JPH10310433A - Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell - Google Patents

Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell

Info

Publication number
JPH10310433A
JPH10310433A JP9131607A JP13160797A JPH10310433A JP H10310433 A JPH10310433 A JP H10310433A JP 9131607 A JP9131607 A JP 9131607A JP 13160797 A JP13160797 A JP 13160797A JP H10310433 A JPH10310433 A JP H10310433A
Authority
JP
Japan
Prior art keywords
hydroxide
nickel
lithium
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9131607A
Other languages
Japanese (ja)
Inventor
Shigeaki Tomita
成明 富田
Kenji Hashimoto
建次 橋本
Shinichi Ohashi
信一 大橋
Takao Yaginuma
隆夫 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ise Kagaku Kogyo KK
Original Assignee
Ise Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ise Kagaku Kogyo KK filed Critical Ise Kagaku Kogyo KK
Priority to JP9131607A priority Critical patent/JPH10310433A/en
Publication of JPH10310433A publication Critical patent/JPH10310433A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a nickel multiple oxide with which a positive electrode active material for a lithium secondary cell can be produced to improve cell characteristics such as discharge capacity by using a hydroxide essentially comprising nickel which has a specified range of halfwidth of the peak near a specified angle in the X-ray diffraction profile using CuKα line. SOLUTION: The hydroxide essentially consists of nickel and has 0.1 to 0.60 deg. halfwidth of the peak near 19 deg. angle, 0.1 to 0.50 deg. halfwidth of the peak near 38 deg., and 0.1 to 0.65 deg. halfwidth of the peak near 52 deg. in the X-ray diffraction profile using CuKα line. The compsn. of the hydroxide is preferably expressed by Ni1-x Mx O2-y H2-z (0.01<=x<=0.5; 0<=y<=0.5; 0<=z<=1.5; M is Co, Mn, Al, Fe). The hydroxide is preferably produced by crystallizing method and is obtd. by continuously dropping a metal salt soln. and an alkali hydroxide soln. in pH 8 to 13 range at >=0 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
について、高特性化を目指した正極活物質の改良に関す
るものであり、特に正極活物質の原料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a positive electrode active material for a lithium secondary battery with the aim of improving characteristics, and more particularly to a raw material for a positive electrode active material.

【0002】[0002]

【従来の技術】近年の二次電池の高容量化、高エネルギ
ー密度化の要求に伴い、リチウムイオン電池が注目を集
めている。リチウムイオン電池の正極活物質としてはL
iCoO2 で表されるリチウム複合酸化物が主として用
いられている。LiCoO2 のコバルト源として用いら
れる原料としてはCo(OH)2 、Co34 、メタル
Co、CoCO3 の粉末が用いられ、これらの原料から
製造されるリチウム複合酸化物は結晶構造が比較的安定
で、良好な可逆特性を示す正極活物質となっている。
2. Description of the Related Art Lithium-ion batteries have attracted attention in recent years with demands for higher capacity and higher energy density of secondary batteries. L as a positive electrode active material of a lithium ion battery
A lithium composite oxide represented by iCoO 2 is mainly used. Powders of Co (OH) 2 , Co 3 O 4 , metal Co and CoCO 3 are used as raw materials used as a cobalt source of LiCoO 2 , and a lithium composite oxide produced from these raw materials has a relatively low crystal structure. It is a positive electrode active material that is stable and exhibits good reversible characteristics.

【0003】ところが、LiCoO2 に含まれるCoは
稀少金属であり、非常に高価であるということと、Li
CoO2 ではLiの挿入・離脱量に制限があるため、高
容量化に限界があるという問題を有している。このた
め、Co以外の金属を主成分とするリチウム複合酸化物
が種々検討されており、例えば、Li1-x NiO2 (米
国特許4302518号)、Lix Ni2-x2 及びL
iNi1-x Cox2 (特開平2−40861号)やL
y Ni1-x Cox2 (特開昭63−299056
号)等が提案されている。これら比較的安価なNiを主
成分とするLiNiO2 系の複合酸化物は精力的に開発
が進められている。
However, Co contained in LiCoO 2 is a rare metal and is very expensive.
CoO 2 has a problem in that there is a limit to the increase in capacity since there is a limit on the amount of Li inserted and removed. For this reason, various lithium composite oxides containing a metal other than Co as a main component have been studied, for example, Li 1-x NiO 2 (US Pat. No. 4,302,518), Li x Ni 2-x O 2 and L
iNi 1-x Co x O 2 (JP-A-2-40861) and L
i y Ni 1-x Co x O 2 (Japanese Unexamined Patent Publication No.
No.) has been proposed. These relatively inexpensive LiNiO 2 -based composite oxides containing Ni as a main component have been energetically developed.

【0004】しかしながら、LiNiO2 は作製が難し
く、僅かな作製条件のずれにより岩塩型構造相が混入
し、極度に放電容量が低下する。また、充放電時に結晶
構造が崩れやすく、サイクル特性が良くない。さらに、
吸湿性がある。このような問題を緩和するためNiの一
部を他の元素で置換することが試みられている。各種元
素について置換の検討が行われているが、サイクル特性
は改善されるものの容量が低下する場合が多い。Niの
一部をCoで置換したLiNi1-x Cox2 は、充放
電サイクルによる特性劣化も小さく、容量低下も小さい
ことが明らかになっている。
However, it is difficult to produce LiNiO 2 , and a slight shift in the production conditions causes a rock salt type structural phase to be mixed in, resulting in an extremely low discharge capacity. In addition, the crystal structure is easily broken during charge and discharge, and the cycle characteristics are not good. further,
It is hygroscopic. Attempts have been made to replace part of Ni with another element in order to alleviate such a problem. Although replacement of various elements has been studied, the cycle characteristics are improved, but the capacity is often reduced. It has been clarified that LiNi 1-x Co x O 2 in which a part of Ni is replaced by Co has a small characteristic deterioration due to a charge / discharge cycle and a small capacity decrease.

【0005】このLiNi1-x Cox2 の主な製造手
段として、ニッケル化合物、コバルト化合物とリチウム
化合物の3種の原料を所定の比に混合し焼成する方法が
一般的に行われているようである。このような方法で
は、結晶構造中のNiの原子位置の一部がCoに置換さ
れた、NiとCoが固溶状態にある複合酸化物の作製が
難しい。焼成温度を比較的高くすることにより固溶は可
能となり易いが、岩塩型構造層が混入することが多い。
この問題を回避するため、Ni塩とCo塩が混合された
水溶液等から共沈させた有機酸塩、硝酸塩、水酸化物等
とリチウム化合物を混合し焼成する方法が行われてい
る。この方法では、共沈物においてNiとCoが固溶し
ており、比較的容易にNiとCoが固溶した複合酸化物
が得られる。水酸化物を共沈させる方法(特開平8−3
99806号)に関しては、置換・固溶が完全である複
合酸化物の合成が可能で、高容量でサイクル特性に優れ
た正極活物質が製造可能であることが開示されている。
NiをCo以外の元素で置換しようとする場合も、ニッ
ケルと共沈させた水酸化物等を原料として用いた方が、
高特性な複合酸化物が得られる場合が多い。
[0005] As a main means for producing LiNi 1-x Co x O 2 , a method of mixing three kinds of raw materials of a nickel compound, a cobalt compound and a lithium compound at a predetermined ratio and firing the mixture is generally performed. It seems. According to such a method, it is difficult to produce a composite oxide in which Ni and Co are in a solid solution state in which a part of the atomic positions of Ni in the crystal structure is substituted with Co. By making the firing temperature relatively high, solid solution is likely to be possible, but a rock salt type structural layer is often mixed.
In order to avoid this problem, a method of mixing an organic acid salt, nitrate, hydroxide or the like co-precipitated from an aqueous solution in which a Ni salt and a Co salt are mixed with a lithium compound and firing the mixture is used. According to this method, Ni and Co form a solid solution in the coprecipitate, and a composite oxide in which Ni and Co form a solid solution can be obtained relatively easily. Method of coprecipitating hydroxide (Japanese Patent Laid-Open No. 8-3)
No. 99806) discloses that a composite oxide having complete substitution and solid solution can be synthesized, and a positive electrode active material having high capacity and excellent cycle characteristics can be produced.
When replacing Ni with an element other than Co, it is better to use hydroxide or the like coprecipitated with nickel as a raw material.
High-performance composite oxides are often obtained.

【0006】[0006]

【発明が解決しようとする課題】前述のように、LiN
1-x Cox2 を作製する際、ニッケルとコバルトを
共沈させて得た水酸化物を原料として用いると比較的高
容量のものが得られるものの、それでも充分な放電容量
や特性を持つとはいえない。さらに、リチウム複合酸化
物の特性は原料となる金属塩の性質や形状に大きく影響
を受けるが、水酸化物原料を用いた場合も、現状ではど
のような性質や形状の水酸化物が適当なのかはっきりし
ていない。本発明の目的は、放電容量等の電池特性の向
上を可能とするリチウムイオン電池用の正極活物質用を
作製可能とする、ニッケル系複合酸化物の原料を提供す
ることである。
As described above, as described above, LiN
When producing i 1-x Co x O 2 , if a hydroxide obtained by co-precipitating nickel and cobalt is used as a raw material, a relatively high capacity can be obtained. I can't say I have it. Furthermore, although the characteristics of the lithium composite oxide are greatly affected by the properties and shape of the metal salt used as the raw material, even when a hydroxide raw material is used, at present, any suitable property and shape of the hydroxide are appropriate. It is not clear. An object of the present invention is to provide a raw material for a nickel-based composite oxide that can be used for a positive electrode active material for a lithium ion battery that can improve battery characteristics such as discharge capacity.

【0007】[0007]

【課題を解決するための手段】上述の課題を解決するた
め、本発明者等が鋭意研究した結果、原料となる水酸化
物のX線回析プロファイルにおいて、特定の回析線の半
値幅がある特定の範囲にある場合、この原料を用いて作
製したリチウム複合酸化物が優れた特性を示すことを見
出した。すなわち、本発明は、CuKα線を用いたX線
回析プロファイルにおいて、 19°付近のピークの半値幅が0.1°〜0.60°、 38°付近のピークの半値幅が0.1°〜0.50°、 52°付近のピークの半値幅が0.1°〜0.65°、 の範囲にあることを特徴とする、リチウム二次電池の正
極活物質として用いられるニッケルを含むリチウム複合
酸化物の原料となるニッケルを主成分とする水酸化物を
提供せんとするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, in the X-ray diffraction profile of hydroxide as a raw material, the half width of a specific diffraction It has been found that when in a certain specific range, a lithium composite oxide produced using this raw material exhibits excellent characteristics. That is, according to the present invention, in the X-ray diffraction profile using CuKα ray, the half width of the peak near 19 ° is 0.1 ° to 0.60 °, and the half width of the peak near 38 ° is 0.1 °. Lithium including nickel used as a positive electrode active material of a lithium secondary battery, wherein the half-width of a peak around 0.5 ° to 0.50 ° is in the range of 0.1 ° to 0.65 °. An object of the present invention is to provide a hydroxide mainly composed of nickel, which is a raw material of a composite oxide.

【0008】ここで、19°、38°、52°付近の回
析ピークとは、それぞれ(001)、(101)、(1
02)と指数付けできる面での回析を意味する。19°
付近のピークの半値幅が0.60°、38°付近のピー
クの半値幅が0.50°、52°付近のピークの半値幅
が0.65°より大きい水酸化物を原料として用いる
と、リチウム複合酸化物の放電容量が小さくなる。上記
の3つのピークのうち、いずれかのピークの半値幅が
0.1°より小さいものは晶析や共沈では作製が著しく
困難となり、低コスト・大量生産の面で現実的ではな
い。より好ましくは 19°付近のピークの半値幅が0.1°〜0.55°、 38°付近のピークの半値幅が0.1°〜0.45°、 52°付近のピークの半値幅が0.1°〜0.62°、 の範囲にあることである。
Here, the diffraction peaks around 19 °, 38 ° and 52 ° are (001), (101) and (1), respectively.
02) means diffraction on a surface that can be indexed. 19 °
When the half value width of the peak near 0.60 °, the half value width of the peak near 38 ° is 0.50 °, and the half value width of the peak near 52 ° is larger than 0.65 °, and the hydroxide is used as a raw material, The discharge capacity of the lithium composite oxide decreases. Of the above three peaks, one having a half width of less than 0.1 ° is extremely difficult to produce by crystallization or coprecipitation, and is not realistic in terms of low cost and mass production. More preferably, the half width of the peak around 19 ° is 0.1 ° to 0.55 °, the half width of the peak around 38 ° is 0.1 ° to 0.45 °, and the half width of the peak around 52 ° is 0.1 ° to 0.62 °.

【0009】本発明において、Niを含むリチウム複合
酸化物の原料となる水酸化物または酸化物の組成式はN
1-xx2-y2-z (0.01≦x≦0.5、0≦
y≦0.5、0≦z≦1.5、ただしここでMはCo、
Mn、AlおよびFeからなる群から選ばれる少なくと
も一種の元素を表す。)で表されることが好ましい。N
iとMの比は要求される電池性能に応じて可変可能であ
る。該物質において、MとNiは固溶し、MはNiを置
換していることが好ましい。組成式においてy、zの値
はNi、Mの原子価数に応じて変化し、水酸化物だけで
なくオキシ水酸化物に近い状態になることもあり得る。
また、Mは固溶範囲が広く製造が容易なCoが好まし
い。
In the present invention, the composition formula of the hydroxide or oxide used as the raw material of the lithium composite oxide containing Ni is N
i 1-x M x O 2-y H 2-z (0.01 ≦ x ≦ 0.5, 0 ≦
y ≦ 0.5, 0 ≦ z ≦ 1.5, where M is Co,
It represents at least one element selected from the group consisting of Mn, Al and Fe. ) Is preferable. N
The ratio between i and M can be varied according to the required battery performance. In the substance, it is preferable that M and Ni form a solid solution, and M substitutes for Ni. In the composition formula, the values of y and z change according to the valence numbers of Ni and M, and may be in a state close to not only a hydroxide but also an oxyhydroxide.
Further, M is preferably Co which has a wide solid solution range and is easy to produce.

【0010】本発明のNiを含む水酸化物または酸化物
は粉末状であり、粉の形状は球状もしくは球に類する形
状に凝集した外観を呈することが好ましい。球状もしく
は球に類する形状以外の不定な形状の粉末では、リチウ
ム複合酸化物に焼成した場合での充填密度が低下する等
の不具合が生じる。本発明の水酸化物または酸化物はそ
のタップ密度が1.9g/ml以上であることが好まし
い。
The hydroxide or oxide containing Ni of the present invention is in the form of a powder, and the powder preferably has a spherical or spherical-like aggregated appearance. In the case of powder having an irregular shape other than a spherical shape or a shape similar to a sphere, problems such as a decrease in packing density when firing into a lithium composite oxide occur. The hydroxide or oxide of the present invention preferably has a tap density of 1.9 g / ml or more.

【0011】本発明のリチウム複合酸化物の原料として
用いることができる水酸化物は、晶析法により製造され
ることが好ましい。すなわち、金属塩溶液と水酸化アル
カリ塩溶液を、pHが8〜13の範囲、0℃以上の温度
で連続的に滴下して得ることができる。条件によっては
アンモニアやエチレンジアミン等の錯体形成剤を用いる
こともできる。金属塩としては硫酸塩、硝酸塩、塩化
塩、有機酸塩などのいずれかの塩類、及び複数種以上の
混合物でも良く、水酸化アルカリ溶液としては、水酸化
ナトリウム、水酸化カリウム、水酸化リチウムを用いる
ことができる。用いる金属塩やアルカリ溶液の種類によ
って晶析条件は異なる。
The hydroxide which can be used as a raw material of the lithium composite oxide of the present invention is preferably produced by a crystallization method. That is, the metal salt solution and the alkali hydroxide solution can be obtained by continuously dropping the solution in a pH range of 8 to 13 at a temperature of 0 ° C. or higher. Depending on the conditions, a complex-forming agent such as ammonia or ethylenediamine may be used. As the metal salt, any of salts such as sulfate, nitrate, chloride, and organic acid salt, and a mixture of two or more kinds may be used.As the alkali hydroxide solution, sodium hydroxide, potassium hydroxide, and lithium hydroxide may be used. Can be used. Crystallization conditions vary depending on the type of metal salt or alkali solution used.

【0012】本発明では、リチウムイオン二次電池用正
極活物質を製造する方法として、本発明のニッケルを主
成分とする水酸化物とリチウム化合物を混合し、この混
合物を0.2気圧以上の酸素分圧下で、600〜900
℃の温度範囲で熱処理を行う。酸素分圧が0.2気圧よ
り低い雰囲気中で焼成した場合、岩塩構造相等の異相が
混入し活物質特性が低下する。酸素分圧の上限は特に限
定はしないが、酸素分圧を常圧よりも高くするには、全
圧を上げるために加圧装置等を用いなければならず、製
造コストを考慮すると、現状では好ましくはない。より
好ましい酸素分圧の範囲は0.9気圧以上である。熱処
理温度は酸素分圧により適正値が異なるが、600°未
満でも、900°を超えても、共に異相が混在するの
で、活物質としての特性が低下する。
In the present invention, as a method for producing a positive electrode active material for a lithium ion secondary battery, a hydroxide mainly containing nickel of the present invention and a lithium compound are mixed, and this mixture is subjected to a pressure of 0.2 atm or more. 600-900 under oxygen partial pressure
Heat treatment is performed in a temperature range of ° C. When calcination is performed in an atmosphere in which the oxygen partial pressure is lower than 0.2 atm, a different phase such as a rock salt structural phase is mixed and the active material characteristics are reduced. The upper limit of the oxygen partial pressure is not particularly limited, but in order to make the oxygen partial pressure higher than normal pressure, a pressurizing device or the like must be used to increase the total pressure. Not preferred. A more preferable range of the oxygen partial pressure is 0.9 atm or more. The appropriate value of the heat treatment temperature differs depending on the oxygen partial pressure. However, even if the heat treatment temperature is less than 600 ° or more than 900 °, the heterogeneous phases are mixed together, so that the characteristics as the active material deteriorate.

【0013】リチウムイオン二次電池用正極活物質とし
て用いられるNiを含むリチウム複合酸化物を製造する
際、本発明のニッケルを主成分とする水酸化物とリチウ
ム化合物を混合した後に加熱処理を行うことも可能であ
るし、本発明のニッケルを主成分とする水酸化物を加熱
等により酸化物等にした後にリチウム化合物を混合し、
加熱処理を行うことも可能である。これらの方法は、用
いる熱処理装置や混合するリチウム化合物の性質により
使い分けることができる。加熱等の処理をした本発明の
水酸化物は、好ましくは
When producing a lithium composite oxide containing Ni used as a positive electrode active material for a lithium ion secondary battery, a heat treatment is carried out after mixing a hydroxide mainly composed of nickel of the present invention with a lithium compound. It is also possible, and after mixing the hydroxide mainly composed of nickel of the present invention into an oxide or the like by heating or the like, mixing a lithium compound,
Heat treatment can also be performed. These methods can be properly used depending on the heat treatment apparatus to be used and the properties of the lithium compound to be mixed. The hydroxide of the present invention that has been subjected to treatment such as heating is preferably

【式1】で表すことができる酸化物となる。金属元素の
平均原子価数により酸素含有量が変動するので、δは−
0.5から1.0の範囲の値となる。
An oxide represented by the following formula: Since the oxygen content varies depending on the average valence number of the metal element, δ is −
The value is in the range of 0.5 to 1.0.

【0014】本発明の水酸化物または酸化物を用いてN
iを含むリチウム複合酸化物を作製する際、リチウム源
となるリチウム化合物に特に制限はなく、例えば、水酸
化リチウム、酸化リチウム、炭酸リチウム、硝酸リチウ
ム、燐酸リチウムなどを用いることができる。
By using the hydroxide or oxide of the present invention,
When preparing a lithium composite oxide containing i, there is no particular limitation on a lithium compound serving as a lithium source, and for example, lithium hydroxide, lithium oxide, lithium carbonate, lithium nitrate, lithium phosphate, and the like can be used.

【0015】[0015]

【作用】本発明のリチウム複合酸化物の原料となる、ニ
ッケルを主成分とする水酸化物はX線回析プロファイル
において、ピークの半値幅が小さい、とくに19°付
近、38°付近、52°付近での半値幅が小さいことを
特徴としている。この半値幅は結晶子の大きさ、結晶性
を反映している。一般に半値幅の小さい方が、結晶子は
大きく、結晶性は良くなる。詳細は明らかではないが、
本発明の原料を用いた場合、リチウム複合酸化物の特性
が向上するのは以下のようなことに起因しているのでは
ないかと推定される。
The hydroxide mainly composed of nickel, which is the raw material of the lithium composite oxide of the present invention, has a small peak half width in the X-ray diffraction profile, particularly around 19 °, 38 °, 52 °. The half width at the vicinity is small. This half width reflects the size and crystallinity of the crystallite. Generally, the smaller the half width, the larger the crystallite and the better the crystallinity. Details are not clear,
It is presumed that when the raw material of the present invention is used, the characteristics of the lithium composite oxide improve due to the following.

【0016】リチウム複合酸化物の特性は、原料となる
金属化合物の性質や形状に大きな影響を受ける場合が多
いようである。このため、水酸化物等の金属化合物の構
造等が焼成後のリチウム複合酸化物にも影響すると考え
られる。本発明の水酸化物はX線回析の半値幅の狭さか
ら、Niと他の元素の固溶がより均一に行われていると
考えられる。すなわち、ひとつの粒内においても元素濃
度のバラツキが少なく、それぞれの粒についても濃度の
バラツキが少ないと考えられるのである。このため、リ
チウム複合酸化物に焼成した後も元素濃度のバラツキが
少なく、ミクロな容量のバラツキも少なくなり、高容
量、高特性なリチウム複合酸化物が得られるものと考え
られる。
The properties of lithium composite oxides are likely to be greatly affected by the properties and shapes of the metal compounds used as raw materials. For this reason, it is considered that the structure of the metal compound such as a hydroxide also affects the lithium composite oxide after firing. The hydroxide of the present invention is considered to have a more uniform solid solution of Ni and other elements because of the narrow half-width of X-ray diffraction. That is, it is considered that there is little variation in element concentration within one grain, and there is little variation in concentration in each grain. For this reason, it is considered that even after firing to the lithium composite oxide, variation in element concentration is small and variation in micro-capacity is also reduced, and a lithium composite oxide having high capacity and high characteristics can be obtained.

【0017】さらに、複合酸化物の特性が結晶のc軸方
向成分を含む回析面の半値幅に大きく依存している、す
なわち、(hk0)で表すことのできる回析面の半値幅
への依存性が大きくないことから、本発明の水酸化物は
結晶のc軸方向へ充分に成長していることや、c軸方向
への積層欠陥が少ないことが示唆される。ニッケルを主
成分とする水酸化物は六方晶で、ニッケル及びその置換
元素から成る金属原子層とOH層が積層的に積み重なっ
た構造をしている。このため晶析等による析出時には、
層に平行な方向、すなわち結晶のc軸に垂直な面方向へ
優先的に粒成長し、平板状の結晶子となる。
Furthermore, the characteristics of the composite oxide greatly depend on the half-width of the diffraction plane containing the component in the c-axis direction of the crystal, that is, the half-width of the diffraction plane expressed by (hk0) Since the dependence is not large, it is suggested that the hydroxide of the present invention grows sufficiently in the c-axis direction of the crystal and that stacking faults in the c-axis direction are small. The hydroxide mainly composed of nickel is hexagonal, and has a structure in which a metal atomic layer composed of nickel and its substituting element and an OH layer are laminated and stacked. Therefore, during precipitation by crystallization, etc.,
Grains grow preferentially in the direction parallel to the layer, that is, in the plane direction perpendicular to the c-axis of the crystal, forming a flat crystallite.

【0018】本発明の水酸化物はc軸方向へも結晶成長
していると考えられるので、結晶子が比較的等方的であ
ると考えられる。このため、リチウム化合物と混合して
熱処置する際に、複合酸化物の粒内のリチウムの分布が
より均一になると考えられる。さらに、複合酸化物の結
晶子も比較的に等方的であることが予想されるので、正
極活物質として用いた場合の充放電時に、リチウムの挿
入離脱がよりスムースに行えることが推測される。
Since the hydroxide of the present invention is considered to have grown in the c-axis direction, the crystallite is considered to be relatively isotropic. For this reason, it is considered that the distribution of lithium in the grains of the composite oxide becomes more uniform when mixed with a lithium compound and subjected to heat treatment. Furthermore, since the crystallites of the composite oxide are also expected to be relatively isotropic, it is presumed that lithium can be inserted and removed more smoothly during charge and discharge when used as a positive electrode active material. .

【0019】また、本発明ではニッケルを主成分とする
水酸化物とリチウム化合物を混合し、酸素分圧が高い雰
囲気で熱処理するため、未反応相や岩塩型相等の異相の
混入が少ない。酸素分圧が高いと、目的とするリチウム
複合酸化物の生成温度範囲が広がることや、反応中の原
子拡散が幾分低い温度で駆動されるので反応が充分に進
行することが原因ではないかと考えられる。
Further, in the present invention, a hydroxide mainly composed of nickel and a lithium compound are mixed and heat-treated in an atmosphere having a high oxygen partial pressure. The reason is that if the oxygen partial pressure is high, the formation temperature range of the target lithium composite oxide is widened, and the reaction proceeds sufficiently because the atom diffusion during the reaction is driven at a somewhat lower temperature. Conceivable.

【0020】[0020]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)硫酸ニッケル溶液と硫酸コバルト溶液をN
i:Coのモル比が8:2となるように混合し、金属成
分濃度を0.8mol/リットルとした水溶液を作製し
た。50℃に加温し、水酸化ナトリウム水溶液滴下によ
りpHを9.7、10.3、10.6、11.0に調整
した槽内に、前述の金属塩溶液とアンモニア水を滴下す
ることにより4種類の水酸化物を含むスラリーを得た。
これらのスラリーを濾過し、SO4 除去のために水酸化
ナトリウム水溶液に浸漬した後、再び濾過し、大気中で
90℃で乾燥することにより、4種類の水酸化物粉末を
得た。
(Example 1) A nickel sulfate solution and a cobalt sulfate solution were
An aqueous solution with a metal component concentration of 0.8 mol / liter was prepared by mixing i: Co at a molar ratio of 8: 2. The mixture was heated to 50 ° C., and the above-described metal salt solution and aqueous ammonia were added dropwise to a tank whose pH was adjusted to 9.7, 10.3, 10.6, and 11.0 by dropwise addition of an aqueous sodium hydroxide solution. A slurry containing four kinds of hydroxides was obtained.
These slurries were filtered, immersed in an aqueous sodium hydroxide solution to remove SO 4 , filtered again, and dried at 90 ° C. in the atmosphere to obtain four kinds of hydroxide powders.

【0021】これらの水酸化物について、CuKα線源
を用い、40KV、250mAで発散スリットを1/2
°、散乱スリットを1.2°、受光スリットを0.15
mm、サンプリング時間を1.00秒、ステップ幅を
0.01°に設定し、回転試料台を用いてX線回析プロ
ファイルを得た。プロファイルからの判断では全ての資
料が単相であった。元素分析の結果をあわせると、得ら
れた物質は組成式Ni0. 8 Co0.2 (OH)2 に相当す
る。これらの試料の回析プロファイルの19°、33
°、38°、52°、59°付近、すなわち、それぞれ
(001)、(101)、(100)、(102)、
(110)と指数付けできるピークについて半価幅を計
算したところ図1のようであった。なお、半価幅の計算
には平滑化、バックグラウンド除去、Kα2除去を行っ
た。また走査型電子顕微鏡観察を行ったところ、原料粉
末の粒子はどの試料についても球形もしくは球に近い形
状をしていた。
With respect to these hydroxides, the divergence slit was reduced to 1/2 at 40 KV and 250 mA using a CuKα radiation source.
°, scattering slit 1.2 °, receiving slit 0.15
mm, the sampling time was set to 1.00 seconds, and the step width was set to 0.01 °, and an X-ray diffraction profile was obtained using a rotating sample stage. Judging from the profiles, all materials were single-phase. Taken together, the results of elemental analysis, the resulting material is equivalent to a composition formula Ni 0. 8 Co 0.2 (OH) 2. The diffraction profiles of these samples at 19 °, 33 °
°, 38 °, 52 °, and 59 °, that is, (001), (101), (100), (102),
When the half width was calculated for the peak indexable as (110), it was as shown in FIG. The half width was calculated by smoothing, background removal, and Kα2 removal. In addition, scanning electron microscope observation revealed that the particles of the raw material powder were spherical or nearly spherical in all samples.

【0022】これらの試料をNi+Co:Liのモル比
が1:1.003となるように水酸化リチウムを秤量
し、混合した後、酸素気流中で400℃で1時間と70
0℃で10時間の加熱処理を行い、リチウム複合酸化物
粉末を得た。700℃加熱中の酸素分圧は0.99気圧
であった。得られた酸化物は上述と同様なX線回析の結
果、単相であり、、LiNi0.8 Co0.22 で表され
る複合酸化物が合成されていると判断した。この酸化物
粉末とアセチレンブラック、ポリテトラフルオロエチレ
ンを混合し、2ton/cm2 で加圧し、直径20mm
の円盤状に成形し正極とした。リチウム圧延板を直径2
0mmに打ち抜いて負極とし、プロピレンカーボネイト
と1,2ージメトキシエタンの体積比1:1の混合液に
過塩素酸リチウムを1mol/リットルの濃度で溶解し
て電解液とし、セパレーターにはポリプロピレンフィル
ムを用い、ステンレス容器内に封入することにより、図
2に示すような試験用電池を作製した。
These samples were weighed and mixed with lithium hydroxide so that the molar ratio of Ni + Co: Li was 1: 1.003, and then mixed in an oxygen stream at 400 ° C. for 1 hour and 70 hours.
Heat treatment was performed at 0 ° C. for 10 hours to obtain a lithium composite oxide powder. The oxygen partial pressure during heating at 700 ° C. was 0.99 atm. As a result of the same X-ray diffraction as described above, the obtained oxide was in a single phase, and it was determined that a composite oxide represented by LiNi 0.8 Co 0.2 O 2 was synthesized. This oxide powder was mixed with acetylene black and polytetrafluoroethylene, and the mixture was pressurized at 2 ton / cm 2 to have a diameter of 20 mm.
To form a positive electrode. Lithium rolled plate with diameter 2
Punched into 0 mm to form a negative electrode, lithium perchlorate was dissolved at a concentration of 1 mol / l in a mixture of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 to form an electrolyte, and a polypropylene film was used as a separator. A test battery as shown in FIG. 2 was prepared by using and sealing in a stainless steel container.

【0023】(比較例1)水反応液のpHを11.3、
11.6とする以外は実施例1とほぼ同じ条件で水酸化
物を作製し、5つのX線回析ピークの半値幅が、表1と
なる他は実施例1と同様に試験用電池を作製した。実施
例1及び比較例1で作製した電池について、充電電流1
mA、終止電圧4.2Vで定電流充電を行い、放電電流
3mA、終止電圧3.0Vで定電流放電を行うという充
放電試験を行った。
(Comparative Example 1) The pH of an aqueous reaction solution was 11.3,
A hydroxide was prepared under substantially the same conditions as in Example 1 except that it was 11.6, and a test battery was prepared in the same manner as in Example 1 except that the half widths of the five X-ray diffraction peaks were as shown in Table 1. Produced. For the batteries prepared in Example 1 and Comparative Example 1, the charging current was 1
A charge / discharge test was performed in which constant current charging was performed at a mA of 4.2 V and a constant current of 3.2 mA, and constant current discharging was performed at a discharge current of 3 mA and a final voltage of 3.0 V.

【表1】 [Table 1]

【0024】(実施例2)硫酸ニッケル溶液と硫酸コバ
ルト溶液と硫酸アルミニウムをNi:Co:Alのモル
比が85:13:2となるように混合し、金属成分濃度
を0.8mol/リットルとした水溶液を作製した。5
0℃に加温し、水酸化ナトリウム溶液滴下によりpHを
10.6に調整した槽内に、前述の金属塩溶液とアンモ
ニア水を滴下することにより水酸化物を含むスラリーを
得た。これらのスラリーを濾過し、SO4 除去のために
水酸化ナトリウム溶液に浸漬した後、再び濾過し、大気
中で90℃で乾燥することにより水酸化物粉末を得た。
Example 2 A nickel sulfate solution, a cobalt sulfate solution and aluminum sulfate were mixed so that the molar ratio of Ni: Co: Al was 85: 13: 2, and the metal component concentration was 0.8 mol / liter. An aqueous solution was prepared. 5
The slurry was heated to 0 ° C., and a slurry containing hydroxide was obtained by dropping the above-mentioned metal salt solution and aqueous ammonia into a tank whose pH was adjusted to 10.6 by dropping a sodium hydroxide solution. These slurries were filtered, immersed in a sodium hydroxide solution to remove SO 4 , filtered again, and dried in air at 90 ° C. to obtain a hydroxide powder.

【0025】これらの水酸化物について、CuKα線源
を用い、40KV、250mAで発散スリットを1/2
°、散乱スリットを1.2°、受光スリットを0.15
mm、サンプリング時間を1.00秒、ステップ幅を
0.01°に設定し、回転試料台を用いてX線回析プロ
ファイルを得た。プロファイルからの判断では単相であ
った。これらの試料の回析プロファイルの19°、33
°、38°、52°、59°付近、すなわち、それぞれ
(001)、(101)、(100)、(102)、
(110)と指数付けできるピークについて半値幅を計
算したところ表2のようであった。なお、半値幅の計算
には、平滑化、バックグラウンド除去、Kα2除去を行
った。また走査型電子顕微鏡観察を行ったとこと、原料
粉末の粒子は球形もしくは球に近い形状をしていた。こ
の試料をNi+Co+Al:Liのモル比が1:1.0
03となるように水酸化リチウムを秤量し、混合した
後、酸素気流中で400℃で1時間と700℃で10時
間の加熱処理を行いリチウム複合酸化物粉末を得た。7
00℃で加熱中の酸素分圧は0.99気圧であった。
With respect to these hydroxides, the divergence slit was reduced to 1/2 at 40 KV and 250 mA using a CuKα radiation source.
°, scattering slit 1.2 °, receiving slit 0.15
mm, the sampling time was set to 1.00 seconds, and the step width was set to 0.01 °, and an X-ray diffraction profile was obtained using a rotating sample stage. Judging from the profile, it was single phase. The diffraction profiles of these samples at 19 °, 33 °
°, 38 °, 52 °, and 59 °, that is, (001), (101), (100), (102),
Table 2 shows the half value width of the peak indexable as (110). In addition, smoothing, background removal, and Kα2 removal were performed for the calculation of the half width. In addition, scanning electron microscope observation revealed that the particles of the raw material powder had a spherical shape or a shape close to a sphere. This sample was prepared at a molar ratio of Ni + Co + Al: Li of 1: 1.0.
After weighing and mixing lithium hydroxide so as to be 03, heat treatment was performed in an oxygen stream at 400 ° C. for 1 hour and at 700 ° C. for 10 hours to obtain a lithium composite oxide powder. 7
The oxygen partial pressure during heating at 00 ° C. was 0.99 atm.

【0026】得られた酸化物について上述と同様なX線
回析の結果、単相であり、LiNi0.85Co0.13Al
0.022 で表されると考えられる複合酸化物が合成され
ていると判断した。この酸化物粉末とアセチレンブラッ
ク、ポリテトラフルオロエチレンを混合し、2ton/
cm2 で加圧し、直径20mmの円盤状に成形し正極と
した。リチウム圧延板を直径20mmに打ち抜いて負極
とし、プロピレンカーボネイトと1,2ージメトキシエ
タンの体積比1:1の混合液に過塩素酸リチウムを1m
ol/リットルの濃度で溶解して電解液とし、セパレー
ターにはポリプロピレンフィルムを用い、ステンレス容
器内に封入することにより図2に示すような試験用電池
を作製した。
[0026] obtained for the oxide described above and similar X-ray diffraction result, a single-phase, LiNi 0.85 Co 0.13 Al
It was determined that a composite oxide considered to be represented by 0.02 O 2 was synthesized. This oxide powder was mixed with acetylene black and polytetrafluoroethylene, and 2 ton /
It was pressurized at 2 cm 2 and formed into a disc having a diameter of 20 mm to obtain a positive electrode. A lithium rolled plate was punched out to a diameter of 20 mm to form a negative electrode. Lithium perchlorate was mixed with 1 m of a mixture of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1.
A test battery as shown in FIG. 2 was prepared by dissolving at a concentration of ol / liter to make an electrolyte, using a polypropylene film as a separator, and enclosing in a stainless steel container.

【0027】(比較例2)反応液のpHを11.3とす
る以外は実施例2とほぼ同じ条件で水酸化物を作製し、
5つのX線回析ピークの半値幅が表1となる他は実施例
1と同様に試験用電池を作製した。実施例2及び比較例
2で作製した電池について、充電電流1mA、終止電圧
4.2Vで定電流充電を行い、放電電流3mA、終止電
圧3.0Vで定電流放電を行うという充放電試験を行っ
た。5つのピークの半値幅と10サイクル目の放電容量
の関係を表2に示す。(001)、(101)、(10
2)での半値幅が小さい試料は放電容量が大きい。ま
た、(100)、(110)ピークには半値幅と特性に
あまり相関がないことがわかる。
Comparative Example 2 A hydroxide was prepared under substantially the same conditions as in Example 2 except that the pH of the reaction solution was changed to 11.3.
A test battery was prepared in the same manner as in Example 1, except that the half-widths of the five X-ray diffraction peaks were as shown in Table 1. The batteries prepared in Example 2 and Comparative Example 2 were subjected to a charge / discharge test in which constant current charging was performed at a charging current of 1 mA and a final voltage of 4.2 V, and constant current discharging was performed at a discharge current of 3 mA and a final voltage of 3.0 V. Was. Table 2 shows the relationship between the half width of the five peaks and the discharge capacity at the tenth cycle. (001), (101), (10
The sample having a small half width in 2) has a large discharge capacity. Further, it can be seen that the (100) and (110) peaks have little correlation between the half width and the characteristics.

【表2】 [Table 2]

【0028】(実施例3)実施例1の試料2のNiを主
成分とする水酸化物を、大気中で400℃で10時間加
熱することにより酸化物(Ni0.8 Co0.234-δ
を作製した。こうして得られた酸化物の粉末を、Ni+
Co:Liのモル比が1:1.003となるように炭酸
リチウムを秤量し、混合した後、炭酸気流中で400℃
で1時間と700℃で10時間の加熱処理を行いリチウ
ム複合酸化物粉末を得た。700℃加熱中の酸素分圧は
0.99気圧であった。得られた酸化物は上述と同様な
X線回析の結果、単相であり、LiNi0.8 Co0.2
2 で表される複合酸化物が合成されていると判断した。
この複合酸化物について、実施例1と同様に電池を作製
し測定すると、放電容量は178mAh/gであった。
(Example 3) The oxide (Ni 0.8 Co 0.2 ) 3 O 4- of the hydroxide mainly composed of Ni of the sample 2 of Example 1 was heated at 400 ° C. for 10 hours in the air. δ
Was prepared. The oxide powder thus obtained was converted to Ni +
Lithium carbonate was weighed and mixed so that the molar ratio of Co: Li became 1: 1.003, and then mixed at 400 ° C. in a carbon dioxide stream.
For 1 hour and at 700 ° C. for 10 hours to obtain a lithium composite oxide powder. The oxygen partial pressure during heating at 700 ° C. was 0.99 atm. The obtained oxide was in a single phase as a result of the same X-ray diffraction as described above, and was LiNi 0.8 Co 0.2 O
It was determined that the composite oxide represented by 2 was synthesized.
When a battery was prepared and measured for this composite oxide in the same manner as in Example 1, the discharge capacity was 178 mAh / g.

【0029】(比較例3)比較例1の試料6のNiを主
成分とする水酸化物を、大気中で400℃で10時間加
熱することにより酸化物(Ni0.8 Co0.234-δ
を作製した。こうして得られた酸化物の粉末を、Ni+
Co:Liのモル比が1:1.003となるように炭酸
リチウムを秤量し、混合した後、酸素気流中で400℃
で1時間と700℃で10時間の加熱処理を行いリチウ
ム複合酸化物粉末を得た。700℃加熱中の酸素分圧は
0.99気圧であった。この複合酸化物について、実施
例1と同様に電池を作製し測定すると、放電容量は15
5mAh/gであった。以上より加熱工程を変更した場
合でも、原料の水酸化物においてX線回析の半価幅が小
さいものを用いた方が高い放電容量が得られることがわ
かる。
(Comparative Example 3) The hydroxide mainly composed of Ni of Sample 6 of Comparative Example 1 was heated in the air at 400 ° C. for 10 hours to form an oxide (Ni 0.8 Co 0.2 ) 3 O 4- δ
Was prepared. The oxide powder thus obtained was converted to Ni +
Lithium carbonate was weighed and mixed so that the molar ratio of Co: Li was 1: 1.003, and then 400 ° C. in an oxygen stream.
For 1 hour and at 700 ° C. for 10 hours to obtain a lithium composite oxide powder. The oxygen partial pressure during heating at 700 ° C. was 0.99 atm. When a battery was prepared and measured for this composite oxide in the same manner as in Example 1, the discharge capacity was 15
It was 5 mAh / g. From the above, it can be seen that even when the heating step is changed, a higher discharge capacity can be obtained by using a hydroxide having a smaller half-value width of X-ray diffraction as a raw material hydroxide.

【0030】[0030]

【発明の効果】上記したように、リチウム複合酸化物の
放電容量は、原料の水酸化物の特定のX線回折プロファ
イルのピークの半値幅について依存性がある。本発明の
半値幅が比較的低い範囲にあるニッケルを主成分とする
水酸化物を原料として用いることにより、高容量の正極
活性質用のリチウム複合酸化物が得られる。
As described above, the discharge capacity of the lithium composite oxide depends on the half width of the peak of the specific X-ray diffraction profile of the raw material hydroxide. By using, as a raw material, a hydroxide mainly composed of nickel having a half value width in a relatively low range of the present invention, a high capacity lithium composite oxide for a positive electrode active material can be obtained.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】5つのX線回析ピークの半値幅と放電容量の関
係を示したグラフである。
FIG. 1 is a graph showing a relationship between a half width of five X-ray diffraction peaks and a discharge capacity.

【図2】実施例1において用いた試験用電池の断面図で
ある。
FIG. 2 is a sectional view of a test battery used in Example 1.

【符号の説明】[Explanation of symbols]

1 封口缶 2 リチウム負極 3 絶縁パッキン 4 正極缶 5 正極ペレット 6 セパレーター DESCRIPTION OF SYMBOLS 1 Sealing can 2 Lithium negative electrode 3 Insulation packing 4 Positive electrode can 5 Positive electrode pellet 6 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳沼 隆夫 千葉県長生郡白子町牛込4017 伊勢化学工 業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takao Yaginuma 4017 Ushigome, Shirako-cho, Nagao-gun, Chiba Prefecture Inside Ise Chemical Industry Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 CuKα線を使用したX線回析プロファ
イルにおいて、 19°付近のピークの半値幅が0.1°〜0.60°、 38°付近のピークの半値幅が0.1°〜0.50°、 52°付近のピークの半値幅が0.1°〜0.65°、 の範囲にあることを特徴とするリチウム二次電池の正極
活物質であるリチウム複合酸化物用のニッケルを主成分
とする水酸化物。
In an X-ray diffraction profile using CuKα radiation, the half width of a peak near 19 ° is 0.1 ° to 0.60 °, and the half width of a peak near 38 ° is 0.1 ° to 0.1 °. Nickel for a lithium composite oxide, which is a positive electrode active material of a lithium secondary battery, wherein the half width of a peak near 0.50 ° and 52 ° is in the range of 0.1 ° to 0.65 °. A hydroxide mainly composed of.
【請求項2】 請求項1の水酸化物を加熱してなること
を特徴とする酸化物。
2. An oxide obtained by heating the hydroxide of claim 1.
【請求項3】 組成式がNi1-xx2-y2-z
(0.01≦x≦0.5、0≦y≦0.5、0≦z≦
1.5 MはCo、Mn、Al、Feの中から選ばれた
一種以上の元素)で表されることを特徴とする請求項1
のニッケルを主成分とする水酸化物。
3. The composition formula is Ni 1-x M x O 2-y H 2-z
(0.01 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5, 0 ≦ z ≦
2. The method according to claim 1, wherein 1.5 M is one or more elements selected from Co, Mn, Al and Fe.
Hydroxide mainly composed of nickel.
【請求項4】 請求項1の水酸化物を加熱処理すること
により得られる、組成式が 【式1】 で表されることを特徴とする酸化物。
4. A composition obtained by subjecting the hydroxide of claim 1 to a heat treatment is represented by the following formula: An oxide represented by the formula:
【請求項5】 請求項1または3のニッケルを主成分と
する水酸化物とリチウム化合物を混合し、この混合物を
0.2気圧以上の酸素分圧下で、600〜900℃の温
度範囲で熱処理することにより製造することを特徴とす
るリチウムイオン電池用正極活物質の製造方法。
5. A mixture of a hydroxide mainly composed of nickel according to claim 1 or 3 and a lithium compound, and heat treating the mixture at a partial pressure of oxygen of 0.2 atm or more at a temperature of 600 to 900 ° C. A method for producing a positive electrode active material for a lithium ion battery.
【請求項6】 請求項2または4のニッケルを主成分と
する酸化物とリチウム化合物を混合し、この混合物を
0.2気圧以上の酸素分圧下で、600〜900℃の温
度範囲で熱処理することにより製造することを特徴とす
るリチウムイオン電池用正極活物質の製造方法。
6. The oxide according to claim 2 or 4, wherein the oxide mainly comprising nickel and a lithium compound are mixed, and this mixture is heat-treated at a partial pressure of oxygen of 0.2 atm or more in a temperature range of 600 to 900 ° C. A method for producing a positive electrode active material for a lithium ion battery.
【請求項7】 請求項5または6の製造方法により得ら
れた正極活物質を有するリチウムイオン電池。
7. A lithium ion battery comprising the positive electrode active material obtained by the method according to claim 5.
【請求項8】 金属塩溶液と水酸化アルカリ塩溶液と
を、pH8〜13で0℃以上の温度範囲で連続的に滴下
することを特徴とする水酸化ニッケルの製造方法。
8. A method for producing nickel hydroxide, comprising continuously dropping a metal salt solution and an alkali hydroxide solution at a pH of 8 to 13 in a temperature range of 0 ° C. or higher.
JP9131607A 1997-05-07 1997-05-07 Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell Pending JPH10310433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9131607A JPH10310433A (en) 1997-05-07 1997-05-07 Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9131607A JPH10310433A (en) 1997-05-07 1997-05-07 Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell

Publications (1)

Publication Number Publication Date
JPH10310433A true JPH10310433A (en) 1998-11-24

Family

ID=15062027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9131607A Pending JPH10310433A (en) 1997-05-07 1997-05-07 Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell

Country Status (1)

Country Link
JP (1) JPH10310433A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
WO2011122448A1 (en) * 2010-03-29 2011-10-06 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
CN104136376A (en) * 2011-12-20 2014-11-05 住友金属矿山株式会社 Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
WO2018079816A1 (en) 2016-10-31 2018-05-03 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
WO2022196376A1 (en) 2021-03-16 2022-09-22 住友化学株式会社 Metal complex compound, production method for lithium metal complex oxide, and production method for metal complex compound

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US9553311B2 (en) 2010-03-29 2017-01-24 Sumitomo Metal Mining Co., Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
WO2011122448A1 (en) * 2010-03-29 2011-10-06 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
US8999573B2 (en) 2010-03-29 2015-04-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
CN103026537A (en) * 2010-03-29 2013-04-03 住友金属矿山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
CN104136376A (en) * 2011-12-20 2014-11-05 住友金属矿山株式会社 Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
US9406930B2 (en) 2011-12-20 2016-08-02 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and production method thereof, cathode active material for non-aqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
WO2018079816A1 (en) 2016-10-31 2018-05-03 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
CN109923709A (en) * 2016-10-31 2019-06-21 住友化学株式会社 The manufacturing method of positive active material for lithium secondary battery precursor, positive active material for lithium secondary battery
KR20190074280A (en) * 2016-10-31 2019-06-27 스미또모 가가꾸 가부시끼가이샤 Precursor for lithium secondary battery precursor, method for producing positive electrode active material for lithium secondary battery
US11365130B2 (en) 2016-10-31 2022-06-21 Sumitomo Chemical Company, Limited Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
WO2022196376A1 (en) 2021-03-16 2022-09-22 住友化学株式会社 Metal complex compound, production method for lithium metal complex oxide, and production method for metal complex compound
KR20230156052A (en) 2021-03-16 2023-11-13 스미또모 가가꾸 가부시끼가이샤 Metal complex compound, method for producing lithium metal complex oxide, and method for producing metal complex compound

Similar Documents

Publication Publication Date Title
US11682762B2 (en) Nanocrystals of polycrystalline layered lithium nickel metal oxides
US7384706B2 (en) Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
EP2226293B1 (en) Lithium manganate for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
CN110650923B (en) Method for preparing positive electrode active material
JPH08298115A (en) Positive electrode active material for lithium battery and manufacture thereof
CN114302862A (en) Lithium transition metal oxide and precursor microparticles and methods
CN114703544A (en) Single crystal type multi-element anode material and preparation method and application thereof
CN111009654A (en) Mo-doped LiNi0.6Co0.2Mn0.2O2Positive electrode material and preparation method thereof
CN111902365A (en) Method for preparing positive electrode active material
CN115917792A (en) Positive active material containing spinel composite solid solution oxide, method for preparing same, and lithium secondary battery containing same
WO2021094736A1 (en) Process for producing a surface-modified particulate lithium nickel metal oxide material
CN112687866A (en) Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
JPH10310433A (en) Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2024500898A (en) Positive electrode active material for lithium secondary batteries, method for producing the same, and lithium secondary batteries containing the same
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
JP7310117B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
JP2022504835A (en) Lithium transition metal composite oxide and its manufacturing method
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
CN115667153A (en) Cathode materials and methods
CN113707873A (en) Lithium ion battery positive electrode material using eutectic lithium salt and preparation method thereof
CN115135609A (en) Method for producing surface-modified particulate lithium nickel metal oxide materials
JP7102394B2 (en) Cathode active material for high voltage secondary batteries
JPH10228905A (en) Hydroxide for lithium secondary battery