では、懸濁重合で用いられる分散剤等に起因する異物のために透明性が不十分になりやすく、生産性も十分ではなかった。   However, in the method described in Patent Document 1, the transparency tends to be insufficient due to foreign matters caused by the dispersant used in suspension polymerization, and the productivity is not sufficient.

また特許文献2記載の方法は、耐熱分解性を向上するために開始剤濃度、連鎖移動剤濃度等を規定し、分子量の均一な樹脂を製造するものであり、流動性が改善されたものではない。   In addition, the method described in Patent Document 2 is to produce a resin having a uniform molecular weight by specifying an initiator concentration, a chain transfer agent concentration, etc. in order to improve thermal decomposition resistance. Absent.

特許文献3に記載の方法は、開始剤種類、連鎖移動剤濃度等を規定し、塊状重合において重合率が高くなった場合のゲル効果による生産性の低下を防ぐものであり、流動性が改善されたものではない。   The method described in Patent Document 3 defines the initiator type, the chain transfer agent concentration, etc., and prevents a decrease in productivity due to the gel effect when the polymerization rate becomes high in bulk polymerization, and improves fluidity. It is not what was done.

本発明の目的は、耐熱性、機械強度に優れ、流動性の高いメタクリル系樹脂を効率よく製造する方法を提供する。   An object of the present invention is to provide a method for efficiently producing a methacrylic resin having excellent heat resistance and mechanical strength and high fluidity.

本発明のメタクリル系樹脂を製造する方法は、完全混合型反応器とそれに引き続き直列に連結されたプラグフロー型反応器を用いて、塊状重合または5質量%未満の溶媒を含む重合によりメタクリル系樹脂を製造する方法であって、
メチルメタクリレートを70質量%以上含む単量体混合物を、前記完全混合型反応器で重合率(R1)が40%〜65%となるまで重合し、重量平均分子量が5万〜10万の重合体(P1)を得る工程と、
前記完全混合型反応器から前記重合体(P1)を含む樹脂組成物を抜き出し、前記単量体混合物100質量部に対し0.1〜2.0質量部の連鎖移動剤及び0.0005〜0.01質量部の重合開始剤を供給した後、前記プラグフロー型反応器で、プラグフロー型反応器出口での重合率(R2)が0.65<R1/R2<0.9となるまで重合する工程と、
得られた樹脂組成物から揮発分を除去する工程と、を有する。
The method for producing a methacrylic resin of the present invention comprises a methacrylic resin by bulk polymerization or polymerization containing a solvent of less than 5% by mass using a fully mixed reactor and subsequently a plug flow reactor connected in series. A method of manufacturing
A monomer mixture containing 70% by mass or more of methyl methacrylate is polymerized in the complete mixing reactor until the polymerization rate (R1) becomes 40% to 65%, and a polymer having a weight average molecular weight of 50,000 to 100,000. Obtaining (P1);
A resin composition containing the polymer (P1) is extracted from the complete mixing reactor, and 0.1 to 2.0 parts by mass of a chain transfer agent and 0.0005 to 0 with respect to 100 parts by mass of the monomer mixture. After supplying 0.01 parts by mass of the polymerization initiator, polymerization is performed in the plug flow reactor until the polymerization rate (R2) at the outlet of the plug flow reactor becomes 0.65 <R1 / R2 <0.9. And a process of
And a step of removing volatile components from the obtained resin composition.

本発明に係るメタクリル系樹脂の製造方法により、耐熱性、機械強度に優れ、流動性の高いメタクリル系樹脂を高い生産性で提供することができる。   By the method for producing a methacrylic resin according to the present invention, a methacrylic resin having excellent heat resistance and mechanical strength and high fluidity can be provided with high productivity.

本発明はメチルメタクリレートを含む単量体混合物を、完全混合型反応器で重合を行い重合体P1を含む樹脂組成物を得る工程と、該樹脂組成物に連鎖移動剤と重合開始剤を供給しプラグフロー型反応器で重合を行う工程と、得られた樹脂組成物から揮発分を除去する工程とを有する。   In the present invention, a monomer mixture containing methyl methacrylate is polymerized in a complete mixing reactor to obtain a resin composition containing polymer P1, and a chain transfer agent and a polymerization initiator are supplied to the resin composition. It has the process of superposing | polymerizing with a plug flow type reactor, and the process of removing a volatile matter from the obtained resin composition.

[完全混合型反応器での重合]
本発明では、メチルメタクリレートを70質量%以上含む単量体混合物を、完全混合型反応器で重合率(R1)が40%〜65%まで重合し、重量平均分子量が5万〜10万の重合体(P1)を得る。
[Polymerization in a fully mixed reactor]
In the present invention, a monomer mixture containing 70% by mass or more of methyl methacrylate is polymerized to a polymerization rate (R1) of 40% to 65% in a fully mixed reactor, and a weight average molecular weight of 50,000 to 100,000 is obtained. Combine (P1) is obtained.

単量体混合物中には、メタクリル系樹脂の透明性、耐候性の点から、全単量体量に対し70質量%以上のメチルメタクリレート含むことが必要である。   In the monomer mixture, it is necessary to contain 70% by mass or more of methyl methacrylate with respect to the total monomer amount from the viewpoint of transparency and weather resistance of the methacrylic resin.

また、単量体混合物中のメチルメタクリレート以外の単量体としては、例えば、アルキルアクリレートとして、炭素数1〜18のアルキル基を有するもので、メチル、エチル、n−プロピル、n−ブチル、2−エチルヘキシル、ドデシル、ステアリル等のアルキル基を有するアルキルアクリレートが挙げられる。   Examples of the monomer other than methyl methacrylate in the monomer mixture include alkyl acrylates having an alkyl group having 1 to 18 carbon atoms, such as methyl, ethyl, n-propyl, n-butyl, -Alkyl acrylate having an alkyl group such as ethylhexyl, dodecyl, stearyl and the like.

また、アルキルメタクリレートとして、炭素数2〜18のアルキル基を有するものであり、例えば、エチル、n−プロピル、n−ブチル、2−エチルヘキシル、ドデシル、ステアリル等のアルキル基を有するアルキルメタクリレートが挙げられる。これらは1種を用いても2種以上を併用してもよい。   Moreover, as an alkyl methacrylate, it has a C2-C18 alkyl group, for example, the alkyl methacrylate which has alkyl groups, such as ethyl, n-propyl, n-butyl, 2-ethylhexyl, dodecyl, stearyl, is mentioned. . These may be used alone or in combination of two or more.

また本発明では、完全混合型反応器で重合率(R1)が40%〜65%まで重合を行う。R1が40%未満では、プラグフロー型反応器での開始剤使用量が多くなり、機械強度が低下し、65%を超えると混合及び伝熱が不十分となり重合安定性が低下する。   Moreover, in this invention, it superposes | polymerizes to a polymerization rate (R1) 40%-65% with a perfect mixing type | mold reactor. If R1 is less than 40%, the amount of initiator used in the plug flow reactor increases, and the mechanical strength decreases. If it exceeds 65%, mixing and heat transfer become insufficient, and the polymerization stability decreases.

さらに本発明では、完全混合型反応器で得られる重合体の重量平均分子量が5万〜10万であることが必要である。重量平均分子量が5万未満では、メタクリル系樹脂の機械的強度が低下し、重量平均分子量が10万を超えるとメタクリル系樹脂の流動性が低下する。重量平均分子量の好ましい範囲は6万〜8万である。   Furthermore, in this invention, it is required that the weight average molecular weight of the polymer obtained by a complete mixing type reactor is 50,000-100,000. When the weight average molecular weight is less than 50,000, the mechanical strength of the methacrylic resin is lowered, and when the weight average molecular weight is more than 100,000, the fluidity of the methacrylic resin is lowered. A preferable range of the weight average molecular weight is 60,000 to 80,000.

なお、重合率(R1)、重量平均分子量は、完全混合型反応器から抜き出した樹脂組成物を後述する方法で測定した。   The polymerization rate (R1) and the weight average molecular weight were measured by the method described later for the resin composition extracted from the complete mixing reactor.

完全混合型反応器での重合は公知の連鎖移動剤、重合開始剤等を用い、公知の重合条件で行えばよい。   The polymerization in the complete mixing reactor may be carried out under known polymerization conditions using a known chain transfer agent, polymerization initiator or the like.

前記連鎖移動剤としては、メルカプタン化合物を使用することができる。メルカプタン化合物としては、n−ブチル、イソブチル、n−オクチル、n−ドデシル、sec−ブチル、sec−ドデシル、tert−ブチルメルカプタン等のアルキル基又は置換アルキル基を有する第1級、第2級、第3級メルカプタン;フェニルメルカプタン、チオクレゾール、4−tert−ブチル−o−チオクレゾール等の芳香族メルカプタン;チオグリコール酸とそのエステル;エチレンチオグリコール等の炭素数2〜18のメルカプタンが挙げられる。これらは単独で又は2種類以上を組み合わせて用いることができる。これらのメルカプタンの中でも、tert−ブチル、n−ブチル、n−オクチル、n−ドデシルメルカプタンが好ましい。   As the chain transfer agent, a mercaptan compound can be used. Examples of mercaptan compounds include primary, secondary, and primary alkyl groups or substituted alkyl groups such as n-butyl, isobutyl, n-octyl, n-dodecyl, sec-butyl, sec-dodecyl, and tert-butyl mercaptan. Tertiary mercaptans; aromatic mercaptans such as phenyl mercaptan, thiocresol, 4-tert-butyl-o-thiocresol; thioglycolic acid and esters thereof; and mercaptans having 2 to 18 carbon atoms such as ethylenethioglycol. These can be used alone or in combination of two or more. Among these mercaptans, tert-butyl, n-butyl, n-octyl, and n-dodecyl mercaptan are preferable.

前記連鎖移動剤の使用量は、目標とする重量平均分子量を達成するために、全単量体量に対し0.01質量%〜2質量%が好ましい。0.01質量%より少ない場合は、完全混合型反応器での重合が不安定になる場合がある。また、2質量%より多いと、重合体(P1)の重量平均分子量が5万未満となりやすい。   The amount of the chain transfer agent used is preferably 0.01% by mass to 2% by mass with respect to the total monomer amount in order to achieve the target weight average molecular weight. When the amount is less than 0.01% by mass, polymerization in a complete mixing type reactor may become unstable. On the other hand, when it is more than 2% by mass, the polymer (P1) has a weight average molecular weight of less than 50,000.

また、前記重合開始剤としては、一般的なラジカル重合開始剤を用いることができ、特に制限されないが、例えばtert−ブチルパーオキシ−3,5,5−トリメチルヘキサネート、tert−ブチルパーオキシラウレート、tert−ブチルパーオキシイソプロピルモノカーボネート、tert−ヘキシルパーオキシイソプロピルモノカーボネート、tert−ブチルパーオキシアセテート、1,1−ビス(tert−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(tert−ブチルパーオキシ)シクロヘキサン、tert−ブチルパーオキシ2−エチルヘキサネート、tert−ブチルパーオキシイソブチレート、tert−ヘキシルパーオキシ2−エチルヘキサネート、ジ−tert−ブチルパーオキサイド、ジ−tert−ヘキシルパーオキサイド、2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン等の有機過酸化物、又は2−(カルバモイルアゾ)−イソブチロニトリル、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、ジメチル2,2’−アゾビスイソブチレート、2、2’−アゾビス(2,4,4−トリメチルペンタン)、2、2’−アゾビス(2−メチルプロパン)等のアゾ化合物等から重合温度を考慮して適宜選択することができる。これらは単独で又は2種類以上を組み合わせて用いることができる。   The polymerization initiator may be a general radical polymerization initiator, and is not particularly limited. For example, tert-butylperoxy-3,5,5-trimethylhexanate, tert-butylperoxylaurate. Tert-butyl peroxyisopropyl monocarbonate, tert-hexyl peroxyisopropyl monocarbonate, tert-butyl peroxyacetate, 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane, 1, 1-bis (tert-butylperoxy) cyclohexane, tert-butylperoxy 2-ethylhexanate, tert-butylperoxyisobutyrate, tert-hexylperoxy-2-ethylhexanate, di-tert-butylperoxy Id, di-tert-hexyl peroxide, organic peroxides such as 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, or 2- (carbamoylazo) -isobutyronitrile, , 1'-azobis (1-cyclohexanecarbonitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), dimethyl 2,2'-azobisisobuty An azo compound such as a rate, 2,2′-azobis (2,4,4-trimethylpentane), and 2,2′-azobis (2-methylpropane) can be appropriately selected in consideration of the polymerization temperature. These can be used alone or in combination of two or more.

重合開始剤の使用量は、目標とする重量平均分子量を達成するために、全単量体量に対し0.001質量%〜1質量%が好ましい。0.001質量%より少ないと、目標とする重合率が得られない場合がある。また、1質量%より多いと、原料コストが高くなる場合がある。   The amount of the polymerization initiator used is preferably 0.001% by mass to 1% by mass with respect to the total monomer amount in order to achieve the target weight average molecular weight. If it is less than 0.001% by mass, the target polymerization rate may not be obtained. Moreover, when more than 1 mass%, raw material cost may become high.

重合温度は、110〜170℃が好ましい。重合温度が110℃より低いとゲル効果による重合速度の加速現象が大きくなるため、重合率が低い条件でしか安定に運転することができず、生産性が低下して経済的に不利である。より好ましくは120℃以上である。一方、重合温度が170℃より高いと、重合反応は安定となり重合率を高くすることができるが、重合体の透明性の低下、機械的強度の低下、熱変形温度の低下、耐熱分解性が低下するために好ましくない。より好ましくは150℃以下である。   The polymerization temperature is preferably 110 to 170 ° C. When the polymerization temperature is lower than 110 ° C., the acceleration phenomenon of the polymerization rate due to the gel effect becomes large, so that it can be operated stably only under a condition with a low polymerization rate, which is disadvantageous economically because productivity is lowered. More preferably, it is 120 ° C. or higher. On the other hand, when the polymerization temperature is higher than 170 ° C., the polymerization reaction becomes stable and the polymerization rate can be increased. However, the transparency of the polymer, the mechanical strength, the thermal deformation temperature, and the thermal decomposition resistance are reduced. Since it falls, it is not preferable. More preferably, it is 150 degrees C or less.

本発明の完全混合型反応器での重合は、溶媒を使用しない塊状重合が好ましいが、5質量%未満の溶媒を含んでいてもよい。溶媒としては、メタノール、エタノール、トルエン、キシレン、アセトン、メチルイソブチルケトン、エチルベンゼン、メチルエチルケトン、酢酸ブチルなど公知の溶媒を使用することができる。この中でも、メタノール、トルエン、エチルベンゼン、酢酸ブチル等が好ましい。   Polymerization in the fully mixed reactor of the present invention is preferably bulk polymerization without using a solvent, but may contain less than 5% by mass of solvent. As the solvent, known solvents such as methanol, ethanol, toluene, xylene, acetone, methyl isobutyl ketone, ethylbenzene, methyl ethyl ketone, and butyl acetate can be used. Among these, methanol, toluene, ethylbenzene, butyl acetate and the like are preferable.

[プラグフロー型反応器での重合]
次に、前記完全混合型反応器から前記重合体(P1)を含む樹脂組成物を抜き出し、該樹脂組成物に連鎖移動剤及び重合開始剤を供給した後、プラグフロー型反応器で重合を行う。
[Polymerization in plug flow reactor]
Next, the resin composition containing the polymer (P1) is extracted from the complete mixing reactor, a chain transfer agent and a polymerization initiator are supplied to the resin composition, and then polymerization is performed in a plug flow reactor. .

連鎖移動剤としては、完全混合型反応器における重合と同様のメルカプタン化合物を使用することができ、単独で又は2種類以上を組み合わせて用いることができる。連鎖移動剤の量は、全単量体100質量部に対し0.1〜2.0質量部必要である。0.1質量部未満では、得られる重合体の分子量の低下が不十分で流動性が不十分となり、2.0質量部を超えると得られる重合体の分子量低くなり過ぎ機械強度が低下する。   As the chain transfer agent, the same mercaptan compound as that used in the polymerization in the complete mixing reactor can be used, and these can be used alone or in combination of two or more. The amount of the chain transfer agent is required to be 0.1 to 2.0 parts by mass with respect to 100 parts by mass of all monomers. If it is less than 0.1 part by mass, the molecular weight of the resulting polymer is insufficiently lowered and the fluidity becomes insufficient. If it exceeds 2.0 parts by mass, the molecular weight of the resulting polymer becomes too low and the mechanical strength is lowered.

また重合開始剤も完全混合型反応器における重合と同様のラジカル重合開始剤を使用することができ、単独で又は2種類以上を組み合わせて用いることができる。重合開始剤の量は、全単量体100質量部に対し0.0005〜0.01質量部必要である。0.0005質量部未満では、流動性が不十分となり、0.01質量部を超えると機械強度が不十分となる。なお、重合開始剤を2種類以上用いる場合は、その合計量が規定の範囲にあればよい。   As the polymerization initiator, the same radical polymerization initiator as the polymerization in the complete mixing reactor can be used, and the polymerization initiator can be used alone or in combination of two or more. The amount of the polymerization initiator is required to be 0.0005 to 0.01 parts by mass with respect to 100 parts by mass of all monomers. If it is less than 0.0005 parts by mass, the fluidity is insufficient, and if it exceeds 0.01 parts by mass, the mechanical strength is insufficient. In addition, when using 2 or more types of polymerization initiators, the total amount should just be in a regulation range.

さらに本発明では、プラグフロー型反応器出口での重合率(R2)が0.65<R1/R2<0.9となることが必要である。R1/R2が0.65以下の場合、得られる樹脂組成物中の分子量の高い重合体の割合が低いため、機械強度が不十分となる。また、R1/R2が0.9以上の場合、得られる樹脂組成物中の分子量の低い重合体の割合が低いため、流動性が不十分となる。   Furthermore, in the present invention, it is necessary that the polymerization rate (R2) at the outlet of the plug flow reactor is 0.65 <R1 / R2 <0.9. When R1 / R2 is 0.65 or less, the ratio of the polymer having a high molecular weight in the obtained resin composition is low, so that the mechanical strength becomes insufficient. Moreover, when R1 / R2 is 0.9 or more, since the ratio of the low molecular weight polymer in the obtained resin composition is low, the fluidity becomes insufficient.

また、プラグフロー型反応器の出口温度は、170℃〜200℃が好ましい。反応物である樹脂組成物の粘度が大きくなると、プラグフロー型反応器や配管での圧力損失が大きくなるため装置の耐圧性を高める必要がある。そこで、出口温度を170℃以上として、粘度を下げることが好ましい。これにより、本発明では、高い生産性でメタクリル系樹脂を製造することが可能となる。また、メチルメタクリレートの重合では、高温になるほど解重合が進行するため、到達重合率が低くなることが知られている。そこで、到達重合率を高くするため本発明においては出口温度を200℃以下とすることが好ましい。   The outlet temperature of the plug flow reactor is preferably 170 ° C to 200 ° C. When the viscosity of the resin composition as the reactant increases, the pressure loss in the plug flow reactor and piping increases, so the pressure resistance of the apparatus needs to be increased. Therefore, it is preferable to lower the viscosity by setting the outlet temperature to 170 ° C. or higher. Thereby, in this invention, it becomes possible to manufacture a methacrylic resin with high productivity. In addition, in the polymerization of methyl methacrylate, it is known that the depolymerization proceeds as the temperature increases, so that the ultimate polymerization rate decreases. Therefore, in order to increase the ultimate polymerization rate, the outlet temperature is preferably 200 ° C. or lower in the present invention.

プラグフロー型反応器としては特に制限はないが、スタティックミキサを内装した管型反応器が好ましい。プラグフロー型反応器は、装置の耐圧性の観点から、圧力損失はできる限り小さいことが好ましい。プラグフロー型反応器がスタティックミキサを含む場合には、圧力損失の小さいスタティックミキサを用いることが好ましい。圧力損失を小さくする手段としては、スタティックミキサの長さ(L)をスタティックミキサの直径(D)で除した値L/Dを小さくする方法等がある。しかし、プラグフロー型反応器に供給する重合開始剤、連鎖移動剤を速やかに樹脂組成物に混合するためには、プラグフロー型反応器は、混合速度を高めるために、線速度を上げる、すなわちL/Dを大きくすることが好ましい。   Although there is no restriction | limiting in particular as a plug flow type reactor, The tubular reactor which equipped the static mixer internally is preferable. The plug flow reactor preferably has as little pressure loss as possible from the viewpoint of pressure resistance of the apparatus. When the plug flow reactor includes a static mixer, it is preferable to use a static mixer with a small pressure loss. As a means for reducing the pressure loss, there is a method of reducing a value L / D obtained by dividing the length (L) of the static mixer by the diameter (D) of the static mixer. However, in order to quickly mix the polymerization initiator and chain transfer agent supplied to the plug flow reactor into the resin composition, the plug flow reactor increases the linear velocity in order to increase the mixing speed, that is, It is preferable to increase L / D.

このため、完全混合型反応器から抜き出した樹脂組成物に、連鎖移動剤及び重合開始剤を直径の小さなスタティックミキサ内で速やかに混合した後に、直径の大きなプラグフロー型反応器を用いることが好ましい。   For this reason, it is preferable to use a plug flow reactor having a large diameter after rapidly mixing a chain transfer agent and a polymerization initiator in a static mixer having a small diameter with the resin composition extracted from the complete mixing reactor. .

すなわち、完全混合型反応器に連結されるプラグフロー型反応器が、直径Dmのスタティックミキサと直径Drのプラグフロー型反応器からなり、Dm<Drであって、前記完全混合型反応器と、直径Dmのスタティックミキサ、直径Drのプラグフロー型反応器、の順序で直列に連結されており、前記直径Dmのスタティックミキサにおいて、完全混合型反応器から抜き出された樹脂組成物に連鎖移動剤及び重合開始剤を供給し混合した後、前記直径Drのプラグフロー型反応器において重合を行うことが圧力損失を小さくする上で好ましい。   That is, the plug flow reactor connected to the complete mixing reactor comprises a static mixer having a diameter Dm and a plug flow reactor having a diameter Dr, where Dm <Dr, and the complete mixing reactor, A static transfer mixer having a diameter Dm and a plug flow reactor having a diameter Dr are connected in series. In the static mixer having the diameter Dm, a chain transfer agent is added to the resin composition extracted from the complete mixing reactor. In order to reduce the pressure loss, it is preferable to perform polymerization in the plug flow reactor having the diameter Dr after supplying and mixing the polymerization initiator.

連鎖移動剤及び重合開始剤の混合のためのスタティックミキサは、混合速度が充分速い場合は、併用でも構わないが、連鎖移動剤混合用スタティックミキサと、重合開始剤混合用スタティックミキサの2つを用いることが好ましい。具体的には、完全混合型反応器に連鎖移動剤混合用スタティックミキサ及び重合開始剤混合用スタティックミキサを連結し、さらに連鎖移動剤混合用スタティックミキサ及び重合開始剤混合用スタティックミキサより直径の大きいプラグフロー型反応器を連結することが好ましい。なお、連鎖移動剤混合用スタティックミキサと重合開始剤混合用スタティックミキサは同一のものを用いることができる。   The static mixer for mixing the chain transfer agent and the polymerization initiator may be used in combination when the mixing speed is sufficiently high. However, the static mixer for mixing the chain transfer agent and the static mixer for mixing the polymerization initiator are used. It is preferable to use it. Specifically, a chain transfer agent mixing static mixer and a polymerization initiator mixing static mixer are connected to a complete mixing reactor, and the diameter is larger than that of a chain transfer agent mixing static mixer and a polymerization initiator mixing static mixer. It is preferable to connect a plug flow reactor. Note that the same chain transfer agent mixing static mixer and polymerization initiator mixing static mixer can be used.

前記反応器を用いる場合には、まず、連鎖移動剤混合用スタティックミキサにおいて完全混合型反応器から抜き出した樹脂組成物に連鎖移動剤を供給後、引き続き、重合開始剤を重合開始剤混合用スタティックミキサに供給し、連鎖移動剤混合用スタティックミキサ及び重合開始剤混合用スタティックミキサより直径の大きなプラグフロー型反応器で重合させる。これにより、連鎖移動剤を効率よく用いることができると共に、連鎖移動剤と重合開始剤のレドックス反応による消費も抑制することが可能となる。   In the case of using the reactor, first, after supplying the chain transfer agent to the resin composition extracted from the complete mixing type reactor in the chain transfer agent mixing static mixer, the polymerization initiator is subsequently added to the polymerization initiator mixing static mixer. The mixture is fed to a mixer and polymerized in a plug flow reactor having a diameter larger than that of a static mixer for mixing a chain transfer agent and a static mixer for mixing a polymerization initiator. Thereby, while being able to use a chain transfer agent efficiently, it becomes possible to also suppress consumption by the redox reaction of a chain transfer agent and a polymerization initiator.

連鎖移動剤混合用スタティックミキサ及び重合開始剤混合用スタティックミキサのL/Dは、3〜36であることが好ましい。L/Dが3より小さいと、圧力損失は小さいが混合が不十分となる場合がある。また、L/Dが36より大きいと、混合は充分であるが圧力損失が大きくなる場合がある。   L / D of the chain transfer agent mixing static mixer and the polymerization initiator mixing static mixer is preferably 3 to 36. When L / D is smaller than 3, the pressure loss is small but mixing may be insufficient. On the other hand, if L / D is greater than 36, mixing may be sufficient but pressure loss may increase.

[揮発分の除去]
本発明では、プラグフロー型反応器から抜き出された樹脂組成物を揮発物除去工程に送り、未反応モノマーを主成分とする揮発物を除去し、メタクリル系樹脂を得る。
[Removal of volatile matter]
In the present invention, the resin composition extracted from the plug flow reactor is sent to a volatile matter removing step to remove volatile matter mainly composed of unreacted monomers to obtain a methacrylic resin.

揮発分を序供する方法としては、連続的に送られてくる所定の重合率を有する反応混合物を、減圧下で200〜290℃に加熱してモノマーを主体とする揮発物の大部分を連続的に分離除去することが好ましい。具体的には、脱揮押出機を挙げることができる。   As a method for introducing the volatile matter, the reaction mixture having a predetermined polymerization rate that is continuously sent is heated to 200 to 290 ° C. under reduced pressure, and most of the volatile matter mainly composed of monomer is continuously obtained. It is preferable to separate and remove. Specific examples include a devolatilizing extruder.

実施例の重合体の物性評価は以下の方法で行った。   The physical properties of the polymers of the examples were evaluated by the following methods.

(重量平均分子量)
重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)にて測定した。GPC法の測定は、メタクリル系樹脂をテトラヒドロフラン(THF)に溶解させた後、液体クロマトグラフィー「HLC−8020」(商品名、東ソー(株)製)を用い、分離カラムは「TSK−Gel GMHXL」(商品名、東ソー(株)製)2本直列、溶媒はTHF、流量1.0ml/min、検出器は示差屈折計、測定温度40℃、注入量0.1ml、標準ポリマーとしてポリメタクリル酸メチルを使用して実施した。
(Weight average molecular weight)
The weight average molecular weight was measured by gel permeation chromatography (GPC). The GPC method was measured by dissolving a methacrylic resin in tetrahydrofuran (THF) and then using liquid chromatography “HLC-8020” (trade name, manufactured by Tosoh Corporation), and the separation column was “TSK-Gel GMHXL”. (Trade name, manufactured by Tosoh Corporation) 2 in series, solvent is THF, flow rate is 1.0 ml / min, detector is differential refractometer, measurement temperature is 40 ° C., injection amount is 0.1 ml, polymethyl methacrylate as standard polymer Was carried out.

(重合率)
重合率は、230℃、−20KPaで揮発分を除去した樹脂組成物の質量(質量A)と、供給する単量体混合物の質量(質量B)から、
[重合率](%)=[質量A]/[質量B]×100(%)
により求めた。
(Polymerization rate)
The polymerization rate is determined from the mass (mass A) of the resin composition from which volatile components have been removed at 230 ° C. and −20 KPa, and the mass (mass B) of the monomer mixture to be supplied.
[Polymerization rate] (%) = [mass A] / [mass B] × 100 (%)
Determined by

(曲げ破断強度)
JIS規格K6911に準拠した。試験片厚さは4mmとした。曲げ破断強度は75Mpa以上あれば、機械強度が十分と判断した。
(Bending strength)
Conforms to JIS standard K6911. The specimen thickness was 4 mm. If the bending break strength was 75 Mpa or more, it was judged that the mechanical strength was sufficient.

(流動性(MFR))
MFRは、キャピログラフ(東洋精機(株)製)を用い、キャピラリー:L/D=10/1mm、温度:230℃、せん断速度:600(Sec-1)の条件で測定した。MFRは15以上あれば、流動性が十分と判断した。
(Fluidity (MFR))
MFR was measured using a capillograph (manufactured by Toyo Seiki Co., Ltd.) under the conditions of capillary: L / D = 10/1 mm, temperature: 230 ° C., shear rate: 600 (Sec −1 ). If the MFR was 15 or more, it was judged that the fluidity was sufficient.

[実施例1]
メチルメタクリレート(MMA)95質量部、メチルアクリレート(MA)5質量部からなるモノマー混合物に窒素を導入した後、このモノマー混合物100質量部に対して、連鎖移動剤として、n−オクチルメルカプタン0.32質量部と、重合開始剤として、1,1−ビス(t−ブチルパーオキシ)−3,5,5−トリメチルシクロヘキサン0.009質量部とを混合した原料モノマーを、重合温度135℃に制御された完全混合型反応器に攪拌混合しながら連続的に供給し、樹脂組成物をギアポンプで連続的に抜き出しながら重合を行った。反応域での反応液の滞在量を60kgとし、平均滞在時間を2.0時間として重合を実施した。完全混合型反応器出口でサンプリングした高分子量樹脂の重合率は50%、重量平均分子量は75000であった。
[Example 1]
Nitrogen was introduced into a monomer mixture consisting of 95 parts by mass of methyl methacrylate (MMA) and 5 parts by mass of methyl acrylate (MA), and then 100 parts by mass of this monomer mixture was used as a chain transfer agent with 0.32 n-octyl mercaptan. The polymerization monomer was controlled at a polymerization temperature of 135 ° C. with a raw material monomer mixed with 0.009 part by mass of 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane as a polymerization initiator. Polymerization was carried out while continuously feeding to the complete mixing reactor while stirring and mixing, and continuously taking out the resin composition with a gear pump. Polymerization was carried out at a residence time of the reaction solution in the reaction zone of 60 kg and an average residence time of 2.0 hours. The polymerization rate of the high molecular weight resin sampled at the outlet of the complete mixing reactor was 50%, and the weight average molecular weight was 75,000.

続いて、前記完全混合型反応器に直列に連結された連鎖移動剤混合用スタティックミキサ(商品名:「SMXスルーザミキサ」、住友重機械工業(株)製、直径27.2mm、長さ650mm)に、前記抜き出した樹脂組成物を供給した。さらに、連鎖移動剤混合用スタティックミキサにおいて、連鎖移動剤としてn−オクチルメルカプタン0.26質量部を供給し、樹脂組成物と混合した。   Subsequently, to a chain transfer agent mixing static mixer (trade name: “SMX Through the Mixer”, manufactured by Sumitomo Heavy Industries, Ltd., diameter: 27.2 mm, length: 650 mm) connected in series to the complete mixing reactor. The extracted resin composition was supplied. Furthermore, in the chain transfer agent mixing static mixer, 0.26 parts by mass of n-octyl mercaptan was supplied as a chain transfer agent and mixed with the resin composition.

その後、連鎖移動剤混合用スタティックミキサに連結した重合開始剤混合用スタティックミキサに、前記混合物を供給した。重合開始剤混合用スタティックミキサには、前記連鎖移動剤混合用スタティックミキサと同一のものを用いた。さらに、重合開始剤混合用スタティックミキサにおいて、重合開始剤として1,1−ビス(t−ブチルパーオキシ)−3,5,5−トリメチルシクロヘキサン0.0035質量部、ジ−t−ヘキシルパーオキサイド0.0035質量部をメチルメタクリレートで100倍に希釈し、前記混合物と混合した。   Thereafter, the mixture was supplied to a polymerization initiator mixing static mixer connected to a chain transfer agent mixing static mixer. As the polymerization initiator mixing static mixer, the same one as the chain transfer agent mixing static mixer was used. Further, in the static mixer for mixing the polymerization initiator, 0.001-35 parts by mass of 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane as a polymerization initiator, di-t-hexyl peroxide 0 0035 parts by mass was diluted 100 times with methyl methacrylate and mixed with the mixture.

その後、重合開始剤混合用スタティックミキサに連結したプラグフロー型反応器(商品名:「SMXスルーザミキサ」、住友重機械工業(株)製、直径65.9mm、長さ5000mm)に、前記重合開始剤混合用スタティックミキサを通過した混合物を供給して重合を行った。プラグフロー型反応器出口温度は、190℃となるように、プラグフロー型反応器のジャケット温度を調節した。なお、重合率は原料モノマーと得られた重合体組成物の質量より求めた。   Thereafter, the polymerization initiator was connected to a plug flow reactor (trade name: “SMX Through the Mixer”, manufactured by Sumitomo Heavy Industries, Ltd., diameter 65.9 mm, length 5000 mm) connected to a static mixer for mixing polymerization initiators. Polymerization was carried out by feeding the mixture that passed through the static mixer for mixing. The jacket temperature of the plug flow reactor was adjusted so that the outlet temperature of the plug flow reactor was 190 ° C. In addition, the polymerization rate was calculated | required from the mass of the raw material monomer and the obtained polymer composition.

得られた重合体組成物を押出機にて脱揮し、メタクリル系樹脂を得た。得られたメタクリル系樹脂の重合率は71%であった。評価結果を表1に示す。   The obtained polymer composition was devolatilized with an extruder to obtain a methacrylic resin. The polymerization rate of the obtained methacrylic resin was 71%. The evaluation results are shown in Table 1.

[実施例2〜6]
重合開始剤、連鎖移動剤の量を表1に示すように変更した以外は、実施例1と同様に実施した。評価結果を表1に示す。
[Examples 2 to 6]
The same procedure as in Example 1 was performed except that the amounts of the polymerization initiator and the chain transfer agent were changed as shown in Table 1. The evaluation results are shown in Table 1.

[比較例1]
重合開始剤、連鎖移動剤の量を表1に示すように変更した以外は、実施例1と同様に実施した。完全混合型反応器出口でサンプリングした高分子量樹脂の重合率は38%と低く、機械強度が低下した。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the amounts of the polymerization initiator and the chain transfer agent were changed as shown in Table 1. The polymerization rate of the high molecular weight resin sampled at the outlet of the complete mixing reactor was as low as 38%, and the mechanical strength was lowered.

[比較例2]
重合開始剤、連鎖移動剤の量を表1に示すように変更した以外は、実施例1と同様に実施した。完全混合型反応器で得られる重合体の重量平均分子量が高く、流動性が不十分となった。
[Comparative Example 2]
The same procedure as in Example 1 was performed except that the amounts of the polymerization initiator and the chain transfer agent were changed as shown in Table 1. The weight average molecular weight of the polymer obtained in the fully mixed reactor was high, and the fluidity was insufficient.

[比較例3]
重合開始剤、連鎖移動剤の量を表1に示すように変更した以外は、実施例1と同様に実施した。完全混合型反応器で得られる重合体の重量平均分子量が低く、曲げ破断強度が不十分となった。
[Comparative Example 3]
The same procedure as in Example 1 was performed except that the amounts of the polymerization initiator and the chain transfer agent were changed as shown in Table 1. The weight average molecular weight of the polymer obtained in the complete mixing reactor was low, and the bending fracture strength was insufficient.

[比較例4]
重合開始剤、連鎖移動剤の量を表1に示すように変更した以外は、実施例1と同様に実施した。R1/R2が0.65と低いために、高分子量の重合体の割合が小さいため、曲げ破断強度が不十分となった。
[Comparative Example 4]
The same procedure as in Example 1 was performed except that the amounts of the polymerization initiator and the chain transfer agent were changed as shown in Table 1. Since R1 / R2 is as low as 0.65, the ratio of the high molecular weight polymer is small, so that the bending rupture strength is insufficient.

[比較例5]
重合開始剤、連鎖移動剤の量を表1に示すように変更した以外は、実施例1と同様に実施した。R1/R2が0.9と高いために、高分子量の重合体の割合が大きく、流動性が不十分となった。
[Comparative Example 5]
The same procedure as in Example 1 was performed except that the amounts of the polymerization initiator and the chain transfer agent were changed as shown in Table 1. Since R1 / R2 was as high as 0.9, the ratio of the high molecular weight polymer was large and the fluidity was insufficient.

[比較例6]
重合開始剤、連鎖移動剤の量を表1に示すように変更した以外は、実施例1と同様に実施した。完全混合型反応器で得られた樹脂組成物に供給する連鎖移動剤の量が多いため、低分子量の重合体の分子量が低くなりすぎ、破断強度が不十分となった。
[Comparative Example 6]
The same procedure as in Example 1 was performed except that the amounts of the polymerization initiator and the chain transfer agent were changed as shown in Table 1. Since the amount of the chain transfer agent supplied to the resin composition obtained in the fully mixed reactor was large, the molecular weight of the low molecular weight polymer was too low, and the breaking strength was insufficient.

[比較例7]
重合開始剤、連鎖移動剤の量を表1に示すように変更した以外は、実施例1と同様に実施した。完全混合型反応器で得られた樹脂組成物に供給する連鎖移動剤の量が少ないため、低分子量の重合体の分子量が十分に低下せず、流動性が不十分となった。
[Comparative Example 7]
The same procedure as in Example 1 was performed except that the amounts of the polymerization initiator and the chain transfer agent were changed as shown in Table 1. Since the amount of the chain transfer agent supplied to the resin composition obtained in the fully mixed reactor was small, the molecular weight of the low molecular weight polymer was not sufficiently lowered, and the fluidity was insufficient.

Figure 0005716266
Figure 0005716266

*1:1,1−ジ(t−ブチルパーオキシ)−3,5,5−トリメチルシクロヘキサン
*2:ジ−t−ヘキシルパーオキサイド。
* 1: 1,1-di (t-butylperoxy) -3,5,5-trimethylcyclohexane * 2: Di-t-hexyl peroxide.

Claims (1)

完全混合型反応器とそれに引き続き直列に連結されたプラグフロー型反応器を用いて、塊状重合または5質量%未満の溶媒を含む重合によりメタクリル系樹脂を製造する方法であって、
メチルメタクリレートを70質量%以上含む単量体混合物を、前記完全混合型反応器で重合率(R1)が40%〜65%となるまで重合し、重量平均分子量が5万〜10万の重合体(P1)を得る工程と、
前記完全混合型反応器から前記重合体(P1)を含む樹脂組成物を抜き出し、前記単量体混合物100質量部に対し0.1〜2.0質量部の連鎖移動剤及び0.0005〜0.01質量部の重合開始剤を供給した後、前記プラグフロー型反応器で、プラグフロー型反応器出口での重合率(R2)が0.65<R1/R2<0.9となるまで重合する工程と、
得られた樹脂組成物から揮発分を除去する工程と、
を有するメタクリル系樹脂を製造する方法。
A method for producing a methacrylic resin by bulk polymerization or polymerization containing less than 5% by weight of a solvent using a fully mixed reactor and subsequently a plug flow reactor connected in series,
A monomer mixture containing 70% by mass or more of methyl methacrylate is polymerized in the complete mixing reactor until the polymerization rate (R1) becomes 40% to 65%, and a polymer having a weight average molecular weight of 50,000 to 100,000. Obtaining (P1);
A resin composition containing the polymer (P1) is extracted from the complete mixing reactor, and 0.1 to 2.0 parts by mass of a chain transfer agent and 0.0005 to 0 with respect to 100 parts by mass of the monomer mixture. After supplying 0.01 parts by mass of the polymerization initiator, polymerization is performed in the plug flow reactor until the polymerization rate (R2) at the outlet of the plug flow reactor becomes 0.65 <R1 / R2 <0.9. And a process of
Removing volatiles from the resulting resin composition;
A method for producing a methacrylic resin having
JP2009188017A 2009-08-14 2009-08-14 Method for producing methacrylic resin Active JP5716266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188017A JP5716266B2 (en) 2009-08-14 2009-08-14 Method for producing methacrylic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188017A JP5716266B2 (en) 2009-08-14 2009-08-14 Method for producing methacrylic resin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015038925A Division JP5958577B2 (en) 2015-02-27 2015-02-27 Method for producing methacrylic resin

Publications (2)

Publication Number Publication Date
JP2011038022A JP2011038022A (en) 2011-02-24
JP5716266B2 true JP5716266B2 (en) 2015-05-13

Family

ID=43766111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188017A Active JP5716266B2 (en) 2009-08-14 2009-08-14 Method for producing methacrylic resin

Country Status (1)

Country Link
JP (1) JP5716266B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098610A (en) * 2015-02-27 2015-05-28 三菱レイヨン株式会社 Method of manufacturing methacrylic resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844335B (en) * 2010-04-06 2015-04-08 三菱丽阳株式会社 Manufacturing device and manufacturing method of methacryl series polymer
JP6002017B2 (en) 2012-12-03 2016-10-05 住友化学株式会社 Method for producing methacrylic polymer composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490284A (en) * 1977-12-27 1979-07-17 Mitsubishi Chem Ind Ltd Production of methyl methacrylate polymer
JP3319485B2 (en) * 1994-01-07 2002-09-03 三菱瓦斯化学株式会社 Method for producing methacrylic resin having thermal decomposition resistance
JP4091689B2 (en) * 1998-08-05 2008-05-28 三菱レイヨン株式会社 Method for producing methyl methacrylate polymer and method for producing plastic optical fiber
JP2003002912A (en) * 2001-06-21 2003-01-08 Mitsubishi Rayon Co Ltd Method for producing methacrylate polymer
JP3906848B2 (en) * 2004-04-21 2007-04-18 三菱瓦斯化学株式会社 Method for producing methacrylic resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098610A (en) * 2015-02-27 2015-05-28 三菱レイヨン株式会社 Method of manufacturing methacrylic resin

Also Published As

Publication number Publication date
JP2011038022A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5790499B2 (en) Apparatus and method for producing methacrylic polymer
WO2000004054A1 (en) Process for producing methacrylic polymer
CN109232787B (en) Methyl methacrylate-styrene copolymer resin, preparation method and application thereof
JP2012211279A (en) Method for producing (meth)acrylic polymer
JP5716266B2 (en) Method for producing methacrylic resin
EP3262088B1 (en) Continuous process for preparation of high heat resistance copolymers
JP5958577B2 (en) Method for producing methacrylic resin
CN114891147B (en) Methyl methacrylate copolymer and preparation method and application thereof
TWI518100B (en) Method for producing methacrylic polymer
JP3013951B2 (en) Acrylic resin manufacturing method
KR100756816B1 (en) Thermoplastic styrenic resin having excellent flowability and good cosmetics
JP2005082687A (en) Method for producing (meth)acrylic polymer
JP6007896B2 (en) Method for producing methacrylic polymer
JP2001233912A (en) Manufacturing method of methacrylic polymer
JP4325475B2 (en) Methacrylic polymer and process for producing the same
EP4146708B1 (en) Process for preparing low molecular weight polyacrylates and products thereof
JP4256744B2 (en) Method for producing (meth) acrylic polymer
JP4458931B2 (en) Transparent rubber-modified copolymer resin composition, molded product obtained therefrom, and method for producing the composition
JPH0812722A (en) Production of heat-resistant resin
KR100781962B1 (en) Method for preparing branched-methacrylic resin having good productivity
JPH05339305A (en) Preparation of acrylic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R151 Written notification of patent or utility model registration

Ref document number: 5716266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250