JPH108197A - Steel plate excellent in corrosion resistance in partially heated zone and its production - Google Patents

Steel plate excellent in corrosion resistance in partially heated zone and its production

Info

Publication number
JPH108197A
JPH108197A JP18680596A JP18680596A JPH108197A JP H108197 A JPH108197 A JP H108197A JP 18680596 A JP18680596 A JP 18680596A JP 18680596 A JP18680596 A JP 18680596A JP H108197 A JPH108197 A JP H108197A
Authority
JP
Japan
Prior art keywords
corrosion resistance
less
steel plate
content
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18680596A
Other languages
Japanese (ja)
Inventor
Goro Anami
吾郎 阿南
Tetsuo Toyoda
哲夫 十代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18680596A priority Critical patent/JPH108197A/en
Publication of JPH108197A publication Critical patent/JPH108197A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a steel plate, having excellent corrosion resistance in a base material part as well as having sufficient corrosion resistance in a heated zone in an as-partially-heated state by welding, etc., while obviating the necessity of extreme reduction ion carbon content and tempering heat treatment, and to provide its production method. SOLUTION: This steel plate has a composition consisting of, by weight, <=0.30% C, 0.2-2.0% Mn, <0.016% S, 0.1-1.0% Cu, 0.6[Cu] to 1.0[Cu]% Ni, 0.003-0.001% N, >(48[N]/14+48[S]/32) to <(48[N]/14+48[S]/32+0.2)% Ti, and the balance Fe with inevitable impurities and also has a structure composed essentially of ferrite and bainite. Further, the steel plate can be produced by subjecting a steel slab with the composition to hot rolling at a finishing temp. between 950 deg.C and the Ar3 point, to cooling under the condition of <=5sec time of stay at 700-600 deg.C, and then to coiling at 550-450 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は溶接部などの部分的
に加熱した部位に生じる腐食に対し、優れた耐食性を有
する鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet having excellent corrosion resistance against corrosion generated in a partially heated portion such as a weld.

【0002】[0002]

【従来の技術】電縫炭素鋼管は、シームレス鋼管に比べ
て安価であるが、海水、水道水、酸性水など厳しい腐食
環境に用いられた場合、溶接部が選択的に腐食されると
いう問題がある。かかる部分加熱部の腐食は、溶接時の
急熱・急冷による焼入組織の形成に伴うマクロ電池の形
成や、硫化物が再溶解することによって生成したS濃化
部によるミクロ電池の形成に起因するといわれている。
2. Description of the Related Art ERW carbon steel pipes are less expensive than seamless steel pipes. However, when used in severe corrosive environments such as seawater, tap water, and acidic water, the problem is that the welds are selectively corroded. is there. Such corrosion of the partially heated portion is caused by the formation of a macro battery due to the formation of a quenched structure due to rapid heating and quenching during welding, and the formation of a micro battery by the S concentrated portion generated by re-dissolution of sulfide. It is said that.

【0003】そこで、特公昭53−28845号、特公
昭53−10525号、特公昭56−28984号で
は、溶接部と母材部の電位差の低下に有効なCuやNi
を鋼成分として添加したり、硫化物の再溶解を抑えるC
aやREMを添加している。
Therefore, Japanese Patent Publication No. 53-28845, Japanese Patent Publication No. 53-10525 and Japanese Patent Publication No. 56-28984 disclose Cu and Ni which are effective in reducing the potential difference between the welded portion and the base material.
C as a steel component or suppresses sulfide re-dissolution
a and REM are added.

【0004】しかし、溶接部の腐食を抑制するために
は、CaやREM、Cu、Ni等を添加するだけでな
く、溶接部の焼入組織をできるだけ抑制して、溶接部と
母材部の電位差を小さくすることが望ましい。
However, in order to suppress the corrosion of the welded portion, not only Ca, REM, Cu, Ni, etc. are added, but also the quenched structure of the welded portion is suppressed as much as possible, so that the welded portion and the base metal portion are not added. It is desirable to reduce the potential difference.

【0005】かかる見地から、特公昭59−50747
号では溶接部を焼き戻すことにより、また特公昭60−
9096号では鋼の成分を極低炭素とすることで、焼入
組織を解消し、耐食性の向上を企図している。
[0005] From this point of view, Japanese Patent Publication No. 59-50747
By tempering the welded part,
No. 9096 aims to improve the corrosion resistance by eliminating the quenched structure by making the steel component extremely low carbon.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、焼戻し
は製造工程が増え、コスト高を招来し、また変形などの
問題がある。一方、極低炭素化は製造コスト高を招来す
るほか、高強度化する場合に、高価な合金元素を多量に
添加する必要があり、更に合金元素の多量添加は焼入組
織の生成を助長することになる。また、従来の技術では
母材部の耐食性まで考慮したものは少なく、厳しい腐食
環境で用いるには問題があった。
However, tempering involves an increase in the number of manufacturing steps, increases costs, and has problems such as deformation. On the other hand, extremely low carbonization causes high manufacturing costs, and when increasing strength, it is necessary to add a large amount of expensive alloying elements, and the addition of a large amount of alloying elements promotes the formation of a quenched structure. Will be. Further, there are few conventional techniques that take into account even the corrosion resistance of the base material portion, and there is a problem in use in a severely corrosive environment.

【0007】本発明はかかる問題に鑑みなされたもの
で、極低炭素化を行うことなく、従って炭素による強度
向上が可能で、しかも焼戻し熱処理を行うことなく、溶
接等の部分加熱処理を行ったままで、加熱部に十分な耐
食性を備えることができ、母材部の耐食性にも優れた鋼
板を提供することを課題とする。
[0007] The present invention has been made in view of such a problem, and it is possible to improve the strength by carbon without performing ultra-low carbon, and to perform partial heat treatment such as welding without performing tempering heat treatment. It is an object of the present invention to provide a steel sheet in which a heating portion can have sufficient corrosion resistance and a base material portion has excellent corrosion resistance.

【0008】[0008]

【課題を解決するための手段】本発明は、通常耐食性を
劣化させるといわれる、比較的粗大な析出物であるTi
Nを利用して、溶接部やその周辺等の部分加熱部におけ
る焼入組織の生成を可及的に抑制することで、選択的な
腐食の進行を抑制し、加熱のままでも十分な耐食性を加
熱部に付与することを可能にしたものである。さらに、
Cuヘゲの生成を抑制し、組織の主体をC濃度の低いフ
ェライト及びベイナイトとすることにより、母材部の耐
食性をも改善したものである。
SUMMARY OF THE INVENTION The present invention provides a relatively coarse precipitate, Ti, which is generally said to deteriorate corrosion resistance.
The use of N suppresses the formation of a quenched structure in the welded part and its surrounding area, as much as possible, thereby suppressing the progress of selective corrosion and ensuring sufficient corrosion resistance even when heated. This makes it possible to apply it to the heating section. further,
The formation of Cu scabs is suppressed, and the main constituent of the structure is ferrite and bainite having a low C concentration, thereby improving the corrosion resistance of the base material.

【0009】すなわち、本発明の鋼板は、重量%で、C
:0.30%以下、Mn:0.2〜2.0%、S :
0.016%未満、Cu:0.1〜1.0%、Ni:
0.6[Cu]〜1.0[Cu]%、N :0.003〜0.0
10%、Ti:(48[N]/14+48[S]/32 )超〜(48[N]/1
4+48[S]/32 +0.2)%未満、を含み、あるは更にP
:0.01〜0.10%、Si:0.01〜2.0
%,Nb:0.01〜0.04%,Cr:0.1〜1.
0%,B:0.0002〜0.0020%,V:0.0
1〜0.20%,Mo:0.01〜0.20%からなる
Aグループ、REM :0.0004〜0.0020%,C
a:0.0004〜0.0020%からなるBグルー
プ、のうちから一種または2種以上の元素を含有し、残
部Fe及び不可避的不純物からなり、フェライト及びベ
イナイトを主体とする組織を有するものである。
That is, the steel sheet of the present invention contains C
: 0.30% or less, Mn: 0.2 to 2.0%, S:
Less than 0.016%, Cu: 0.1 to 1.0%, Ni:
0.6 [Cu] to 1.0 [Cu]%, N: 0.003 to 0.0
10%, Ti: more than (48 [N] / 14 + 48 [S] / 32) to (48 [N] / 1
4 + 48 [S] /32+0.2)%, or P
: 0.01 to 0.10%, Si: 0.01 to 2.0
%, Nb: 0.01-0.04%, Cr: 0.1-1.
0%, B: 0.0002 to 0.0020%, V: 0.0
Group A consisting of 1 to 0.20%, Mo: 0.01 to 0.20%, REM: 0.0004 to 0.0020%, C
a: It contains one or two or more elements from the group B consisting of 0.0004 to 0.0020%, the balance being Fe and unavoidable impurities, and having a structure mainly composed of ferrite and bainite. is there.

【0010】強度の向上を望む場合は、前記成分におい
て、C:0.065〜0.30%、Ti:(48[N]/14+
48[S]/32 )超〜(48[N]/14+48[S]/32 +0.1)%未
満に設定するのがよい。
In the case where improvement in strength is desired, in the above components, C: 0.065 to 0.30%, Ti: (48 [N] / 14 +
48 [S] / 32) It is better to set to more than (48 [N] / 14 + 48 [S] /32+0.1)%.

【0011】ここで、まず本発明の鋼成分(単位:重量
%)の限定理由について説明する。尚、〔元素記号〕
は、当該元素の含有量(%)を示す。
Here, the reason for limiting the steel component (unit: weight%) of the present invention will be described first. In addition, [element symbol]
Indicates the content (%) of the element.

【0012】C:0.30%以下 Cは鋼板の強度を高めるのに有効な元素であるか、添加
しすぎると耐食性を劣化させるので、0.30%以下と
する。もっとも、C含有量が少ない程、耐食性は向上す
るので、強度を要しない場合は、好ましくは0.1%以
下、より好ましくは0.040%以下がよい。なお、C
含有量の下限は特に限定しないが、工業的に生産可能な
レベルとしては0.0010%程度であり、本発明では
かかる程度で十分な耐食性効果を得ることができる。本
発明は焼入組織の生成を回避するために、極低C化を図
る必要はなく、440N/mm2 級以上の高強度レベルの
鋼板を得るには、0.05%以上、好ましくは0.06
5%以上のC量を含有すればよい。
C: 0.30% or less C is an element effective for increasing the strength of the steel sheet, or if added too much, the corrosion resistance is deteriorated. However, as the C content is smaller, the corrosion resistance is improved. Therefore, when strength is not required, the content is preferably 0.1% or less, more preferably 0.040% or less. Note that C
Although the lower limit of the content is not particularly limited, the level which can be industrially produced is about 0.0010%, and in the present invention, a sufficient corrosion resistance effect can be obtained with such a level. In the present invention, it is not necessary to reduce the carbon content to an extremely low level in order to avoid the formation of a quenched structure. To obtain a steel sheet having a high strength level of 440 N / mm 2 or more, 0.05% or more, preferably 0% or more. .06
What is necessary is just to contain C amount of 5% or more.

【0013】Mn:0.2〜2.0% Mnは高強度化のために有効である。0.2%未満では
その効果が過少であり、2.0%まで添加しても本発明
の効果を阻害しないため、上限を2.0%とする。
Mn: 0.2 to 2.0% Mn is effective for increasing the strength. If it is less than 0.2%, the effect is too small. Even if added up to 2.0%, the effect of the present invention is not impaired, so the upper limit is made 2.0%.

【0014】S:0.016%未満 Sは鋼板の耐食性を劣化させるので少ない程よく、0.
016%未満とする。好ましくは0.010%未満がよ
く、母材の耐食性を考慮すると0.002%未満か望ま
しい。
S: less than 0.016% S reduces the corrosion resistance of the steel sheet.
Less than 016%. It is preferably less than 0.010%, more preferably less than 0.002% in consideration of the corrosion resistance of the base material.

【0015】Cu:0.10〜1.0% Cuは加熱部と母材部の電位差の拡大を抑制するので、
0.10%以上添加することが望ましい。ただし、Cu
を添加する場合は高価なNiを同時に添加する必要があ
り、また0.3%以上添加しても効果が飽和することか
ら、1.0%を上限とする。
Cu: 0.10 to 1.0% Cu suppresses the expansion of the potential difference between the heating portion and the base material portion.
It is desirable to add 0.10% or more. However, Cu
When adding Ni, expensive Ni must be added at the same time, and the effect is saturated even if 0.3% or more is added. Therefore, the upper limit is 1.0%.

【0016】Ni:0.6〔Cu〕〜1.0〔Cu〕% NiはCuヘゲを抑えて、ミクロ電池の生成を抑制し、
耐食性を向上させる作用を有する。耐食性向上の見地か
らはCu含有量の6割以上添加する必要がある。しか
し、Niは高価なため、Cuと同量添加するに止める。
Ni: 0.6 [Cu] to 1.0 [Cu]% Ni suppresses Cu scab and suppresses the formation of a micro battery,
It has the effect of improving corrosion resistance. From the viewpoint of improving corrosion resistance, it is necessary to add 60% or more of the Cu content. However, since Ni is expensive, only the same amount as Ni is added.

【0017】N:0.003〜0.010% NはTiと結合してTiNを形成し、溶接等の加熱時の
オーステナイトの粗大化を抑え、加熱部での極端な焼入
組織の形成を抑えるので、マクロ電池の形成が抑制さ
れ、適度に添加することで加熱部の耐食性を向上させ
る。かかる見地から0.003%以上、望ましくは0.
005%以上添加する。高強度化のためにC含有量を
0.05%以上、好ましくは0.065%以上とする場
合は、0.0035%以上添加するのが好ましい。しか
し、0.010%を超えて添加すると、腐食の起点にな
るTiN析出物が増加し、母材部の耐食性が劣化するよ
うになるので、上限を0.010%とする。
N: 0.003% to 0.010% N combines with Ti to form TiN, suppresses austenite coarsening during heating such as welding, and prevents the formation of an extremely hardened structure in a heated portion. Since the formation is suppressed, the formation of the macro battery is suppressed, and the corrosion resistance of the heating section is improved by adding the compound appropriately. From this point of view, 0.003% or more, preferably 0.1% or more.
Add 005% or more. When the C content is set to 0.05% or more, preferably 0.065% or more for increasing the strength, it is preferable to add 0.0035% or more. However, if it is added in excess of 0.010%, the amount of TiN precipitates serving as corrosion starting points increases, and the corrosion resistance of the base material deteriorates. Therefore, the upper limit is made 0.010%.

【0018】Ti:(48[N]/14+48[S]/32 )超〜(48[N]
/14+48[S]/32 +0.2)%未満 TiはN、Sと結合し、残部が固溶Tiとなる。固溶T
iは加熱部の耐食性を向上させる効果かあり、固溶Ti
が全くない状態では、耐食性が大きく劣化する。その理
由は、硫化物が完全にTiSにならず、溶接等の加熱時
に溶解しやすいMnSが残存しやすいためと考えられ
る。MnSは溶接時に溶解すると周囲の地鉄にSが固溶
するので、孔食を促進させると言われている。このた
め、[Ti]−(48[N]/14 +48[S]/32)によって算出した固
溶Ti量は零より大きな値を取ることが必要である。好
ましくは、固溶Ti量は0.02%以上とするのがよ
い。一方、固溶Ti量が0.20%以上と過多になると
耐食性が劣化する。その理由は、過剰なTiにより加熱
部がマルテンサイトとなるため、加熱部と母材部の間に
マクロ電池が形成され、腐食が進行しやすくなるためと
考えられる。このため、固溶Ti量は0.2%未満、好
ましくは0.13%未満にする。
Ti: more than (48 [N] / 14 + 48 [S] / 32) to (48 [N]
/14+48[S]/32+0.2)% or less Ti combines with N and S, and the remainder becomes solid solution Ti. Solid solution T
i has the effect of improving the corrosion resistance of the heating section, and
In the absence of any, the corrosion resistance is greatly degraded. It is considered that the reason is that the sulfide does not completely turn into TiS, and MnS that is easily dissolved during heating such as welding tends to remain. It is said that MnS promotes pitting corrosion because when dissolved during welding, S forms a solid solution in the surrounding ground iron. For this reason, the amount of solid solution Ti calculated by [Ti]-(48 [N] / 14 + 48 [S] / 32) needs to take a value larger than zero. Preferably, the amount of solid solution Ti is 0.02% or more. On the other hand, if the amount of solid solution Ti is excessively large, such as 0.20% or more, the corrosion resistance is deteriorated. It is considered that the reason for this is that the heating portion becomes martensite due to excessive Ti, so that a macro battery is formed between the heating portion and the base material portion, so that corrosion easily proceeds. For this reason, the amount of solid solution Ti is less than 0.2%, preferably less than 0.13%.

【0019】高強度鋼板を製造する場合、上記の通り、
C含有量を0.05%以上、好ましくは0.065%以
上に設定するのがよいが、この場合、固溶Cの増加に応
じて、過剰Tiによりマルテンサイト化し易くなるた
め、固溶Ti量の上限は0.10%未満、好ましくは
0.06%未満に設定するのがよい。
When manufacturing a high-strength steel sheet, as described above,
The C content is preferably set to 0.05% or more, preferably 0.065% or more. In this case, as the amount of solid solution C increases, it becomes easy to form martensite due to excess Ti, so The upper limit of the amount is set to less than 0.10%, preferably less than 0.06%.

【0020】本発明の鋼板は、上記成分を本質的成分と
して含有し、残部Fe及び不可避的不純物からなるが、
本発明の効果を損なうことなく、強度や耐食性を更に向
上させるために、下記P、Aグループ、Bグループの内
から1種以上の元素を含有することができる。
The steel sheet of the present invention contains the above components as essential components, and the balance is composed of Fe and unavoidable impurities.
In order to further improve the strength and corrosion resistance without impairing the effects of the present invention, one or more elements from the following groups P, A, and B can be contained.

【0021】P:0.01〜0.10%、Pは耐食性を
向上させる作用を有する。0.01%未満ではその作用
が過少であり、一方0.10%を超えると加工性が劣化
する。
P: 0.01 to 0.10%, P has an effect of improving corrosion resistance. If it is less than 0.01%, the effect is too small, while if it exceeds 0.10%, the workability is deteriorated.

【0022】Aグループ;Si:0.01〜2.0%、
Nb:0.01〜0.04%、Cr:0.1〜1.0
%、B:0.0002〜0.0020%、V:0.01
〜0.20%、Mo:0.01〜0.20% これらの元素は、強度向上作用を有する。各元素の下限
値未満ではかかる作用が過少であり、一方上限値を超え
ると加工性が劣化する。Moは上記範囲で耐食性改善作
用をも兼備する。
Group A: Si: 0.01-2.0%,
Nb: 0.01 to 0.04%, Cr: 0.1 to 1.0
%, B: 0.0002 to 0.0020%, V: 0.01
-0.20%, Mo: 0.01-0.20% These elements have a strength improving effect. If the amount is less than the lower limit of each element, the effect is too small, while if it exceeds the upper limit, the workability deteriorates. Mo also has a corrosion resistance improving effect in the above range.

【0023】Bグループ;REM :0.0004〜0.0
020%、Ca:0.0004〜0.0020% これらの元素は、炭化物の形態を制御して、伸びフラン
ジ性を改善する作用を有する。各元素の下限値未満では
かかる作用が過少であり、一方上限値を超えると加工性
が劣化する。
Group B; REM: 0.0004-0.0
020%, Ca: 0.0004 to 0.0020% These elements have an effect of controlling the form of carbide to improve stretch flangeability. If the amount is less than the lower limit of each element, the effect is too small, while if it exceeds the upper limit, the workability deteriorates.

【0024】本発明鋼板の組織は、F(フェライト)及
びB(ベイナイト)を主体とするものである。F及びB
以外の第3相は、本発明の効果に問題のない範囲とし
て、面積率で5%未満、好ましい2%未満許容される。
The structure of the steel sheet of the present invention is mainly composed of F (ferrite) and B (bainite). F and B
The third phase other than the above is allowed to have an area ratio of less than 5% and preferably less than 2% as a range having no problem in the effect of the present invention.

【0025】鋼板の組織をF+Bとした場合の耐食性は
良好であるが、F+M(マルテンサイト)とした場合や
F+P(パーライト)とした場合には、耐食性が劣化す
る。ここで言うPはラメラー状のパーライトを意味して
おり、これ以外のベイナイトかパーライトかの区別が難
しいものは本発明ではベイナイトと判断する。F+Pや
F+Mでは耐食性が劣化する理由は、マルテンサイトや
パーライトは組織中のC濃度がベイナイトに比べ比較的
高いため、選択的に腐食が進み、ミクロ電池が形成され
るためと推定される。
The corrosion resistance when the structure of the steel sheet is F + B is good, but when F + M (martensite) or F + P (pearlite), the corrosion resistance is deteriorated. Here, P means lamellar pearlite, and if it is difficult to distinguish between bainite and pearlite, it is determined to be bainite in the present invention. The reason that the corrosion resistance of F + P or F + M deteriorates is presumed to be that martensite or pearlite has a relatively high C concentration in the structure compared to bainite, so that corrosion proceeds selectively and a micro battery is formed.

【0026】本発明の鋼板は、上記成分を有する鋼片を
仕上げ温度950℃〜Ar3点で熱間圧延し、700〜6
00℃における滞在時間が5秒以下で冷却し、550〜
450℃で巻取ることにより得られる。
The steel sheet of the present invention is prepared by hot rolling a slab having the above-mentioned components at a finishing temperature of 950 ° C. to three Ar points.
Cooling time of less than 5 seconds at 00 ° C,
It is obtained by winding at 450 ° C.

【0027】仕上げ温度:950℃〜Ar3点 Ar3点未満ではフェライト変態が高速に進行し、パーラ
イトやマルテンサイトの生成を促進するため十分な耐食
性か得られない。一方、950℃を超える温度とするこ
とは通常の熱延設備では困難であるため、上限を950
℃とした。
The finishing temperature: 950 ° C. to Ar ferrite transformation proceeds at a high speed is less than 3 points Ar 3 point, not obtained or a sufficient corrosion resistance to facilitate the formation of pearlite or martensite. On the other hand, since it is difficult to set the temperature to be higher than 950 ° C. with ordinary hot rolling equipment, the upper limit is set to 950 ° C.
° C.

【0028】仕上げ圧延後の冷却過程における700〜
600℃の滞在時間:5秒以下 700〜600℃では速い速度でフェライトに変態する
ため、滞在時間(鋼板が冷却中に700〜600℃であ
る時間)が5秒を超えると、オーステナイト中にCが高
濃度に濃縮し、熱延の冷却・巻取システムでは変態後、
パーライトやマルテンサイトになるからである。
700 to 700 in the cooling process after finish rolling
600 ° C. residence time: 5 seconds or less At 700 to 600 ° C., the ferrite transforms into ferrite at a high speed. Therefore, when the residence time (time during which the steel sheet is at 700 to 600 ° C. during cooling) exceeds 5 seconds, C Is concentrated to a high concentration, and after transformation in the hot-rolling cooling and winding system,
This is because it becomes perlite or martensite.

【0029】巻取温度:550〜450℃ 550℃を超える温度で巻取ると、巻取後、ゆっくりで
はあるがフェライト変態が進行し、オーステナイト中に
Cが濃縮し、変態後パーライトやマルテンサイトとな
る。一方、450℃未満では、オーステナイト中にCが
濃縮していなくとも、マルテンサイトが生成するように
なる。この場合マルテンサイト中には残留歪みが多く、
Cがあまり濃縮していなくとも選択的に腐食が進行す
る。尚、組織がF+Pの場合、Cが共析組成近くまで濃
縮しているため、選択的に腐食が進行する。Cが濃縮
し、マルテンサイトとなった場合は特に腐食が進行す
る。
Winding temperature: 550 to 450 ° C. When the film is wound at a temperature exceeding 550 ° C., the ferrite transformation proceeds slowly but after the winding, C is concentrated in austenite, and after the transformation, pearlite and martensite are removed. Become. On the other hand, when the temperature is lower than 450 ° C., martensite is generated even if C is not concentrated in austenite. In this case, there is much residual strain in martensite,
Even if C is not so concentrated, corrosion proceeds selectively. In the case where the structure is F + P, corrosion progresses selectively because C is concentrated to near the eutectoid composition. Corrosion progresses particularly when C is concentrated to become martensite.

【0030】[0030]

【実施例】【Example】

実施例A 表1及び2に示す成分の鋼片を仕上げ温度890℃で熱
間圧延し、700〜600℃の滞在時間を3秒として冷
却し、500℃で巻き取った。また、表1の試料No. A
4の成分の鋼を用いて、表3に示す種々の熱延条件によ
り試料No. Kグループの熱延鋼板を得た。
Example A A slab having the components shown in Tables 1 and 2 was hot-rolled at a finishing temperature of 890 ° C, cooled at 700 to 600 ° C for 3 seconds, and wound at 500 ° C. In addition, sample No. A in Table 1
Using the steel of the component No. 4 under various hot rolling conditions shown in Table 3, hot rolled steel sheets of the sample No. K group were obtained.

【0031】これらの熱延鋼板について組織を調べると
共に、バット溶接により溶接し、溶接で盛り上がった部
分を研削して腐食試験片を作製した。この試験片を定電
位腐食試験(3%NaCl、30℃、−550mV、4
8hr)し、穴あき深さを測定した。母材部の穴あき深
さ(Dm)を0.35mm、溶接部の穴あき深さ(Dw)
はDmの1.2倍以下に抑えたいので、これらの条件を
満足するものを本発明例とした。組織観察結果、母材部
及び溶接部の穴あき深さの測定結果を同表に併せて示
す。
The structure of these hot-rolled steel sheets was examined, the parts were welded by butt welding, and the portions raised by welding were ground to prepare corrosion test pieces. The test piece was subjected to a constant potential corrosion test (3% NaCl, 30 ° C., −550 mV, 4
8 hr), and the perforated depth was measured. The hole depth (Dm) of the base metal part is 0.35 mm, and the hole depth (Dw) of the welded part
Since it is desired to suppress Dm to 1.2 times or less, a material satisfying these conditions is defined as an example of the present invention. The results of the microstructure observation and the measurement results of the perforated depths of the base metal and the weld are also shown in the same table.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】表1において、試料No. A1〜A8は穴あ
き深さに及ばすTi含有量の影響を調査したものであ
り、その結果を図1に整理して示す。図1より、良好な
耐穴あき性を有するためには、適当なTi量が必要であ
ることかわかる。詳細な調査の結果、固溶しているTi
濃度が耐食性に影響しているものと推定されたので、図
2に示すように、計算で求めた固溶Ti量([Ti]−Ti下
限値(すなわち48[N]/14+48[S]/32 ))を横軸に採っ
てデータを整理した。これより、固溶Tiは鋼板の溶接
部の耐食性向上に寄与することがわかる。固溶Tiが多
すぎると急速に耐食性か劣化するのは、析出物の増加や
溶接部がマルテンサイトになりやすくなり、マクロ電池
が形成されやすくなるためと推定される。
In Table 1, samples Nos. A1 to A8 were obtained by investigating the effect of the Ti content on the perforated depth, and the results are shown in FIG. From FIG. 1, it can be seen that an appropriate amount of Ti is necessary in order to have good puncture resistance. As a result of detailed investigation, it was found that Ti
Since the concentration was presumed to affect the corrosion resistance, as shown in FIG. 2, the amount of solid solution Ti calculated by calculation ([Ti] −Ti lower limit (ie, 48 [N] / 14 + 48 [S] / 32)) was arranged on the horizontal axis. From this, it can be seen that the solid solution Ti contributes to the improvement of the corrosion resistance of the welded portion of the steel sheet. It is presumed that the corrosion resistance or the deterioration rapidly when the amount of solute Ti is too large is due to the increase of precipitates and the tendency of the welded portion to become martensite and the macro battery to be easily formed.

【0036】また、試料No. B1〜B5はN含有量の穴
あき深さに及ばす影響を調査したものであり、その結果
を図3に整理して示す。固溶Tiが本発明範囲内であっ
ても、Nが適当な範囲になければ十分な耐食性が得られ
ないことが分かる。これは、TiNがオーステナイト組
織の粗大化を抑えているため、溶接部にマルテンサイト
が生じにくいためと推定される。Nが過多になると耐食
性が劣化するのは、腐食の起点となるTiNが増えるた
めと推定される。
Sample Nos. B1 to B5 were obtained by investigating the effect of the N content on the perforated depth, and the results are shown in FIG. It can be seen that even if the solute Ti is within the range of the present invention, sufficient corrosion resistance cannot be obtained unless N is within an appropriate range. This is presumed to be due to the fact that TiN suppresses coarsening of the austenite structure, so that martensite hardly occurs in the welded portion. The reason why the corrosion resistance deteriorates when N is excessive is presumed to be that the amount of TiN serving as a starting point of corrosion increases.

【0037】また、試料No. C1〜C4はNi含有量の
穴あき深さに及ばす影響を調査したものであり、その結
果を図4に示す。Ni含有量が0.18%を下回ると急
激に耐食性が劣化する。Niが孔食を抑制する効果があ
ることは知られているが、このような急激な変化をする
との報告はない。図4の結果から、Niが少ないとCu
ヘゲが生じて、その範囲がミクロ電池化するため、耐食
性が急激に劣化するものと推定される。Cuヘゲを抑え
るためにはNiをCuの半分から同量添加すれば良いと
言われているが、図4ではCu含有量が0.30%の下
で、Ni含有量が0.18%を境に急激な耐食性向上作
用が認められ、これより耐食性の見地からは、Cuの少
なくとも6割程度は添加する必要があることが分かる。
Samples Nos. C1 to C4 were obtained by investigating the effect of the Ni content on the perforated depth, and the results are shown in FIG. If the Ni content is less than 0.18%, the corrosion resistance rapidly deteriorates. It is known that Ni has an effect of suppressing pitting corrosion, but there is no report that such a rapid change occurs. From the results shown in FIG.
It is presumed that scabs occur and the range becomes microcells, so that the corrosion resistance rapidly deteriorates. It is said that it is only necessary to add the same amount of Ni from half of Cu in order to suppress Cu baldness, but in FIG. 4, the Cu content is below 0.30% and the Ni content is 0.18%. From the viewpoint of corrosion resistance, it is understood that at least about 60% of Cu needs to be added.

【0038】また、試料No. D1〜D3及びE1〜E3
はCu含有量の穴あき深さに及ばす影響を調査したもの
であり、No. D1〜D3及びNo.Eの結果を図5に示
す。Cuは溶接部と母材部の電位差の拡大を抑制すると
考えられており、図5の結果から、十分な溶接部の耐食
性を確保するためには、0.1%以上添加する必要があ
ることが分かる。しかし、0.3%を超えて添加しても
その効果は飽和する傾向にあることが分かる。
Sample Nos. D1 to D3 and E1 to E3
Is an investigation of the effect of the Cu content on the perforation depth, and the results of Nos. D1 to D3 and No. E are shown in FIG. Cu is considered to suppress the expansion of the potential difference between the welded portion and the base material portion, and from the results in FIG. 5, it is necessary to add 0.1% or more to ensure sufficient corrosion resistance of the welded portion. I understand. However, it can be seen that the effect tends to saturate even if it exceeds 0.3%.

【0039】また、表2の試料No. H1〜H3はS含有
量の穴あき深さに及ばす影響を調査したものであり、N
o. H1〜H3及びNo.A4の結果を図6に示す。硫化物
は腐食の起点となるためできるだけ少ない方が良く、
0.016%未満にすることにより、良好な耐食性が得
られることが分かる。
Samples Nos. H1 to H3 in Table 2 were obtained by investigating the effect of the S content on the perforation depth.
o. The results of H1 to H3 and No. A4 are shown in FIG. Sulfide is a starting point for corrosion, so it is better to use as little as possible.
It can be seen that by setting the content to less than 0.016%, good corrosion resistance can be obtained.

【0040】また、試料No. F1〜F3はC含有量の穴
あき深さに及ばす影響を調査したものであり、Cは炭化
物を形成し腐食の起点となり、またCは多量に添加する
と溶接部にマルテンサイト組織が生成しやすくなるの
で、少ない方が望ましいが、本発明では過度に減少せず
とも、0.07%でも十分な耐食性が得られることが分
かる。もっとも、本発明ではTiNによる溶接部でのマ
ルテンサイト生成抑制効果から、0.30%までは添加
することができる。
Samples Nos. F1 to F3 were obtained by investigating the effect of the C content on the perforation depth. C formed carbides and became a starting point of corrosion. Since a martensitic structure is easily generated in the part, it is desirable that the amount is small, but it is understood that sufficient corrosion resistance can be obtained even at 0.07% without excessive reduction in the present invention. However, in the present invention, up to 0.30% can be added from the effect of suppressing the formation of martensite in a weld by TiN.

【0041】また、試料No. G1〜G12、I1〜3
は、Mnを含めて種々の合金元素が本発明の効果を損な
わないことを確認した結果であり、本発明の範囲では溶
接部の穴あき深さはいずれも母材部の穴あき深さの1.
2倍以下である。
In addition, sample Nos. G1 to G12, I1 to 3
Is a result of confirming that various alloying elements including Mn do not impair the effects of the present invention, and in the scope of the present invention, the drilling depth of the welded portion is the same as the drilling depth of the base metal portion. 1.
It is less than twice.

【0042】また、表3の試料No. K1〜K13は、熱
延条件を種々変えて、穴あき深さに及ぼす組織の影響を
調査したものであり、鋼板の組織をF(フェライト)+
B(ベイナイト)とした実施例の場合では耐食性は良好
であるが、F+M(マルテンサイト)とした場合やF+
P(パーライト)とした場合には耐食性が劣化すること
が分かる。既述の通り、パーライトはラメラー状のパー
ライトであり、これ以外のベイナイトかパーライトかの
区別が難しいものはベイナイトとした。また、組織をF
+Bとするには、フェライトの析出をできるだけ抑制
し、450〜550℃で巻取処理する必要があることが
分かる。もっとも、試料No. K2、K7及びK11から
明らかな通り、PやMが存在しても、その量が僅かな場
合は良好な耐食性が得られている。
Samples Nos. K1 to K13 in Table 3 were obtained by investigating the effect of the structure on the drilling depth by changing the hot rolling conditions in various ways.
In the case of the embodiment in which B (bainite) was used, the corrosion resistance was good, but in the case of F + M (martensite) or F +
It can be seen that when P (pearlite) is used, the corrosion resistance deteriorates. As described above, pearlite is lamellar pearlite, and bainite is another material that is difficult to distinguish between bainite and pearlite. Also, the organization is F
It can be seen that it is necessary to suppress precipitation of ferrite as much as possible and to perform a winding treatment at 450 to 550 ° C. to make + B. However, as is clear from Sample Nos. K2, K7 and K11, even if P or M is present, good corrosion resistance is obtained when the amount is small.

【0043】実施例B 表4及び5に示す成分の鋼片を仕上げ温度880℃で熱
間圧延し、700〜600℃の滞在時間を3秒として冷
却し、500℃で巻き取った。また、表4の試料No. A
4の成分の鋼を用いて、表6に示す種々の熱延条件によ
り試料No. Kグループの熱延鋼板を得た。尚、実施例B
は、実施例Aに比して、C含有量を高めて、高強度化を
狙ったものである。
Example B A slab having the components shown in Tables 4 and 5 was hot-rolled at a finishing temperature of 880 ° C., cooled at a residence time of 700 to 600 ° C. for 3 seconds, and wound at 500 ° C. In addition, sample No. A in Table 4
Using the steel of the component No. 4 under various hot rolling conditions shown in Table 6, sample No. K group hot rolled steel sheets were obtained. Example B
Is aimed at increasing the C content and increasing the strength as compared with Example A.

【0044】これらの熱延鋼板について、実施例Aと同
様にして、組織観察及び穴あき深さを測定した。母材部
の穴あき深さ(Dm)を0.50mm、溶接部の穴あき深
さ(Dw)はDmの1.2倍以下に抑えたいので、これ
らの条件を満足するものを本発明例とした。組織観察結
果、母材部及び溶接部の穴あき深さの測定結果を同表に
併せて示す。
With respect to these hot-rolled steel sheets, the structure observation and the perforated depth were measured in the same manner as in Example A. The hole depth (Dm) of the base metal part is 0.50 mm and the hole depth (Dw) of the welded part is 1.2 times or less of Dm. And The results of the microstructure observation and the measurement results of the perforated depths of the base metal and the weld are also shown in the same table.

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【表6】 [Table 6]

【0048】試料No. A1〜A8は穴あき深さに及ぼす
Ti含有量の影響を調査したものであり、試料No. B1
〜B5はN含有量の、No. C1〜C4はNi含有量の、
No.D1〜D5はCu含有量の、No. H1〜H3はS含
有量の、No. F1〜F4はC含有量の穴あき深さに及ば
す効果を調査したものであり、またNo. G1〜G12及
びNo. I1〜I2はMnを含めて種々の合金元素が本発
明の効果を損なわないことを確認した例であり、実施例
Aと同様、本発明の成分範囲では溶接部の穴あき深さは
いずれも母材部の穴あき深さの1.2倍以下である。
尚、No. F1の引張強さは44 kgf/mm2 、No. F2は
52 kgf/mm2 、No. F3は68 kgf/mm2 、No. F4
は81 kgf/mm2 であり、C含有量が0.05%以上で
高強度化が図られることが分かる。
Sample Nos. A1 to A8 were obtained by investigating the effect of the Ti content on the drilling depth.
Nos. C1 to C4 are of the Ni content,
Nos. D1 to D5 were obtained by investigating the effects of the Cu content, Nos. H1 to H3 by the S content, and Nos. F1 to F4 by the effects of the C content on the drilling depth. G1 to G12 and Nos. I1 and I2 are examples in which it was confirmed that various alloying elements including Mn did not impair the effects of the present invention. The perforated depth is 1.2 times or less the perforated depth of the base material.
The tensile strength of No. F1 was 44 kgf / mm 2 , No. F2 was 52 kgf / mm 2 , No. F3 was 68 kgf / mm 2 , and No. F4
Is 81 kgf / mm 2 , which indicates that a C content of 0.05% or more enhances the strength.

【0049】また、表6のK1〜K13は、熱延条件を
種々変えて、穴あき深さに及ぼす組織の影響を調査した
ものであり、鋼板の組織をF(フェライト)+B(ベイ
ナイト)とした実施例の場合では耐食性は良好である
が、Bの代わりにM(マルテンサイト)やP(パーライ
ト)が生成したものでは、耐食性が劣化している。
K1 to K13 in Table 6 were obtained by investigating the effect of the structure on the perforation depth by changing the hot rolling conditions in various ways. The structure of the steel sheet was F (ferrite) + B (bainite). In the case of the embodiment described above, the corrosion resistance is good, but when M (martensite) or P (pearlite) is generated instead of B, the corrosion resistance is deteriorated.

【0050】[0050]

【発明の効果】以上説明した通り、本発明の鋼板によれ
ば、特に適量の固溶Tiの存在、TiN析出物によるオ
ーステナイトの粗大化抑制により、溶接部やその周辺等
の加熱部における焼入組織の生成を可及的に抑制するこ
とができ、焼戻し熱処理を行うことなく、加熱のままで
も十分な耐食性を部分加熱部に付与することができる。
また、焼入組織の生成抑制効果は極低炭素化によるもの
でないため、耐食性を損なわない範囲としてC含有量を
0.30%まで許容することができ、製造が容易で、鋼
板の高強度化も容易である。さらに、組織の主体をC濃
度の低いフェライト及びベイナイトとすることにより、
ミクロ電池の形成を抑制することができ、また溶接部の
耐食性改善のために添加されるCuによって引き起こさ
れるヘゲをNiによって抑制するため母材部の耐食性も
良好である。また、本発明の製造方法のよれば、加熱部
の耐食性に優れた鋼板を容易に製造することができる。
As described above, according to the steel sheet of the present invention, the presence of an appropriate amount of solute Ti and the suppression of austenite coarsening due to TiN precipitates cause quenching in a heated part such as a welded part or its periphery. Generation of a structure can be suppressed as much as possible, and sufficient corrosion resistance can be imparted to the partially heated portion even without heating, without performing tempering heat treatment.
Further, since the effect of suppressing the formation of the quenched structure is not due to the extremely low carbon content, the C content can be allowed up to 0.30% as long as the corrosion resistance is not impaired. Is also easy. Furthermore, by making the main component of the structure ferrite and bainite with a low C concentration,
The formation of a micro battery can be suppressed, and the barb caused by Cu added for improving the corrosion resistance of the welded portion is suppressed by Ni, so that the base material portion has good corrosion resistance. Further, according to the production method of the present invention, it is possible to easily produce a steel sheet excellent in corrosion resistance of the heating section.

【図面の簡単な説明】[Brief description of the drawings]

【図1】穴あき深さに及ぼす全Ti含有量の影響を示す
グラフである。
FIG. 1 is a graph showing the effect of total Ti content on drilling depth.

【図2】穴あき深さに及ぼす固溶Ti含有量の影響を示
すグラフである。
FIG. 2 is a graph showing the effect of the solid solution Ti content on the perforation depth.

【図3】穴あき深さに及ぼすN含有量の影響を示すグラ
フである。
FIG. 3 is a graph showing the effect of N content on drilling depth.

【図4】穴あき深さに及ぼすNi含有量の影響を示すグ
ラフである。
FIG. 4 is a graph showing the effect of Ni content on drilling depth.

【図5】穴あき深さに及ぼすCu含有量の影響を示すグ
ラフである。
FIG. 5 is a graph showing the effect of the Cu content on the perforation depth.

【図6】穴あき深さに及ぼすS含有量の影響を示すグラ
フである。
FIG. 6 is a graph showing the effect of the S content on the perforation depth.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C :0.30%以下、M
n:0.2〜2.0%、S :0.016%未満、C
u:0.1〜1.0%、Ni:0.6[Cu]〜1.0[Cu]
%、N :0.003〜0.010%、Ti:(48[N]/
14+48[S]/32 )超〜(48[N]/14+48[S]/32 +0.2)
%未満、を含み、残部Fe及び不可避的不純物からな
り、フェライト及びベイナイトを主体とする組織を有す
ることを特徴とする部分加熱部の耐食性に優れた鋼板。
1. C .: 0.30% or less in weight%, M:
n: 0.2 to 2.0%, S: less than 0.016%, C
u: 0.1 to 1.0%, Ni: 0.6 [Cu] to 1.0 [Cu]
%, N: 0.003 to 0.010%, Ti: (48 [N] /
14 + 48 [S] / 32) more than (48 [N] / 14 + 48 [S] /32+0.2)
%, The balance being Fe and inevitable impurities, and having a structure mainly composed of ferrite and bainite.
【請求項2】 C:0.065〜0.30%、Ti:
(48[N]/14+48[S]/32)超〜(48[N]/14+48[S]/32 +
0.1)%未満を含む請求項1に記載した部分加熱部の
耐食性に優れた鋼板。
2. C: 0.065 to 0.30%, Ti:
(48 [N] / 14 + 48 [S] / 32) More than (48 [N] / 14 + 48 [S] / 32 +
The steel sheet excellent in corrosion resistance of the partially heated part according to claim 1, which contains less than 0.1)%.
【請求項3】 請求項1又は2に記載した成分の他に、
更にP :0.01〜0.10%、Si:0.01〜
2.0%,Nb:0.01〜0.04%,Cr:0.1
〜1.0%,B:0.0002〜0.0020%,V:
0.01〜0.20%,Mo:0.01〜0.20%か
らなるAグループ、REM :0.0004〜0.0020
%,Ca:0.0004〜0.0020%からなるBグ
ループ、のうちから一種または2種以上の元素を含有す
る請求項1又は2に記載した部分加熱部の耐食性に優れ
た鋼板。
3. In addition to the components described in claim 1 or 2,
Further, P: 0.01 to 0.10%, Si: 0.01 to
2.0%, Nb: 0.01 to 0.04%, Cr: 0.1
-1.0%, B: 0.0002-0.0020%, V:
Group A consisting of 0.01 to 0.20%, Mo: 0.01 to 0.20%, REM: 0.0004 to 0.0020
%, Ca: The steel sheet having excellent corrosion resistance of the partially heated portion according to claim 1 or 2, which contains one or more elements from the group B consisting of 0.0004 to 0.0020%.
【請求項4】 請求項1〜3のいずれかに記載された鋼
成分を有する鋼片を仕上げ温度950℃〜Ar3点で熱間
圧延し、700〜600℃における滞在時間が5秒以下
で冷却し、550〜450℃で巻取ることを特徴とする
部分加熱部の耐食性に優れた鋼板の製造方法。
4. A slab having the steel component according to claim 1 is hot-rolled at a finishing temperature of 950 ° C. to 3 points of Ar, and a residence time at 700 to 600 ° C. is 5 seconds or less. A method for producing a steel sheet having excellent corrosion resistance in a partial heating part, comprising cooling and winding at 550 to 450 ° C.
JP18680596A 1996-06-26 1996-06-26 Steel plate excellent in corrosion resistance in partially heated zone and its production Pending JPH108197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18680596A JPH108197A (en) 1996-06-26 1996-06-26 Steel plate excellent in corrosion resistance in partially heated zone and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18680596A JPH108197A (en) 1996-06-26 1996-06-26 Steel plate excellent in corrosion resistance in partially heated zone and its production

Publications (1)

Publication Number Publication Date
JPH108197A true JPH108197A (en) 1998-01-13

Family

ID=16194902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18680596A Pending JPH108197A (en) 1996-06-26 1996-06-26 Steel plate excellent in corrosion resistance in partially heated zone and its production

Country Status (1)

Country Link
JP (1) JPH108197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111806A (en) * 2012-12-05 2014-06-19 Jfe Steel Corp Steel material having excellent alcohol corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111806A (en) * 2012-12-05 2014-06-19 Jfe Steel Corp Steel material having excellent alcohol corrosion resistance

Similar Documents

Publication Publication Date Title
JP4575995B2 (en) Steel pipe with excellent deformation characteristics
EP2692875B1 (en) Electroseamed steel pipe and process for producing same
US10767250B2 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP4788146B2 (en) Hot rolled steel sheet for low YR type ERW welded steel pipe excellent in aging resistance and method for producing the same
KR20040084807A (en) Hot-rolled steel strip for high strength electric resistance welding pipe and manufacturing method thereof
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
EP3653736A1 (en) Hot-rolled steel strip and manufacturing method
WO2014115548A1 (en) HOT-ROLLED STEEL PLATE FOR HIGH-STRENGTH LINE PIPE AND HAVING TENSILE STRENGTH OF AT LEAST 540 MPa
JP6137435B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
JP4802450B2 (en) Thick hot-rolled steel sheet with excellent HIC resistance and manufacturing method thereof
KR102002241B1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
WO2012008486A1 (en) Dual-phase structure oil well pipe and method for producing same
JPH04325657A (en) High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP4192109B2 (en) Method for producing high carbon steel rail with excellent ductility
JP4214043B2 (en) Method for producing high carbon steel rails with excellent wear resistance and ductility
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JP2003293075A (en) High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof
JP3214353B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JPH108197A (en) Steel plate excellent in corrosion resistance in partially heated zone and its production
JP4461589B2 (en) Manufacturing method of high yield strength steel with low yield ratio 780N / mm2 excellent in weld crack sensitivity
JP3945373B2 (en) Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics
JPH06340922A (en) Production of low yield ratio high tensile strength steel pipe