JPH1083910A - Magnetic core and powder which is used for magnetic core - Google Patents

Magnetic core and powder which is used for magnetic core

Info

Publication number
JPH1083910A
JPH1083910A JP23754296A JP23754296A JPH1083910A JP H1083910 A JPH1083910 A JP H1083910A JP 23754296 A JP23754296 A JP 23754296A JP 23754296 A JP23754296 A JP 23754296A JP H1083910 A JPH1083910 A JP H1083910A
Authority
JP
Japan
Prior art keywords
magnetic core
powder
powders
magnetic
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23754296A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
嵩司 古谷
Haruo Koyama
治雄 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP23754296A priority Critical patent/JPH1083910A/en
Publication of JPH1083910A publication Critical patent/JPH1083910A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic core (magnetic core material), which is used for various choke coils or the like, has a high saturation magnetic flux density and a high electrical resistance, has a small hysteressis and eddy current loss and moreover, is excellent in corrosion resistance, and powder, which is used for this magnetic coil. SOLUTION: This magnetic core is obtained by a method wherein powders having a composition of the condition of n=2.5 to 6.0 and x=over 0.1 to less than 0.6 in Fen (Si1-x Crx ) are molded by compaction. It is more preferable that the above (x) is in a range of 0.2 to 0.5. The above powders comprise also ones, which have a flat shape and to concrete terms, have an aspect ratio of 5 or more. Moreover, these powders with the surfaces, which are covered with an inorganic insulating layer, are also comprised. The magnetic core obtainable by molding these powders by the compaction has a high saturation magnetic flux density, a high magnetic permeability and a high electrical resistance, is excellent in high-frequency characteristics and can be used at a high-frequency region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば高周波スイ
ッチング電源用チョークコイルや入力回路用ノイズフィ
ルタに用いるコモンモードチョークコイル等に使用され
る磁性心材、即ち磁心(コア;core)とこれに用いる粉末
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic core material used for, for example, a choke coil for a high-frequency switching power supply or a common mode choke coil used for a noise filter for an input circuit, that is, a magnetic core and a powder used for the core. About.

【0002】[0002]

【従来の技術とその問題点】一般に、高周波スイッチン
グ電源用チョークコイルに用いられる磁心1は、図3
(A)に示すようなドーナツ形状(トロイダルコア)を有
し、また、ノイズフィルタ用コモンモードチョークコイ
ルには同図(B)に示すように、半リング形状の一対の磁
心2,2が互いに対向して用いられる。上記各チョーク
コイル1,2は、最近1MHz以上の高い周波数の領域
で使用される傾向にあり、周波数特性に優れたものが求
められている。係る傾向に対応するため、前記の磁心
1,2には、ソフトフェライト(MnO・Fe23,Zn・
Fe23等)のセラミックス焼結体、又は、Fe粉や、F
e−Ni系のPBパーマロイ合金、或いは、Fe−Si
−Al系のセンダスト合金等の金属粉末を圧粉成形した
ものが使用されている。
2. Description of the Related Art Generally, a magnetic core 1 used for a choke coil for a high-frequency switching power supply is shown in FIG.
(A) has a donut shape (toroidal core) as shown in FIG. 2 (A), and a pair of half-ring-shaped magnetic cores 2 and 2 are attached to a common mode choke coil for noise filter as shown in FIG. Used facing each other. Each of the choke coils 1 and 2 has recently been used in a high-frequency region of 1 MHz or more, and is required to have excellent frequency characteristics. In order to cope with such a tendency, soft ferrite (MnO.Fe 2 O 3 , Zn.
Fe 2 O 3 ) or Fe powder, F
e-Ni PB permalloy or Fe-Si
A compact formed from a metal powder such as an Al-based sendust alloy is used.

【0003】しかし、上記ソフトフェライトの焼結体は
磁束密度が低く、Fe粉を圧粉成形したものは飽和磁束
密度は高いが、比抵抗が小さく上記高周波数領域では渦
電流による損失が大きくなるという欠点がある。また、
Fe−Ni系のパーマロイ合金粉末を圧粉成形したもの
は、用いるNi量が多くコスト高になり、且つ飽和磁束
密度も低いという欠点を有する。更に、Fe−Si−A
l系のセンダスト合金の粉末を圧粉成形したものは、飽
和磁束密度及び比抵抗共にそれなりのレベルを有し、且
つ渦電流損失も少ないが、耐食性が劣るという欠点を有
する。
However, the sintered body of the soft ferrite has a low magnetic flux density, and the one obtained by compacting Fe powder has a high saturation magnetic flux density, but has a low specific resistance and a large loss due to eddy current in the high frequency region. There is a disadvantage that. Also,
The one obtained by compacting Fe-Ni-based permalloy powder has the disadvantage that the amount of Ni used is large and the cost is high, and the saturation magnetic flux density is low. Further, Fe-Si-A
Powder compacted l-type sendust alloy powder has a certain level of saturation magnetic flux density and specific resistance, and has a small eddy current loss, but has a drawback of poor corrosion resistance.

【0004】[0004]

【発明が解決すべき課題】以上のように、従来の金属粉
末等を用いて成形された磁心は、飽和磁束密度、比抵
抗、及び耐食性の少なくとも何れかに於いて、前記高周
波数領域で使用されるチョークコイル用の磁心に要求さ
れる特性を欠いていた。本発明は、上記従来の技術が抱
える問題点を解決し、飽和磁束密度、比抵抗が高く、ヒ
ステリシス損失と渦電流損失が少ないと共に、耐食性に
も優れた実用性の高い磁心と、これに用いる粉末を提供
することを目的とする。
As described above, a magnetic core formed using a conventional metal powder or the like is used in the high frequency region in at least one of saturation magnetic flux density, specific resistance, and corrosion resistance. The characteristics required for a magnetic core for a choke coil are lacking. The present invention solves the above-mentioned problems of the conventional technology, and has a high practical magnetic core having excellent saturation magnetic flux density, high specific resistance, low hysteresis loss and eddy current loss, and excellent corrosion resistance, and is used for this. It is intended to provide a powder.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の課題を
解決するため、磁心の成形に用いられる金属粉末の組成
と、その形状に着目して成されたものである。即ち、本
発明の磁心は、Fen(Si1-xCrx)において、n=2.
5〜6.0、x=0.1超〜0.6未満の組成を有する粉
末を圧粉成形したことを特徴とする。上記xは望ましく
は、0.2〜0.5の範囲とされる。ここで、上記Feの
範囲nは、Feの結晶格子内にSi原子やCr原子を侵
入可能にするためである。また、Crの範囲xは、これ
が0.1以下になると電気抵抗が小さくなり渦電流が発
生し易く、高周波特性が低下し、且つ耐食性も低下す
る。一方、xが0.6以上になると飽和磁化の強さ及び
透磁率等の磁気特性が悪化するため、これらの間を規定
した。更に、前記Siの範囲1−xは電気抵抗を一定レ
ベル以上に確保し、渦電流損失を少なくするためであ
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has been made by paying attention to the composition and shape of metal powder used for molding a magnetic core. That is, in the magnetic core of the present invention, in F n (Si 1-x Cr x ), n = 2.
A powder having a composition of 5 to 6.0 and x = more than 0.1 to less than 0.6 is compacted. The above x is desirably in the range of 0.2 to 0.5. Here, the range n of Fe is to allow Si atoms and Cr atoms to penetrate into the crystal lattice of Fe. Further, when the range x of Cr is 0.1 or less, the electric resistance becomes small, eddy current is easily generated, the high frequency characteristics are reduced, and the corrosion resistance is also reduced. On the other hand, when x is 0.6 or more, the magnetic properties such as the intensity of the saturation magnetization and the magnetic permeability are deteriorated. Further, the range 1-x of Si is for securing the electric resistance at a certain level or more and reducing the eddy current loss.

【0006】また、本発明は、飽和磁束密度や透磁率等
の磁気特性を一定状のレベルにするため、扁平な形状
(フレーク形状)を有する金属粉末を圧粉成形したことを
特徴とする磁心も提案する。係る扁平な形状の粉末のア
スペクト(長短)比は、5以上とすることが望ましい。ま
た、これらの金属粉末に前記組成のFe−Si−Cr系
合金を用いることもできる。更に、上記の粉末又は金属
粉末の表面に、無機質の絶縁層を被覆することで、これ
らを圧粉成形して得られる磁心の電気抵抗を高め、より
高い周波数の領域で使用することが可能になる。上記絶
縁層は、圧粉成形用のバインダを兼用して用いると、製
造工程上も簡素化されるので望ましい。加えて、前記組
成のFe−Si−Cr系合金で、且つ扁平形状の磁心用
粉末をも提案する。この粉末のアスペクト比も5以上が
望ましい。係る粉末により、前記各特性を有する磁心を
確実に製造することができる。
[0006] The present invention is also directed to a flat shape in order to keep magnetic characteristics such as saturation magnetic flux density and magnetic permeability at a constant level.
A magnetic core characterized by compacting a metal powder having a (flake shape) is also proposed. The aspect ratio of the flat powder is desirably 5 or more. Further, an Fe—Si—Cr alloy having the above composition can be used for these metal powders. Furthermore, by coating the surface of the above powder or metal powder with an inorganic insulating layer, the electrical resistance of the magnetic core obtained by compacting them can be increased, and it can be used in a higher frequency region. Become. It is preferable that the insulating layer be used also as a binder for compacting, since the manufacturing process can be simplified. In addition, a flat-shaped powder for a magnetic core made of an Fe—Si—Cr alloy having the above composition is proposed. The aspect ratio of this powder is also desirably 5 or more. With such a powder, a magnetic core having each of the above properties can be reliably manufactured.

【0007】[0007]

【発明の実施の形態】以下に本発明の実施に好適な形態
を説明する。Fen(Si1-xCrx)の組成において、n
及びxを変化させた合金をそれぞれ水アトマイズ法によ
り粉末化し、分級して100メッシュ以下(平均粒径7
0メッシュ)の粉末を得た。これらの各粉末の保磁力H
cをVSM(振動試料型磁力計)によって測定した。ま
た、上記アトマイズ前の無垢材の状態で、各々の電気抵
抗を直流4端子法を用いて測定した。それらの測定結果
を表1に表した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. In the composition of F n (Si 1-x Cr x ), n
And the alloys in which x was changed were each powdered by a water atomizing method, classified and classified to 100 mesh or less (average particle size of 7).
0 mesh). The coercive force H of each of these powders
c was measured by a VSM (vibrating sample magnetometer). In addition, in the state of the solid material before the atomization, each electric resistance was measured by a DC four-terminal method. Table 1 shows the measurement results.

【0008】[0008]

【表1】[Table 1]

【0009】上記表1の結果から、各発明例の各保磁力
は、何れも11Oe以下と小さく、ヒステリシス損失が少
ないことが判明した。一方、比較例の各保磁力は何れも
12Oe以上と大きくステリシス損失が大きいことが判明
した。また、各発明例の電気抵抗は、No,5のみ80μΩ
・cmで、その他は110μΩ・cm以上と高いレベルにあ
り、渦電流が発生しにくい。一方、比較例の各電気抵抗
は、100μΩ・cm以上と高いレベルのものもある反
面、75〜60μΩ・cmという低レベルのものもあり、
バラついていた。更に、各例の粉末化前の無垢材を60
℃、相対湿度95%の雰囲気中に96時間置いて、耐食
性を測定した結果も表1に併記した。ここで、は殆ど発
錆が認められなかったもの、△は点状の錆が散点的に認
められたもの、×は面状になった錆が認められたものを
示す。表1の結果から、各発明例のものは、一部に△印
のものもあったが大半は印で耐食性に優れていた。一
方、比較例のものは、大体印であったが一部は×印で耐
食性が劣っていた。この耐食性は、各例の粉末合金中の
Crの含有量の多少に依存したものと考えられる。以上
から、各発明例の粉末は、保磁力が小さく、一定以上の
高い電気抵抗を有すると共に、優れた耐食性を有するこ
とが理解される。従って、これらの粉末を用いて圧粉成
形した磁心は、ヒステリシスと渦電流の各損失が少ない
ものにすることができる。
From the results shown in Table 1, it was found that each coercive force of each invention example was as small as 11 Oe or less, and that the hysteresis loss was small. On the other hand, it was found that each coercive force of the comparative example was as large as 12 Oe or more, and that the steresis loss was large. The electric resistance of each invention example is 80 μΩ only for No.5.
Cm, and others are at a high level of 110 μΩ · cm or more, and eddy current hardly occurs. On the other hand, each electric resistance of the comparative example has a high level of 100 μΩ · cm or more, while a low level of 75 to 60 μΩ · cm,
There were variations. In addition, the solid material before powdering in each case was 60
Table 1 also shows the results of measuring the corrosion resistance after 96 hours in an atmosphere at 95 ° C and a relative humidity of 95%. Here, indicates that almost no rusting was observed, Δ indicates that scattered spot-like rust was observed, and X indicates that where planar rust was observed. From the results shown in Table 1, some of the examples of the invention were marked with a triangle, but most of them were marked with excellent corrosion resistance. On the other hand, those of the comparative examples were roughly marked, but some were marked with x and were inferior in corrosion resistance. This corrosion resistance is considered to depend on the content of Cr in the powder alloy of each example. From the above, it is understood that the powder of each invention example has a small coercive force, a high electric resistance of a certain level or more, and also has excellent corrosion resistance. Therefore, a magnetic core compacted using these powders can be reduced in hysteresis and eddy current loss.

【0010】次に、Fe3(Si0.75Cr0.25)及びFe5
(Si0.6Cr0.4)の2種類の組成を有する100メッシ
ュ以下(平均粒径70メッシュ以下)の各合金粉末をそれ
ぞれ水アトマイズ法によって得た。これらの各粉末の表
面に水ガラスからなる無機質バインダ(粉末の約2wt%)
をブレンド等により被覆し、前記図3(A)に示すドーナ
ツ形状(外径28mm×内径16mm×高さ5mm)に圧粉成形
した。成形後の圧粉密度はそれぞれ約6.0g/cm
3で、且つ抗折力は約60MPaであった。係る2種類
の成形体を水素を含有する還元性雰囲気中に置き、20
0〜600℃に加熱してCやOを除去し、且つ前記アト
マイズ時に受けた内部歪を除去する熱処理を施した。一
方、比較例として、センダスト合金(Fe−9.6wt%S
i−5.4wt%Al)の粉末を用い、上記と同様にバイン
ダ被覆、圧粉成形、及び熱処理を行なった。
Next, Fe 3 (Si 0.75 Cr 0.25 ) and Fe 5
Each alloy powder of 100 mesh or less (average particle size of 70 mesh or less) having two kinds of compositions of (Si 0.6 Cr 0.4 ) was obtained by a water atomizing method. Inorganic binder made of water glass (about 2 wt% of powder) on the surface of each of these powders
Was coated with a blend or the like, and pressed into a donut shape (outer diameter 28 mm × inner diameter 16 mm × height 5 mm) as shown in FIG. 3 (A). The green density after molding is about 6.0 g / cm each.
3 , and the transverse rupture strength was about 60 MPa. These two types of compacts were placed in a reducing atmosphere containing hydrogen,
Heat treatment was performed at 0 to 600 [deg.] C. to remove C and O and to remove internal strains received during the atomization. On the other hand, as a comparative example, a sendust alloy (Fe-9.6 wt% S
Using i-5.4 wt% Al) powder, binder coating, compacting, and heat treatment were performed in the same manner as described above.

【0011】これら3種の成形体のコアロス(渦電流損
失とヒステリシス損失の双方を含む)を交流B−Hアナ
ライザを用いて上記熱処理温度別に測定した。その結果
を図1のグラフにプロットした。図1の各グラフから、
発明例のものは、何れも200℃以上の範囲において、
比較例の数分の一のコアロスしか認められなかった。こ
のことから、各発明例の圧粉成形体を用いた磁心によれ
ば、渦電流損失とヒステリシス損失の双方が少ない優れ
た特性が得られることが理解される。しかも、各発明例
のものは、前記表1から高い電気抵抗と優れた耐食性を
併有していることも明らかである。尚、前記バインダの
水ガラスは、1〜3wt%のシリコン樹脂等に替えても良
く、且つ何れも絶縁機能を併有するので、電気抵抗を高
める点、及び製造工程上の点からも好ましい。
The core loss (including both the eddy current loss and the hysteresis loss) of these three types of compacts was measured for each of the heat treatment temperatures using an AC BH analyzer. The result was plotted on the graph of FIG. From each graph in FIG.
In the case of the invention examples, in the range of 200 ℃ or more,
Only a fraction of the core loss of the comparative example was observed. From this, it is understood that according to the magnetic core using the powder compact of each invention example, excellent characteristics in which both the eddy current loss and the hysteresis loss are small can be obtained. In addition, it is clear from Table 1 that each of the invention examples has both high electric resistance and excellent corrosion resistance. In addition, the water glass of the binder may be replaced with a silicon resin of 1 to 3 wt% or the like, and both have an insulating function.

【0012】更に、Fe3(Si0.75Cr0.25)及びFe5
(Si0.6Cr0.4)の2種類の組成を有する100メッシ
ュ以下(平均粒径70メッシュ以下)の合金粉末をそれぞ
れ水アトマイズ法によって得た。これらの粉末をトルエ
ン及び鉄製ボールと共にアトライタ中に投入し、それぞ
れ15時間連続した粉砕処理を行い、各々厚さ1μm程
度の扁平形状を有する粉末を得た。これらの各扁平粉末
のアスペクト比は、全て約5.0〜50.0の範囲にあっ
た。これらの各扁平粉末をバインダと共に前記同様のド
ーナツ形状(外径28mm×内径16mm×高さ5mm)に圧
粉成形した(成形後の圧粉密度;約6.2g/cm3、抗折
力;約80MPa)。更に、水素を含む還元性雰囲気中
で、200〜600℃に加熱しCやOを除去し、上記ア
トマイズ時及び粉砕処理時に受けた内部歪を除去する熱
処理を施した。一方、比較例として、センダスト合金
(Fe−9.6wt%Si−5.4wt%Al)の粉末を用い、
上記同様に粉砕処理、圧粉成形、及び熱処理を行なっ
た。これら3種の成形体のコアロス(渦電流損失とヒス
テリシス損失の双方を含む)も交流B−Hアナライザを
用いて上記熱処理温度別に測定した。その結果を図2の
グラフにプロットした。
Further, Fe 3 (Si 0.75 Cr 0.25 ) and Fe 5
Alloy powders of 100 mesh or less (average particle size of 70 mesh or less) having two compositions of (Si 0.6 Cr 0.4 ) were obtained by a water atomizing method. These powders were put into an attritor together with toluene and iron balls, and each of them was subjected to continuous pulverization for 15 hours to obtain flat powders each having a thickness of about 1 μm. The aspect ratios of these flat powders were all in the range of about 5.0 to 50.0. Each of these flat powders was compacted together with a binder into the same donut shape (outer diameter 28 mm × inner diameter 16 mm × height 5 mm) (the compact density after compaction: about 6.2 g / cm 3 , bending strength; About 80 MPa). Further, in a reducing atmosphere containing hydrogen, heat treatment was performed at 200 to 600 ° C. to remove C and O, and to remove internal strains received during the above-mentioned atomization and pulverization. On the other hand, as a comparative example, Sendust alloy
(Fe-9.6wt% Si-5.4wt% Al) powder,
The pulverization, compacting, and heat treatment were performed in the same manner as described above. The core loss (including both the eddy current loss and the hysteresis loss) of these three types of compacts was measured for each of the heat treatment temperatures using an AC B-H analyzer. The result was plotted on the graph of FIG.

【0013】図2の各グラフから、各発明例では、何れ
も300℃以上の範囲でコアロスが1000Kw/m3
未満になり、比較例の数分の一乃至十数分の一のコアロ
スしか認められなかった。しかも、係る範囲では前記図
1に示した扁平化されていない各発明例のものよりもコ
アロスが少なかった。特にアスペクト比が5以上の粉末
を用いた磁心のうち、Fe3(Si0.75Cr0.25)のもの
では顕著であった。これは、同様の合金組成であれば、
その粉末形状が球形状や塊形状のものより、扁平形状の
ものの方が、その内部を通る磁束の経路が長くなり、こ
れと反対向きに生じる反磁界が小さくなるため、ヒステ
リシス損失が少なくなったものと推定される。これらか
ら、各発明例の扁平粉末による圧粉成形体の磁心によれ
ば、渦電流損失とヒステリシス損失の双方が更に少ない
優れた特性が得られることが理解される。且つ、各発明
例のものは、前記表1から高い電気抵抗と優れた耐食性
を併有していることも明らかである。
From each graph of FIG. 2, in each of the invention examples, the core loss is 1000 Kw / m 3 in the range of 300 ° C. or more.
And the core loss was only a few to a tenth of the core loss of the comparative example. Moreover, in this range, the core loss was smaller than that of each of the non-flattened invention examples shown in FIG. In particular, among the magnetic cores using powders having an aspect ratio of 5 or more, those with Fe 3 (Si 0.75 Cr 0.25 ) were remarkable. This is a similar alloy composition,
When the powder has a flat shape, the path of the magnetic flux passing through the inside is longer than that of a spherical or lump shape, and the demagnetizing field generated in the opposite direction is smaller, so that the hysteresis loss is reduced. It is presumed that. From these, it is understood that according to the magnetic core of the compacted body made of the flat powder of each of the invention examples, excellent characteristics in which both the eddy current loss and the hysteresis loss are further reduced can be obtained. Further, it is apparent from Table 1 that each of the invention examples has both high electric resistance and excellent corrosion resistance.

【0014】本発明は、以上の各形態に限定されるもの
ではない。前記合金の粉末化は、アトマイズ法に限ら
ず、インゴットをジョークラッシャ、ハンマーミル、及
びボールミルを経る機械的粉砕方法によって、扁平形状
の粉末にすることもできる。また、圧粉成形は、プレス
(圧縮機)により金型内に充填した粉末及びバインダを数
100MPaの圧力で成形する方法のほか、バインダを
添加した粉末をダイスから押し出す押出成形や、ゴム型
と芯金に囲まれたキャビティ内に粉末とバインダを充填
して周囲の液体に圧力を掛けて成形する液圧成形等の方
法を用いることもできる。
The present invention is not limited to the above embodiments. The pulverization of the alloy is not limited to the atomization method, and the ingot may be formed into a flat powder by a mechanical pulverization method using a jaw crusher, a hammer mill, and a ball mill. Also, compacting is performed by pressing
In addition to the method of molding the powder and the binder filled in the mold with a (compressor) at a pressure of several 100 MPa, extrusion molding in which the powder with the binder added is extruded from a die, and the inside of a cavity surrounded by a rubber mold and a core metal A method such as hydraulic molding, in which a powder and a binder are filled into the mixture and pressure is applied to the surrounding liquid to form the mixture, may be used.

【0015】更に、粉末の合金組成も、前記の他に、例
えばCをSiC等の炭化物が生成しない範囲(約0.1w
t%以下)で添加して軟質化し、粉末の扁平化を容易に
することもできる。また、1〜2wt%のNi又はMnを
添加して合金粉末の強度を向上させたり、或いは、Ni
を約10wt%迄添加してCr組み合せて耐食性及び耐熱
性を高めるともできる。また、前記絶縁層は、バインダ
と別の専用物を用いても良く、その粉末表面への被覆方
法も浸漬法やシャワーリング等によることもできる。
Further, in addition to the above, the alloy composition of the powder may be, for example, C in a range where carbides such as SiC are not formed (about 0.1 watts).
(t% or less) to soften the powder and facilitate flattening of the powder. Further, the strength of the alloy powder is improved by adding 1 to 2 wt% of Ni or Mn, or Ni or Mn is added.
Can be added up to about 10% by weight to improve the corrosion resistance and heat resistance in combination with Cr. The insulating layer may be a dedicated material different from the binder, and the surface of the powder may be coated by dipping or showering.

【0016】[0016]

【発明の効果】以上において説明した本発明の磁心によ
れば、ヒステリシス損失が少ないため高い飽和磁束密度
や良好な透磁率が得られ、電気抵抗も高く渦電流損失を
少なくすることができ、高周波領域における特性に優れ
た磁心を提供することができる。特に、扁平形状の金属
粉末を圧粉成形した磁心では、上記の各特性について一
層優れた効果を発揮することができる。しかも、耐食性
にも優れているため、過酷な使用環境に置かれても長期
に渉り上記の各効果を保持することができる。また、本
発明の粉末によれば、上記の磁心を確実、且つ容易に、
しかも安価に量産して提供することができる。
According to the magnetic core of the present invention described above, a high saturation magnetic flux density and a good magnetic permeability can be obtained due to a small hysteresis loss, an electric resistance is high, and an eddy current loss can be reduced. A magnetic core having excellent characteristics in the region can be provided. In particular, a magnetic core obtained by compacting a flat metal powder can exert more excellent effects on the above-described respective characteristics. In addition, since it has excellent corrosion resistance, the above-described effects can be maintained for a long time even in a severe use environment. Further, according to the powder of the present invention, the above-mentioned magnetic core is surely and easily,
Moreover, it can be mass-produced and provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の粉末を用いた磁心と比較例の磁心のコ
アロスを、各々の熱処理温度別にプロットしたグラフで
ある。
FIG. 1 is a graph in which core losses of a magnetic core using a powder of the present invention and a magnetic core of a comparative example are plotted at respective heat treatment temperatures.

【図2】本発明の扁平形状の粉末を用いた磁心と比較例
の磁心のコアロスを、各々の熱処理温度別にプロットし
たグラフである。
FIG. 2 is a graph plotting the core loss of the magnetic core using the flat powder of the present invention and the core of the comparative example for each heat treatment temperature.

【図3】(A)及び(B)共に、磁心の一般的な形状を示す
斜視図である。
FIGS. 3A and 3B are perspective views each showing a general shape of a magnetic core.

【符号の説明】[Explanation of symbols]

1,2………………………磁心 1,2 ………………… Core

【表1】 [Table 1]

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Fen(Si1-xCrx)において、n=2.
5〜6.0、x=0.1超〜0.6未満の組成を有する粉
末を圧粉成形したことを特徴とする磁心。
1. A Fe n (Si 1-x Cr x), n = 2.
A magnetic core obtained by compacting a powder having a composition of 5 to 6.0 and x = more than 0.1 to less than 0.6.
【請求項2】 前記組成において、x=0.2〜0.5で
ある請求項1に記載の磁心。
2. The magnetic core according to claim 1, wherein x = 0.2 to 0.5 in the composition.
【請求項3】 扁平形状を有する金属粉末を圧粉成形し
たことを特徴とする磁心。
3. A magnetic core obtained by compacting a flat metal powder.
【請求項4】 前記金属粉末のアスペクト比を5以上と
した請求項3に記載の磁心。
4. The magnetic core according to claim 3, wherein the metal powder has an aspect ratio of 5 or more.
【請求項5】 前記金属粉末の組成が、Fen(Si1-x
Crx)において、n=2.5〜6.0、x=0.1超〜0.
6未満である請求項3又は4に記載の磁心。
5. The method according to claim 1, wherein the composition of the metal powder is F n (Si 1-x
(Cr x ), n = 2.5-6.0, x = more than 0.1-0.5.
The magnetic core according to claim 3 or 4, wherein the number is less than 6.
【請求項6】 前記粉末又は金属粉末の表面を無機質の
絶縁層で被覆した請求項1乃至5に記載の磁心。
6. The magnetic core according to claim 1, wherein the surface of the powder or the metal powder is covered with an inorganic insulating layer.
【請求項7】 Fen(Si1-xCrx)において、n=2.
5〜6.0、x=0.1超〜0.6未満の組成を有し、且
つ扁平形状を有することを特徴とする磁心用粉末。
7. In F n (Si 1-x Cr x ), n = 2.
A powder for a magnetic core, having a composition of 5 to 6.0, x = more than 0.1 to less than 0.6, and having a flat shape.
JP23754296A 1996-09-09 1996-09-09 Magnetic core and powder which is used for magnetic core Pending JPH1083910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23754296A JPH1083910A (en) 1996-09-09 1996-09-09 Magnetic core and powder which is used for magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23754296A JPH1083910A (en) 1996-09-09 1996-09-09 Magnetic core and powder which is used for magnetic core

Publications (1)

Publication Number Publication Date
JPH1083910A true JPH1083910A (en) 1998-03-31

Family

ID=17016881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23754296A Pending JPH1083910A (en) 1996-09-09 1996-09-09 Magnetic core and powder which is used for magnetic core

Country Status (1)

Country Link
JP (1) JPH1083910A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959480A2 (en) * 1998-05-18 1999-11-24 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
JP2008258234A (en) * 2007-04-02 2008-10-23 Seiko Epson Corp Dust core and magnetic element
EP3157019A1 (en) * 2015-10-14 2017-04-19 Toyota Jidosha Kabushiki Kaisha Compressed powder core, powders for compressed powder core, and method for producing compressed powder core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959480A2 (en) * 1998-05-18 1999-11-24 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
EP0959480A3 (en) * 1998-05-18 2000-03-15 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
US6183657B1 (en) 1998-05-18 2001-02-06 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
JP2008258234A (en) * 2007-04-02 2008-10-23 Seiko Epson Corp Dust core and magnetic element
EP3157019A1 (en) * 2015-10-14 2017-04-19 Toyota Jidosha Kabushiki Kaisha Compressed powder core, powders for compressed powder core, and method for producing compressed powder core

Similar Documents

Publication Publication Date Title
JP5358562B2 (en) Method for producing composite magnetic material and composite magnetic material
EP2680281B1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
JP4971886B2 (en) Soft magnetic powder, soft magnetic molded body, and production method thereof
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP5145923B2 (en) Composite magnetic material
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP3624681B2 (en) Composite magnetic material and method for producing the same
JP2001011563A (en) Manufacture of composite magnetic material
JP2004288983A (en) Dust core and method for manufacturing same
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP2010153638A (en) Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component
JP7128439B2 (en) Dust core and inductor element
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP4750471B2 (en) Low magnetostrictive body and dust core using the same
JP2001307914A (en) Magnetic powder for dust core, dust core using it, and method for manufacturing dust core
JPS63117406A (en) Amorphous alloy dust core
JPS63115309A (en) Magnetic alloy powder
JP2005347641A (en) Dust core, its manufacturing method, and winding component
JPH1083910A (en) Magnetic core and powder which is used for magnetic core
JPH07135106A (en) Magnetic core
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JPH06204021A (en) Composite magnetic material and its manufacture
JP7128438B2 (en) Dust core and inductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060613

Free format text: JAPANESE INTERMEDIATE CODE: A02