JPH1087327A - Composite metal hydroxide, method for producing the same, and raw material for positive electrode active material for lithium secondary battery - Google Patents

Composite metal hydroxide, method for producing the same, and raw material for positive electrode active material for lithium secondary battery

Info

Publication number
JPH1087327A
JPH1087327A JP8263619A JP26361996A JPH1087327A JP H1087327 A JPH1087327 A JP H1087327A JP 8263619 A JP8263619 A JP 8263619A JP 26361996 A JP26361996 A JP 26361996A JP H1087327 A JPH1087327 A JP H1087327A
Authority
JP
Japan
Prior art keywords
metal hydroxide
composite metal
producing
positive electrode
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8263619A
Other languages
Japanese (ja)
Other versions
JP3830586B2 (en
Inventor
Nobuyuki Yamazaki
信幸 山崎
Shigeyasu Kimura
重保 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP26361996A priority Critical patent/JP3830586B2/en
Publication of JPH1087327A publication Critical patent/JPH1087327A/en
Application granted granted Critical
Publication of JP3830586B2 publication Critical patent/JP3830586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【解決手段】 Ni、Co及びMnの金属元素から選ば
れる少なくとも2種以上及びMg、Ti、Fe、Cu、
Zn及びCrの金属元素から選ばれる少なくとも1種又
は2種以上を複合金属水酸化物中に固溶及び/又は共沈
状態で含有することを特徴とする複合金属水酸化物、そ
の製造方法及びこれを用いた二次電池用正極活物質原
料。 【効果】 本発明の複合水酸化物は、実質的に球状な粒
子形態を有しており、リチウム二次電池用正極活物質原
料として有用である。
(57) Abstract: At least two or more selected from metal elements of Ni, Co and Mn, and Mg, Ti, Fe, Cu,
A composite metal hydroxide comprising at least one or more selected from metal elements of Zn and Cr in a solid solution and / or coprecipitated state in a composite metal hydroxide, a method for producing the same, and a method for producing the same. Positive electrode active material for secondary batteries using this. The composite hydroxide of the present invention has a substantially spherical particle form, and is useful as a raw material for a positive electrode active material for a lithium secondary battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合金属水酸化
物、その製造方法及びリチウム二次電池用正極活物質原
料に関するものである。
The present invention relates to a composite metal hydroxide, a method for producing the same, and a raw material for a positive electrode active material for a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進むに従い、小型電子機器の電源
としてリチウム二次電池が実用化されている。このリチ
ウム二次電池について、1980年に水島等によりコバ
ルト酸リウム二次電池の正極活性物質として有用である
との報告〔“マテリアル リサーチブレイン”vol.115,
P.783-789 (1980)〕がなされて以来、リチウム系複合酸
化物に関する研究開発が活発に進められており、これま
でに多くの提案がなされている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
With the rapid progress of cordless technology, lithium secondary batteries have been put to practical use as power supplies for small electronic devices. Mizushima et al. Reported in 1980 that this lithium secondary battery was useful as a positive electrode active material for lithium cobaltate secondary batteries [“Material Research Brain” vol. 115,
P.783-789 (1980)], research and development on lithium-based composite oxides have been actively promoted, and many proposals have been made so far.

【0003】それらは、例えばLi1-a NiO2 (但し
0≦a≦1)(米国特許番号第4302518号明細
書)、Lib Ni2-b 2 及びLiNi1-d Cod 2
(但し、0.84≦b≦1.22、0.09≦b≦1.
22、0.99≦d≦0.5)(特開平2−40861
号公報)、LinNimCo1-m 2 (特開昭63−2
99056号公報、特開平1−120765号公報、特
開平1−294364号公報、特開平5−290890
号公報、特開平6−275274号公報、特開平7−1
42056号公報)などのリチウムと遷移金属を主体と
する複合酸化物である。上記の化合物において、コバル
ト酸リチウムは合成が比較的容易なため、最も早くから
検討されてきたが、原料のコバルト(Co)が高価で資
源的に希産なうえ、0.7電子以上充電すると結晶性の低
下や電解液の分解が生じるため大容量化は適さないとい
った問題がある。一方、LiNiO2 及びLiMn2
4 は、コバルト酸リチウムに比べて安価であるといった
有利な点はあるが、結晶中に欠陥を生じやすいことか
ら、活物質としての安定性が悪く、また電池に組込んだ
ときの放電容量特性はコバルト系に劣ることから実用性
に多くの問題をかかえている。
They include, for example, Li 1-a NiO 2 (where 0 ≦ a ≦ 1) (US Pat. No. 4,302,518), Li b Ni 2-b O 2 and LiNi 1-d Co d O 2.
(However, 0.84 ≦ b ≦ 1.22, 0.09 ≦ b ≦ 1.
22, 0.99 ≦ d ≦ 0.5) (JP-A-2-40861)
Publication), LinNimCo 1-m O 2 (JP -A- 63-2
99056, JP-A-1-120765, JP-A-1-294364, JP-A-5-290890
JP, JP-A-6-275274, JP-A-7-1
No. 42056) is a composite oxide mainly composed of lithium and a transition metal. Among the above compounds, lithium cobalt oxide has been studied since the earliest because it is relatively easy to synthesize. However, the raw material cobalt (Co) is expensive and rarely used as a resource, and when charged with 0.7 electrons or more, the crystal becomes crystalline. However, there is a problem that the increase in capacity is not suitable because the deterioration of the properties and the decomposition of the electrolytic solution occur. On the other hand, LiNiO 2 and LiMn 2 O
4 has the advantage of being inexpensive compared to lithium cobalt oxide, but has poor stability as an active material due to the susceptibility to defects in the crystal, and has a discharge capacity characteristic when incorporated into batteries. Has many problems in practicality because it is inferior to cobalt type.

【0004】[0004]

【課題が解決しようとする課題】そこで、これらを解決
するものとして、NiやMnの一部をCo等の遷移金属
で置換した複合金属酸リチウム塩が経済的かつ機能的観
点から検討されている。しかしながら、通常コバルト酸
含有ニッケル酸リウチムの製造方法としては、Co及び
Niの酸化物又は水酸化物粉末と水酸化リチウム又は炭
酸リチウムのそれぞれの原料を乾式で混合して焼成する
方法が知られているが、この方法では結晶中に欠陥が生
成し易く、このために好ましい放電容量特性を有するリ
チウム二次電池用活物質は得られていない。
In order to solve these problems, a lithium composite metal salt in which a part of Ni or Mn is replaced by a transition metal such as Co has been studied from an economical and functional viewpoint. . However, as a method for producing usually cobalt acid-containing lithium nickelate, there is known a method in which Co and Ni oxide or hydroxide powders and raw materials of lithium hydroxide or lithium carbonate are dry-mixed and fired. However, in this method, defects are easily generated in the crystal, and therefore, an active material for a lithium secondary battery having preferable discharge capacity characteristics has not been obtained.

【0005】従って、本発明の目的は、リチウム二次電
池などの正極に用いられるリチウム金属複合酸化物の原
料として有用な複合金属水酸化物及びその製造方法を提
供することにある。
Accordingly, it is an object of the present invention to provide a composite metal hydroxide useful as a raw material of a lithium metal composite oxide used for a positive electrode of a lithium secondary battery or the like, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】かかる実情において、本
発明者らは電池用原料としてNi、Co及びMnの金属
元素から選ばれる2成分系又は3成分系化合物について
鋭意検討した結果、本発明を完成するに至った。
Under such circumstances, the present inventors have conducted intensive studies on binary or ternary compounds selected from metal elements of Ni, Co and Mn as raw materials for batteries. It was completed.

【0007】すなわち、本発明は、Ni、Co及びMn
の金属元素から選ばれる少なくとも2種以上及びMg、
Ti、Fe、Cu、Zn及びCrの金属元素から選ばれ
る少なくとも1種又は2種以上を、複合金属水酸化物中
に固溶及び/又は共沈状態で含有することを特徴とする
複合金属水酸化物を提供するものである。
That is, the present invention relates to Ni, Co and Mn.
At least two or more selected from metal elements and Mg,
A composite metal water comprising at least one or more selected from metal elements of Ti, Fe, Cu, Zn and Cr in a solid solution and / or coprecipitated state in a composite metal hydroxide. An oxide is provided.

【0008】また、本発明はNi、Co及びMnから選
ばれる少なくとも2種以上の金属塩とMg、Ti、F
e、Cu、Zn及びCrから選ばれる少なくとも1種又
は2種以上の金属塩の混合液中、金属イオンに対して錯
化力を有するキレート剤の存在下、アルカリ加水分解に
よる沈殿生成反応を連続的に行わせ、次いで該沈殿生成
物を熟成させることを特徴とする複合金属水酸化物の製
造方法を提供するものである。
[0008] The present invention also relates to a method of forming a coating of at least two metal salts selected from the group consisting of Ni, Co and Mn with Mg, Ti and F.
e, in a mixed solution of at least one or two or more metal salts selected from Cu, Zn and Cr, in the presence of a chelating agent having a complexing power for metal ions, a precipitation generation reaction by alkali hydrolysis is continuously performed. And then aging the precipitated product.

【0009】また、本発明は、上記複合金属水酸化物を
有効成分とするリチウム二次電池用正極活物質用原料を
提供するものである。
Further, the present invention provides a raw material for a positive electrode active material for a lithium secondary battery, comprising the above-mentioned composite metal hydroxide as an active ingredient.

【0010】[0010]

【発明の実施の形態】本発明の複合金属水酸化物は、N
i、Co及びMnの金属元素から選ばれる少なくとも2
種以上及びMg、Ti、Fe、Cu、Zn及びCrの金
属元素から選ばれる少なくとも1種又は2種以上を該水
酸化物中、固溶及び/又は共沈状態で含有するものであ
る。すなわち、該複合金属水酸化物は、固液及び/又は
共沈状態で含有するNi−Co系、Ni−Mn系及びM
n−Co系の2成分系又はNi−Co−Mnの3成分系
を基本組成とし、これに、Mg、Ti、Fe、Cu、Z
n及びCr(以下、「Mg等」という)から選ばれる少
なくとも1種又は2種以上の金属元素物質が固溶及び/
又は共沈しているものである。
BEST MODE FOR CARRYING OUT THE INVENTION The composite metal hydroxide of the present invention comprises N
i, at least 2 selected from metal elements of Co and Mn
The hydroxide contains at least one or more kinds selected from metal elements of Mg, Ti, Fe, Cu, Zn and Cr in a solid solution and / or coprecipitation state in the hydroxide. That is, the composite metal hydroxide contains Ni—Co, Ni—Mn and M
An n-Co two-component system or a Ni-Co-Mn three-component system is used as a basic composition, and Mg, Ti, Fe, Cu, Z
n and Cr (hereinafter, referred to as “Mg or the like”) at least one or two or more metal element substances are in solid solution and / or
Or, they are co-precipitated.

【0011】上記固溶及び/又は共沈状態で生成した結
晶粒子とは、骨格となるNi、Co及びMn金属元素の
2成分系又は3成分系複合金属水酸化物とこれに添加さ
れるMg等の金属水酸化物が単に混合している粒子では
なく、例えば、生成時の共沈反応の結果、Ni−Co系
ではNiの結晶相の格子点にある原子がCoやMg等の
原子で一部置換されている状態の結晶粒子、また、Ni
−Co−Mn系では、これらの所定量とMg等の含水酸
化物が生成の際に均一に共沈又は吸蔵している状態の結
晶粒子を言う。
The crystal particles formed in the solid solution and / or coprecipitation state include a binary or ternary composite metal hydroxide of Ni, Co and Mn metal elements serving as a skeleton and Mg added thereto. Are not simply mixed particles such as metal hydroxides.For example, as a result of the coprecipitation reaction at the time of formation, in the Ni-Co system, the atoms at the lattice points of the Ni crystal phase are atoms such as Co and Mg. Crystal grains in a partially substituted state, Ni
In the case of -Co-Mn-based, it refers to crystal particles in which a predetermined amount thereof and a hydrated oxide such as Mg are uniformly coprecipitated or occluded during generation.

【0012】上記Ni、Co及びMnの配合割合は特に
制限されず、また、これらの2成分又は3成分複合水酸
化物に含有するMg等の水酸化物の量は、上記基本組成
の種類、Mg等の種類及びそれらの化学物理的な特性、
使用目的等により異なるが、複合水酸化物中、0.1〜
10重量%が好ましく、特に1〜5重量%が好ましい。
The mixing ratio of Ni, Co and Mn is not particularly limited, and the amount of hydroxides such as Mg contained in these binary or ternary composite hydroxides depends on the type of the basic composition, Types of Mg and their chemical and physical properties,
Depending on the purpose of use, etc., in the composite hydroxide, 0.1 ~
It is preferably 10% by weight, particularly preferably 1 to 5% by weight.

【0013】本発明の複合金属水酸化物は、その結晶粒
子が、上記金属で固溶、共沈又は吸蔵していない場合、
粉末X線回折により確認することができる。すなわち、
この場合これらの金属の単独の水酸化物ピークが観察さ
れるが、本発明の複合水酸化物は、この様な単独の水酸
化物が極めて少なく、粉末X線回折において、これらの
ピークは殆ど存在しない。
[0013] The composite metal hydroxide of the present invention is characterized in that the crystal particles thereof do not form a solid solution, coprecipitate or occlude with the above metal,
It can be confirmed by powder X-ray diffraction. That is,
In this case, single hydroxide peaks of these metals are observed. However, the composite hydroxide of the present invention has very few such single hydroxides, and these peaks are hardly found in powder X-ray diffraction. not exist.

【0014】本発明の複合金属水酸化物は、レーザー法
による測定法で求めた平均粒子径が、特に制限されない
が、0.1〜50μm、好ましくは1〜30μm、更に好
ましくは5〜20μmの範囲である。
The composite metal hydroxide of the present invention has an average particle diameter determined by a laser method, which is not particularly limited, but is 0.1 to 50 μm, preferably 1 to 30 μm, and more preferably 5 to 20 μm. Range.

【0015】本発明の複合金属水酸化物は、上記のよう
な特性を有し、また、該複合水酸化物にリチウム塩を混
合し、焼成したものは、リチウム二次電池用正極活物質
として使用した場合、従来に無い優れた放電特性と放電
保持率を有する特性を有することから、この活物質原料
として特に有用である。
The composite metal hydroxide of the present invention has the above-mentioned characteristics, and a mixture obtained by mixing a lithium salt with the composite hydroxide and firing the mixture is used as a positive electrode active material for a lithium secondary battery. When used, it is particularly useful as an active material raw material because it has excellent discharge characteristics and characteristics having a discharge retention ratio, which have not been seen before.

【0016】本発明の複合金属水酸化物は、Ni、Co
及びMnから選ばれる少なくとも2種以上の金属塩とM
g等から選ばれた少なくとも1種又は2種以上の金属塩
との混合液中、該金属イオンに対して錯化力を有するキ
レート剤の存在下、アルカリ加水分解による沈殿生成反
応を連続的に行わせ、次いで沈殿生成物を熟成させるこ
とを特徴とするものである。
The composite metal hydroxide of the present invention comprises Ni, Co
And at least two metal salts selected from Mn and Mn
g in the presence of a chelating agent having a complexing power for the metal ion in a mixture with at least one or two or more metal salts selected from And then aging the precipitated product.

【0017】本発明に使用されるニッケル塩としては、
特に制限されないが、例えば、硫酸ニッケル、硝酸ニッ
ケル又は塩化ニッケル等の水易溶性の鉱酸塩類が挙げら
れる。また、コバルト塩としては、特に制限されない
が、例えば硫酸コバルト、硝酸コバルト又は塩化コバル
ト等が挙げられる。また、マンガン塩としては、例えば
硫酸マンガン、硝酸マンガン又は塩化マンガン等が挙げ
られる。
The nickel salt used in the present invention includes:
Although not particularly limited, examples thereof include easily water-soluble mineral salts such as nickel sulfate, nickel nitrate, and nickel chloride. Further, the cobalt salt is not particularly limited, and examples thereof include cobalt sulfate, cobalt nitrate, and cobalt chloride. Examples of the manganese salt include manganese sulfate, manganese nitrate, and manganese chloride.

【0018】さらに、また、Mg、Ti、Cr、Fe、
Cu及びZnの塩としては、水に可溶性のものであれば
特に制限されず、硝酸塩、硫酸塩、塩酸塩等が挙げられ
る。特に、ニッケル塩、コバルト塩及びマンガン塩は、
0.5〜3.5モル/L程度で用いるのが好ましく、マグネ
シウム塩等は0.05〜0.4モル/L程度で用いるのが好
ましい。
Further, Mg, Ti, Cr, Fe,
The salts of Cu and Zn are not particularly limited as long as they are soluble in water, and include nitrates, sulfates, and hydrochlorides. In particular, nickel, cobalt and manganese salts
It is preferably used at about 0.5 to 3.5 mol / L, and the magnesium salt or the like is preferably used at about 0.05 to 0.4 mol / L.

【0019】また、これらの金属イオンに対して錯化力
を有するキレート剤としては、例えばヒドラジン、トリ
エタノールアミン、グリシン、アラニン、アスパラギ
ン、イミノジ酢酸、グルタミン酸、エチレンジアミン、
エチレンジアミン四酢酸等のアミノカルボン酸又はそれ
らの塩;酢酸、乳酸、シュウ酸、マロン酸、リンゴ酸、
酒石酸、クエン酸、サリチル酸、チオグリコール酸等の
オキシカルボン酸又はそれらの塩及びアンモニアが挙げ
られる。また、アンモニアとは、イオンの供給体を言
い、例えば硝酸アンモニウム、硫酸アンモニウム、塩化
アンモニウムなどのアンモニウム塩の水溶液、アンモニ
ア水、アンモニアガス等が挙げられるが、好ましくはア
ンモニア水である。
Examples of the chelating agent having a complexing power to these metal ions include hydrazine, triethanolamine, glycine, alanine, asparagine, iminodiacetic acid, glutamic acid, ethylenediamine, and the like.
Aminocarboxylic acids such as ethylenediaminetetraacetic acid or salts thereof; acetic acid, lactic acid, oxalic acid, malonic acid, malic acid,
Oxycarboxylic acids such as tartaric acid, citric acid, salicylic acid and thioglycolic acid or salts thereof and ammonia. The term "ammonia" refers to an ion supplier, and examples thereof include an aqueous solution of an ammonium salt such as ammonium nitrate, ammonium sulfate, and ammonium chloride, aqueous ammonia, and ammonia gas, and preferably aqueous ammonia.

【0020】上記のキレート剤のアミノカルボン酸、オ
キシカルボン酸及びアンモニアは1種又は2種以上を組
み合わせて用いてもよく、その配合量としては、Ni
塩、Co塩、Mn塩及びMg塩等の1モルに対して0.
2〜4.0モルの範囲が好ましい。なお、キレート剤の
配合方法としては、特に制限されず、単独で使用して
も、また、Ni塩水溶液及びCo塩水溶液の何れか所定
割合を予め混合して添加してもよい。0.2モル未満で
は粒子成長が十分でなく、また0.4モルを超えると経
済的な面から好ましくない。
The above-mentioned chelating agents such as aminocarboxylic acid, oxycarboxylic acid and ammonia may be used alone or in combination of two or more.
0.1 to 1 mol of salt, Co salt, Mn salt, Mg salt and the like.
A range of 2 to 4.0 moles is preferred. The method of compounding the chelating agent is not particularly limited, and it may be used alone, or may be added by mixing a predetermined ratio of an aqueous Ni salt solution and an aqueous solution of Co salt in advance. If it is less than 0.2 mol, the grain growth is not sufficient, and if it exceeds 0.4 mol, it is not preferable from the economical point of view.

【0021】また、アルカリ加水分解に使用するアルカ
リとしては、水酸化ナトリウム、水酸化カリウム等の苛
性アルカリ水溶液が挙げられ、このうち、水酸化ナトリ
ウムが好ましい。アルカリの添加量は、Ni塩、Co
塩、Mn塩及びMg塩等の含量1モルに対して1.1〜
3.0モルである。1.1モル未満の場合、未反応のN
i塩及びMn塩が生成してしまい好ましくなく、3.0
を超えると粒子成長が十分でない未成長粒子が多く生成
してしまい好ましくない。
Examples of the alkali used for the alkali hydrolysis include aqueous solutions of caustic alkali such as sodium hydroxide and potassium hydroxide. Of these, sodium hydroxide is preferred. The addition amount of the alkali is Ni salt, Co
1.1 to 1.1 mol per 1 mol of a salt, Mn salt, Mg salt, etc.
3.0 mol. If less than 1.1 moles, unreacted N
It is not preferable since i-salt and Mn salt are formed, which is not preferable.
If it exceeds 300, many ungrown particles with insufficient particle growth are generated, which is not preferable.

【0022】かかる反応操作としては、特に制限されな
いが、例えば連続的に添加される反応液のpHを9〜1
2の範囲の一定値に保持させつつ、少なくとも3時間滞
留させ反応させる方法が挙げられる。この時、反応液は
一度オーバーフローさせた次の容器で熟成反応させても
よい。
The reaction operation is not particularly limited. For example, the pH of the continuously added reaction solution is adjusted to 9-1.
A method in which the reaction is carried out by keeping the solution at a constant value in the range of 2 for at least 3 hours. At this time, the reaction solution may be subjected to an aging reaction in the next container once overflowed.

【0023】また他の方法としては、反応液を連続的に
添加して反応生成物を含む反応系の液をオーバーフロー
させることなく、反応媒体液のみを除いて反応液の容量
を一定量に制御しながら反応させる方法である。この方
法によると、反応容器内に形成されるNi−Mn複合水
酸化物の粒子は、連続的に成長し増加するので反応系の
撹拌が次第に困難になるため、このような状態になる前
に反応を終了させることが好ましい。
As another method, the volume of the reaction solution is controlled to a constant value except for the reaction medium solution without overflowing the reaction system solution containing the reaction product by continuously adding the reaction solution. This is a method of reacting while reacting. According to this method, the Ni-Mn composite hydroxide particles formed in the reaction vessel grow and increase continuously, so that stirring of the reaction system becomes gradually difficult. It is preferable to terminate the reaction.

【0024】この反応系のスラリー濃度は、少なくとも
70g/L以上になるように反応条件を設定することが
好ましい。これよりも濃度が薄いと粒子成長が極端に遅
くなるため好ましくない。
The reaction conditions are preferably set so that the slurry concentration of the reaction system is at least 70 g / L or more. If the concentration is lower than this, particle growth becomes extremely slow, which is not preferable.

【0025】添加する各反応液は、一度に連続的に添加
しても良いが、何度かに分けて多段で滴下する多段方式
でもよい。
Each reaction solution to be added may be continuously added at once, or may be a multi-stage system in which the reaction solutions are divided and dropped in multiple stages.

【0026】反応温度は、通常10〜100℃、好まし
くは20〜80℃であり、反応時間は1〜72時間程度
である。
The reaction temperature is usually 10 to 100 ° C., preferably 20 to 80 ° C., and the reaction time is about 1 to 72 hours.

【0027】[0027]

【発明の効果】本発明の複合金属水酸化物は、実質的に
球状な粒子形態を有しており、リチウム二次電池用正極
活物質用原料として有用である。
The composite metal hydroxide of the present invention has a substantially spherical particle form and is useful as a raw material for a positive electrode active material for a lithium secondary battery.

【0028】[0028]

【実施例】次に実施例を挙げて本発明を具体的に説明す
るが、これは単に例示であって、本発明を制限するもの
ではない。
Next, the present invention will be described in detail with reference to examples, but this is merely an example and does not limit the present invention.

【0029】実施例1 1Lビーカーに予め200mlの水を張り、これに1.6
mol/LのNiSO4 ・6H2Oと0.2mol/LのCoS
4 ・7H2Oと0.2mol/LのZnSO4 の混合液1
200ml、6mol/LのNaOH溶液800ml及び錯化剤
として14.8mol/Lのアンモニア溶液400mlを滴下
方式で加え、pHを11に調整しながら50℃に保温
し、9時間撹拌熟成した。この間オーバーフロー方式で
系内の液量を制御し、一定量の反応液を排出した。次に
濾過後の結晶をリパルプ洗浄し、電導度計によって洗浄
効果を確認した。この結晶はNiとCoとZnの固溶及
び/又は共沈状態で生成した共晶体で、組成はNi:C
o:Znのモル比が8:1:1であった。この結晶をレ
ーザー法により測定したところ、平均粒子径は12μm
であった。
Example 1 A 1 L beaker was previously filled with 200 ml of water, and 1.6 ml of water was added thereto.
mol / L CoS of NiSO 4 · 6H 2 O and 0.2mol / L of
O 4 · mixture 1 of 7H 2 O and 0.2 mol / L ZnSO 4 of
200 ml, 800 ml of a 6 mol / L NaOH solution and 400 ml of a 14.8 mol / L ammonia solution as a complexing agent were added dropwise, and the mixture was kept at 50 ° C. while adjusting the pH to 11, and stirred and aged for 9 hours. During this time, the amount of liquid in the system was controlled by the overflow method, and a certain amount of the reaction liquid was discharged. Next, the crystals after the filtration were subjected to repulping washing, and the washing effect was confirmed by a conductivity meter. This crystal is a eutectic formed in a solid solution and / or coprecipitation state of Ni, Co and Zn, and has a composition of Ni: C
The molar ratio of o: Zn was 8: 1: 1. When this crystal was measured by a laser method, the average particle diameter was 12 μm.
Met.

【0030】実施例2 1Lビーカーに予め200mlの水を張り、1.6mol/Lの
CoSO4 ・7H2Oと0.3mol/LのMnSO4 ・5
2Oと0.1mol/LのTi(SO4 2 の混合液12
00ml、6mol/LのNaOH溶液800ml及び錯化剤と
して14.8mol/Lのアンモニア溶液400mlを滴下方
式で加え、pHを11に調整しながら50℃に保温し、
9時間撹拌熟成した。この間オーバ方式で系内の液量を
制御し、一定量の反応液を排出した。次に濾過後の結晶
をリパルプ洗浄し、電導度計によって洗浄効果を確認し
た。この結晶はCoとMnとTiの固溶及び/又は共沈
状態で得られた共晶体で、組成はCo:Mn:Tiのモ
ル比が0.8:0.15:0.05であった。この結晶
をレーザー法により測定したところ、平均粒子径は7μ
mであった。
[0030] Example 2 previously stretched to 200ml of water 1L beaker, MnSO of CoSO 4 · 7H 2 O and 0.3 mol / L of 1.6mol / L 4 · 5
Mixed solution 12 of H 2 O and 0.1 mol / L Ti (SO 4 ) 2
00 ml, 800 ml of a 6 mol / L NaOH solution and 400 ml of a 14.8 mol / L ammonia solution as a complexing agent were added dropwise, and the temperature was maintained at 50 ° C. while adjusting the pH to 11,
The mixture was stirred and aged for 9 hours. During this time, the amount of liquid in the system was controlled by the over method, and a certain amount of the reaction liquid was discharged. Next, the crystals after the filtration were subjected to repulping washing, and the washing effect was confirmed by a conductivity meter. This crystal was a eutectic obtained in a solid solution and / or coprecipitation state of Co, Mn and Ti, and the composition was such that the molar ratio of Co: Mn: Ti was 0.8: 0.15: 0.05. . When this crystal was measured by a laser method, the average particle diameter was 7 μm.
m.

【0031】実施例3 1Lビーカーに予め200mlの水を張り、1.0mol/L
のNiSO4 ・6H2Oと0.9mol/LのCoSO4
7H2Oと0.1mol/LのMgSO4 の混合液1200m
l、6mol/LのNaOH溶液800ml及び錯化剤として
14.8mol/Lのアンモニア溶液400mlを滴下方式で
加え、pHを11に調整しながら50℃に保温し、9時
間撹拌熟成した。この間オーバ方式で系内の液量を制御
し、一定量の反応液を排出した。次に濾過後の結晶をリ
パルプ洗浄し、電導度計によって洗浄効果を確認した。
この結晶はNiとCoとMgの固溶及び/又は共沈状態
で得られた共晶体で、組成はNi:Co:Mgのモル比
が0.5:0.45:0.05であった。この結晶をレ
ーザー法により測定したところ、平均粒子径は10μm
であった。
Example 3 A 1 L beaker was previously filled with 200 ml of water, and 1.0 mol / L
NiSO 4 .6H 2 O and 0.9 mol / L CoSO 4.
1200m mixture of 7H 2 O and 0.1mol / L MgSO 4
1, 800 ml of a 6 mol / L NaOH solution and 400 ml of a 14.8 mol / L ammonia solution as a complexing agent were added dropwise, and the mixture was kept at 50 ° C. while adjusting the pH to 11, and aged for 9 hours with stirring. During this time, the amount of liquid in the system was controlled by the over method, and a certain amount of the reaction liquid was discharged. Next, the crystals after the filtration were subjected to repulping washing, and the washing effect was confirmed by a conductivity meter.
This crystal was a eutectic obtained in a solid solution and / or coprecipitation state of Ni, Co and Mg, and the composition was such that the molar ratio of Ni: Co: Mg was 0.5: 0.45: 0.05. . When this crystal was measured by a laser method, the average particle size was 10 μm.
Met.

【0032】実施例4 1Lビーカーに予め200mlの水を張り、1.0mol/Lの
MnSO4 ・5H2Oと0.9mol/LのCoSO4 ・7
2Oと0.1mol/LのFeSO4 ・7H2Oの混合液1
200ml、6mol/LのNaOH溶液800ml及び錯化剤
として14.8mol/Lのアンモニア溶液400mlを滴下
方式で加え、pHを11に調整しながら50℃に保温
し、9時間撹拌熟成した。この間オーバ方式で系内の液
量を制御し、一定量の反応液を排出した。次に濾過後の
結晶をリパルプ洗浄し、電導度計によって洗浄効果を確
認した。この結晶はMnとCoとFeの共晶体で、組成
はMn:Co:Feのモル比が0.5:0.45:0.
05であった。この結晶をレーザー法により測定したと
ころ、平均粒子径は10μmであった。
[0032] Example 4 pre-tension the 200ml of water 1L beaker, CoSO 4 · 7 of MnSO 4 · 5H 2 O and 0.9 mol / L of 1.0 mol / L
Mixture 1 between H 2 O and 0.1mol / L FeSO 4 · 7H 2 O of
200 ml, 800 ml of a 6 mol / L NaOH solution and 400 ml of a 14.8 mol / L ammonia solution as a complexing agent were added dropwise, and the mixture was kept at 50 ° C. while adjusting the pH to 11, and stirred and aged for 9 hours. During this time, the amount of liquid in the system was controlled by the over method, and a certain amount of the reaction liquid was discharged. Next, the crystals after the filtration were subjected to repulping washing, and the washing effect was confirmed by a conductivity meter. This crystal is a eutectic of Mn, Co and Fe, and has a composition of Mn: Co: Fe having a molar ratio of 0.5: 0.45: 0.
05. When this crystal was measured by a laser method, the average particle size was 10 μm.

【0033】実施例5 1Lビーカーに予め200mlの水を張り、1.4mol/L
のNiSO4 ・6H2Oと0.2mol/LのCoSO4
7H2Oと0.2mol/LのMnSO4 ・5H2Oと0.2
mol/LのZnSO4 の混合液1200ml、6mol/LのN
aOH溶液800ml及び錯化剤として1mol/Lのグリシ
ン溶液400mlを滴下方式で加え、pHを10に調整し
ながら70℃に保温し、9時間撹拌熟成した。この間オ
ーバーフロー方式で系内の液量を制御し、一定量の反応
液を排出した。次に濾過後の結晶をリパルプ洗浄し、電
導度計によって洗浄効果を確認した。この結晶はNi、
Co、Mg、Znとの固溶及び/又は共沈状態で得られ
た共晶体で、組成はNi:Co:Mn:Znのモル比が
0.7:0.1:0.1:0.1であった。レーザー法
による測定で得られた平均粒子径は11μmであった。
Example 5 A 1 L beaker was previously filled with 200 ml of water and 1.4 mol / L.
NiSO 4 .6H 2 O and 0.2 mol / L CoSO 4.
7H 2 O and 0.2 mol / L MnSO 4 .5H 2 O and 0.2
1200 ml of a mixed solution of ZnSO 4 at mol / L, N at 6 mol / L
800 ml of an aOH solution and 400 ml of a 1 mol / L glycine solution as a complexing agent were added dropwise, and the mixture was kept at 70 ° C. while adjusting the pH to 10 and stirred and aged for 9 hours. During this time, the amount of liquid in the system was controlled by the overflow method, and a certain amount of the reaction liquid was discharged. Next, the crystals after the filtration were subjected to repulping washing, and the washing effect was confirmed by a conductivity meter. This crystal is Ni,
A eutectic obtained in a solid solution and / or coprecipitation state with Co, Mg, and Zn. The composition is such that the molar ratio of Ni: Co: Mn: Zn is 0.7: 0.1: 0.1: 0. It was one. The average particle size obtained by measurement by a laser method was 11 μm.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Ni、Co及びMnの金属元素から選ば
れる少なくとも2種以上及びMg、Ti、Fe、Cu、
Zn及びCrの金属元素から選ばれる少なくとも1種又
は2種以上を、複合金属水酸化物中に固溶及び/又は共
沈状態で含有することを特徴とする複合金属水酸化物。
At least two kinds selected from metal elements of Ni, Co and Mn, and Mg, Ti, Fe, Cu,
A composite metal hydroxide comprising at least one or more selected from metal elements of Zn and Cr in a solid solution and / or coprecipitation state in the composite metal hydroxide.
【請求項2】 レーザー法による測定法で求めた平均粒
子径が、0.1〜50μmの範囲である請求項1記載の
複合金属水酸化物。
2. The composite metal hydroxide according to claim 1, wherein the average particle diameter determined by a laser method is in the range of 0.1 to 50 μm.
【請求項3】 Ni、Co及びMnから選ばれる少なく
とも2種以上の金属塩とMg、Ti、Fe、Cu、Zn
及びCrから選ばれる少なくとも1種又は2種以上の金
属塩の混合液中、該金属イオンに対して錯化力を有する
キレート剤の存在下、アルカリ加水分解による沈殿生成
反応を連続的に行わせ、次いで該沈殿生成物を熟成させ
ることを特徴とする複合金属水酸化物の製造方法。
3. At least two or more metal salts selected from Ni, Co and Mn, and Mg, Ti, Fe, Cu, Zn
And a precipitation reaction by alkali hydrolysis in a mixture of at least one or two or more metal salts selected from Cr and Cr in the presence of a chelating agent having a complexing power for the metal ions. And then aging the precipitated product.
【請求項4】 連続反応は、多段式に行う請求項3記載
の複合金属水酸化物の製造方法。
4. The method for producing a composite metal hydroxide according to claim 3, wherein the continuous reaction is performed in a multistage manner.
【請求項5】 キレート剤が、アミノカルボン酸、オキ
シカルボン酸及びアンモニアから選ばれる少なくとも1
種又は2種以上である請求項3又は4記載の複合金属水
酸化物の製造方法。
5. The chelating agent is at least one selected from aminocarboxylic acids, oxycarboxylic acids and ammonia.
The method for producing a composite metal hydroxide according to claim 3 or 4, wherein the method is a kind or two or more kinds.
【請求項6】 請求項1又は2記載の複合金属水酸化物
を有効成分とするリチウム二次電池用正極活物質用原
料。
6. A raw material for a positive electrode active material for a lithium secondary battery, comprising the composite metal hydroxide according to claim 1 as an active ingredient.
JP26361996A 1996-09-12 1996-09-12 Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery Expired - Fee Related JP3830586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26361996A JP3830586B2 (en) 1996-09-12 1996-09-12 Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26361996A JP3830586B2 (en) 1996-09-12 1996-09-12 Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH1087327A true JPH1087327A (en) 1998-04-07
JP3830586B2 JP3830586B2 (en) 2006-10-04

Family

ID=17392058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26361996A Expired - Fee Related JP3830586B2 (en) 1996-09-12 1996-09-12 Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3830586B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028265A (en) * 1999-06-17 2001-01-30 Samsung Sdi Co Ltd Positive active material for lithium secondary battery and method for producing the same
KR100307163B1 (en) * 1999-06-12 2001-11-01 김순택 Method of preparing positive active material of lithium secondary battery
JP2007070205A (en) * 2005-09-09 2007-03-22 Tanaka Chemical Corp Nickel manganese cobalt composite oxide and manufacturing method therefor
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP2010083682A (en) * 2008-09-29 2010-04-15 Tanaka Chemical Corp Method for producing nickel composite oxide, nickel composite oxide obtained by the method, nickel oxide-stabilized zirconia composite oxide using the nickel composite oxide and fuel electrode for solid oxide fuel cell containing the nickel oxide-stabilized zirconia composite oxide
WO2013157734A1 (en) * 2012-04-19 2013-10-24 전자부품연구원 Cathode material for nonaqueous lithium secondary battery using spherical cobalt hydroxide
KR101335430B1 (en) * 2012-04-19 2013-11-29 전자부품연구원 Manufacturing method of positive electrode materials for Lithium secondary battery using spherical cobalt hydroxide
KR101499428B1 (en) * 2012-08-30 2015-03-09 전자부품연구원 Positive electrode materials for Lithium secondary battery using spherical cobalt hydroxide
KR20170036062A (en) * 2014-08-01 2017-03-31 애플 인크. High-density precursor for manufacture of composite metal oxide cathodes for li-ion batteries
CN108946827A (en) * 2018-07-03 2018-12-07 华友新能源科技(衢州)有限公司 A kind of ultra-small grain size nickel cobalt manganese hydroxide and preparation method thereof
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
KR20190079240A (en) * 2017-12-27 2019-07-05 (주)이엠티 A Method for Preparing Precursor of Cathod Active Material for Lithium Ion Secondary Battery Using Polyamine as A Complex Agent
US10593941B2 (en) 2016-09-20 2020-03-17 Apple Inc. Cathode active materials having improved particle morphologies
US10597307B2 (en) 2016-09-21 2020-03-24 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US10615413B2 (en) 2013-03-12 2020-04-07 Apple Inc. High voltage, high volumetric energy density li-ion battery using advanced cathode materials
US11362331B2 (en) 2016-03-14 2022-06-14 Apple Inc. Cathode active materials for lithium-ion batteries
WO2023002288A1 (en) * 2021-07-21 2023-01-26 株式会社半導体エネルギー研究所 Preparation method for positive electrode active material
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
US12074321B2 (en) 2019-08-21 2024-08-27 Apple Inc. Cathode active materials for lithium ion batteries
US12206100B2 (en) 2019-08-21 2025-01-21 Apple Inc. Mono-grain cathode materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12170367B2 (en) 2019-09-26 2024-12-17 Lg Chem, Ltd. Positive electrode active material precursor for secondary battery, preparation method thereof, and method of preparing positive electrode active material

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307163B1 (en) * 1999-06-12 2001-11-01 김순택 Method of preparing positive active material of lithium secondary battery
JP2001028265A (en) * 1999-06-17 2001-01-30 Samsung Sdi Co Ltd Positive active material for lithium secondary battery and method for producing the same
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP2007070205A (en) * 2005-09-09 2007-03-22 Tanaka Chemical Corp Nickel manganese cobalt composite oxide and manufacturing method therefor
JP2010083682A (en) * 2008-09-29 2010-04-15 Tanaka Chemical Corp Method for producing nickel composite oxide, nickel composite oxide obtained by the method, nickel oxide-stabilized zirconia composite oxide using the nickel composite oxide and fuel electrode for solid oxide fuel cell containing the nickel oxide-stabilized zirconia composite oxide
WO2013157734A1 (en) * 2012-04-19 2013-10-24 전자부품연구원 Cathode material for nonaqueous lithium secondary battery using spherical cobalt hydroxide
KR101335430B1 (en) * 2012-04-19 2013-11-29 전자부품연구원 Manufacturing method of positive electrode materials for Lithium secondary battery using spherical cobalt hydroxide
KR101499428B1 (en) * 2012-08-30 2015-03-09 전자부품연구원 Positive electrode materials for Lithium secondary battery using spherical cobalt hydroxide
US10615413B2 (en) 2013-03-12 2020-04-07 Apple Inc. High voltage, high volumetric energy density li-ion battery using advanced cathode materials
KR20170036062A (en) * 2014-08-01 2017-03-31 애플 인크. High-density precursor for manufacture of composite metal oxide cathodes for li-ion batteries
US10347909B2 (en) 2014-08-01 2019-07-09 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for li-ion batteries
JP2017529678A (en) * 2014-08-01 2017-10-05 アップル インコーポレイテッド High density precursors for the production of composite metal oxide cathodes for lithium ion batteries
JP2020064863A (en) * 2014-08-01 2020-04-23 アップル インコーポレイテッドApple Inc. High density precursor for manufacturing complex metal oxide cathode for lithium ion battery
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
US11870069B2 (en) 2016-03-14 2024-01-09 Apple Inc. Cathode active materials for lithium-ion batteries
US11362331B2 (en) 2016-03-14 2022-06-14 Apple Inc. Cathode active materials for lithium-ion batteries
US10593941B2 (en) 2016-09-20 2020-03-17 Apple Inc. Cathode active materials having improved particle morphologies
US11114663B2 (en) 2016-09-20 2021-09-07 Apple Inc. Cathode active materials having improved particle morphologies
US11462736B2 (en) 2016-09-21 2022-10-04 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US10597307B2 (en) 2016-09-21 2020-03-24 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
KR20190079240A (en) * 2017-12-27 2019-07-05 (주)이엠티 A Method for Preparing Precursor of Cathod Active Material for Lithium Ion Secondary Battery Using Polyamine as A Complex Agent
CN108946827A (en) * 2018-07-03 2018-12-07 华友新能源科技(衢州)有限公司 A kind of ultra-small grain size nickel cobalt manganese hydroxide and preparation method thereof
CN108946827B (en) * 2018-07-03 2020-09-29 华友新能源科技(衢州)有限公司 Ultra-small particle size nickel-cobalt-manganese hydroxide and preparation method thereof
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US12206097B2 (en) 2018-08-17 2025-01-21 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
US12074321B2 (en) 2019-08-21 2024-08-27 Apple Inc. Cathode active materials for lithium ion batteries
US12206100B2 (en) 2019-08-21 2025-01-21 Apple Inc. Mono-grain cathode materials
US12249707B2 (en) 2019-08-21 2025-03-11 Apple Inc. Mono-grain cathode materials
WO2023002288A1 (en) * 2021-07-21 2023-01-26 株式会社半導体エネルギー研究所 Preparation method for positive electrode active material

Also Published As

Publication number Publication date
JP3830586B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP3830586B2 (en) Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery
JP3842348B2 (en) Method for producing Ni-Mn composite hydroxide
US7785742B2 (en) Lithium-nickel-cobalt-manganese containing composite oxide
JP3884796B2 (en) Method for producing Ni-Co composite hydroxide
EP3297072B1 (en) Methods for preparing nickel-cobalt-aluminum precursor material and cathode material with gradient distribution of aluminum element
JP3290355B2 (en) Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same
JP4848384B2 (en) High density cobalt manganese coprecipitated nickel hydroxide and process for producing the same
US7695649B2 (en) Lithium transition metal oxide with gradient of metal composition
EP1044927B1 (en) Nickel hydroxide particles and production and use thereof
JP5083668B2 (en) Spherical manganese carbonate precipitation method and product produced thereby
TW200804195A (en) Method of preparing material for lithium secondary battery of high performance
JP4051771B2 (en) Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof
JPH10316431A (en) Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
US11952287B2 (en) Method for the precipitation of particles of a metal carbonate material without use of a chelating agent
WO2018015210A1 (en) A method for upscalable precipitation synthesis of battery materials with tunable particle size distribution
CN114613986A (en) Heterogeneous layered structure precursor and preparation method and application thereof
CN108428888A (en) A kind of closely knit nickel cobalt aluminium ternary material of spherical surface, its presoma and its preparation method and application
CN116675264A (en) Nickel-manganese binary precursor, preparation method and application thereof, positive electrode material and lithium ion battery
JP3425006B2 (en) Ni-Mn composite hydroxide powder for positive electrode active material of lithium secondary battery and method for producing the same
JPH10310433A (en) Method for producing nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary battery
JPH1081520A (en) Mn-Co-based composite hydroxide, method for producing the same, and raw material for positive electrode active material for lithium secondary battery
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
KR100261509B1 (en) Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
JPH09306487A (en) Method for manufacturing positive electrode active material for alkaline storage battery
KR100668050B1 (en) Manganese Composite Oxide, Lithium Secondary Battery Spinel Type Cathode Active Material Using the Same and Method for Manufacturing the Same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140721

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees