JPH108113A - Production of metallic ball - Google Patents

Production of metallic ball

Info

Publication number
JPH108113A
JPH108113A JP16164996A JP16164996A JPH108113A JP H108113 A JPH108113 A JP H108113A JP 16164996 A JP16164996 A JP 16164996A JP 16164996 A JP16164996 A JP 16164996A JP H108113 A JPH108113 A JP H108113A
Authority
JP
Japan
Prior art keywords
metal
powder
metallic
pieces
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16164996A
Other languages
Japanese (ja)
Inventor
Toshiyuki Osako
敏行 大迫
Takeshi Obara
剛 小原
Koichi Yokozawa
公一 横沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP16164996A priority Critical patent/JPH108113A/en
Publication of JPH108113A publication Critical patent/JPH108113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently produce nearly spherical metallic balls having a desired diameter with high dimensional accuracy by embedding a prescribed weight of metallic pieces into powder contg. a specific amt. of graphite powder and heating these metallic pieces together with the powder to melt the metallic powders and to spheroidize the metallic pieces by surface tension, then cooling the metallic balls. SOLUTION: Metallic materials, such as bar materials and plate materials, consisting of base metals or noble metals contg. gold or their alloys, are weighed and cut to form the prescribed weight of the metallic pieces. The metallic pieces are embedded into the powder contg. 30>=vol.%, more preferably about 50 to 100% graphite powder and others, such as ceramic powder, etc., stable at a high temp. The metallic pieces are then melted together with the powder by heating to the m.p. thereof or above. After the molten metal is spherodized by the surface tension, the molten metal is cooled. The metallic balls formed to the desired diameter are sieved and are taken out of the powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、所望の径の金属球
を製造するための簡易な方法に関し、より詳しくは、装
飾用材、半導体ろう材、配線用電極材などに用いるため
の真球に近い金属球を、寸法精度よくかつ効率よく製造
するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simple method for producing a metal sphere having a desired diameter, and more particularly, to a true sphere for use as a decorative material, a semiconductor brazing material, a wiring electrode material and the like. The present invention relates to a method for efficiently producing close metal balls with high dimensional accuracy.

【0002】[0002]

【従来の技術】従来、装飾用材、半導体用ろう材、配線
用電極材などに用いるための所望の寸法、重量を有する
金属球を製造するには、回転電極法、アトマイズ法など
の方法によっていた。
2. Description of the Related Art Conventionally, metal balls having desired dimensions and weight for use as decorative materials, brazing materials for semiconductors, electrode materials for wiring, and the like have been produced by methods such as a rotating electrode method and an atomizing method. .

【0003】[0003]

【発明が解決しようとする課題】しかし、上記いずれの
方法も得られる金属球の球形のバラツキが大きいため、
金属球をふるいで分級する工程を必要とし、また球径の
分布が広いため所望の径の球の収率がよくなかった。ま
た、ある寸法以上になると、重力の作用により真球とな
らず、いびつな金属球しか得られなかった。
However, since the metal balls obtained by any of the above methods have a large spherical variation,
A step of classifying metal balls by sieving was required, and the distribution of the ball diameters was wide, so that the yield of balls having a desired diameter was not good. In addition, when the size exceeds a certain size, the sphere does not become a true sphere due to the action of gravity, and only a distorted metal sphere is obtained.

【0004】また、凹部を多数有するカーボン又はセラ
ミックの治具の凹部内に金属の粉末を充填し、これを融
合させて金属球を製造する方法も提案されているが(特
公平7−91561号公報)、金属粉の製造や秤量に時
間、コストがかかり、また、特別な治具を必要としなけ
ればならなかった。
A method of manufacturing a metal ball by filling a metal powder in a concave portion of a carbon or ceramic jig having a large number of concave portions and fusing the metal powder has been proposed (Japanese Patent Publication No. Hei 7-91561). Publication), it takes time and cost to manufacture and weigh metal powder, and a special jig must be required.

【0005】そこで本発明は、所望の径の真球に近い金
属球を、特別な治具を必要とすることなく、寸法精度よ
くかつ効率よく製造するための簡易な金属球の製造方法
を提供することを目的とする。
Accordingly, the present invention provides a simple metal ball manufacturing method for manufacturing a metal ball close to a true sphere of a desired diameter with high dimensional accuracy and efficiency without requiring a special jig. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
の本発明の金属球の製造方法は、卑金属、もしくは、金
を含む貴金属の単体、または、これらの合金によってな
る金属材料を秤量して所定重量の金属片とし、この金属
片を黒鉛粉を30体積%以上含む粉体中に埋め、この粉
体とともに前記金属片をその融点以上に加熱して金属片
を溶融し、この溶融金属がその表面張力により球状化し
た後に冷却し、所望の径の金属球とすることを特徴とす
る。
In order to solve the above-mentioned problems, a method for manufacturing a metal sphere according to the present invention comprises weighing a base metal, a noble metal containing gold alone, or a metal material made of an alloy thereof. A metal piece having a predetermined weight is embedded in a powder containing 30% by volume or more of graphite powder, and the metal piece is heated together with the powder to a temperature equal to or higher than its melting point to melt the metal piece. It is characterized in that it is formed into a metal sphere having a desired diameter by cooling after spheroidizing by the surface tension.

【0007】[0007]

【発明の実施の形態】本発明において、卑金属、もしく
は、金や銀、白金族元素の貴金属の単体、または、これ
らの合金によってなる金属材料が、溶融するとその界面
に表面張力が生じるのことを利用するものである。従っ
て、溶融する金属であれば特に限定されないが、表面を
清浄に保つため、高温で黒鉛と反応を起こさないものが
望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, it is considered that a base material or a simple substance of a noble metal of gold, silver, or a platinum group element, or a metal material made of an alloy thereof, generates a surface tension at an interface thereof when melted. To use. Therefore, the material is not particularly limited as long as it is a melting metal. However, in order to keep the surface clean, a material that does not react with graphite at a high temperature is desirable.

【0008】金属材料を秤量して所定重量の金属片とす
るには、重量を秤量しながら行ってもよいが、金属材料
からなる一定径、一定厚さ、一定断面積を有する線材、
棒材、板材、もしくは条材などを一定長さ、もしくは一
定面積切断することにより均一な重量を有する金属片と
すると効率よい。このようにして従来の粉体を秤量する
方法に比べて極めて容易にかつ精度よく、一定重量の金
属片を得ることができるのである。金属材料の切断には
公知のシェア、はさみ、打ち抜き等を用いることができ
る。
In order to weigh a metal material to obtain a metal piece having a predetermined weight, the metal piece may be weighed, but a wire made of a metal material having a constant diameter, a constant thickness, and a constant cross-sectional area may be used.
It is efficient to cut a bar, a plate, a strip, or the like into a metal piece having a uniform weight by cutting it into a fixed length or a fixed area. In this way, a metal piece having a constant weight can be obtained extremely easily and accurately as compared with the conventional method of weighing powder. Known shears, scissors, punching, and the like can be used for cutting the metal material.

【0009】金属片は溶融時に表面張力によって球状化
するので、金属片はアスペクト比が大きくても構わない
が、所望の径に近い径をもつ円筒形の金属片が作製でき
れば、さらに望ましい。
Since the metal piece becomes spherical due to surface tension at the time of melting, the metal piece may have a large aspect ratio. However, it is more preferable if a cylindrical metal piece having a diameter close to a desired diameter can be produced.

【0010】金属片を黒鉛粉を30体積%以上含む粉体
中に埋めるのは、加熱時に金属片を保持し、加熱時には
溶融金属の自重による変形をできるだけ抑制する支持体
として機能させるためである。また、粉体は加熱時に金
属片周囲に非酸化性雰囲気をつくるので、酸化を防止さ
せるためでもある。
The purpose of embedding the metal pieces in a powder containing 30% by volume or more of graphite powder is to hold the metal pieces at the time of heating and to function as a support that suppresses deformation of the molten metal by its own weight as much as possible at the time of heating. . In addition, the powder creates a non-oxidizing atmosphere around the metal piece at the time of heating, which is also to prevent oxidation.

【0011】黒鉛粉を用いるのは、黒鉛は金などの金属
に対して濡れ性が低く金属球の形状保持効果があるから
である。粉体中の黒鉛粉を30体積%以上としたのは、
これより少ないとこの形状保持効果が低下し、得られる
金属球が不正な形状になりやすいからである。より好ま
しくは黒鉛粉が50体積%以上100%以下含まれる粉
体を用いるのがよい。
The reason why graphite powder is used is that graphite has a low wettability to metals such as gold and has an effect of retaining the shape of metal spheres. The reason why the graphite powder in the powder is 30% by volume or more is that
If the amount is less than this, the shape holding effect is reduced, and the obtained metal sphere tends to have an incorrect shape. More preferably, a powder containing 50% by volume or more and 100% or less of graphite powder is used.

【0012】取り扱い時の作業性を高めるために、粉体
にはアルミナ、マグネシア等のセラミックス粉など、黒
鉛粉以外の粉体を上記条件内で含有させてもよい。黒鉛
粉以外の粉体は、溶融温度で金属材料や黒鉛と反応した
り、液化、固化、蒸発したりしないものであれば材質は
特に限定されない。粒径も特に限定されないが、使用す
る黒鉛粉と同程度の粒度であれば均一に混合できて好ま
しい。
In order to enhance the workability during handling, the powder may contain a powder other than graphite powder, such as ceramic powder such as alumina or magnesia, within the above conditions. The material of the powder other than the graphite powder is not particularly limited as long as it does not react with a metal material or graphite at the melting temperature, or liquefy, solidify, or evaporate. Although the particle size is not particularly limited, it is preferable that the particle size is approximately the same as that of the graphite powder to be used because uniform mixing can be achieved.

【0013】金属片を粉体中に埋めるには、粉体を黒鉛
製やセラミック製などの耐熱性を有する任意形状の容器
に敷き、その上に準備した金属片を配置し、さらに上か
ら粉体をかぶせる等の方法により金属片を粉体中に埋め
ればよい。このとき粉体の性状によっては、突き固めた
り、上部から圧力を加えたりして粉体の充填密度を高め
てもよい。
In order to embed the metal pieces in the powder, the powder is laid in a heat-resistant container made of graphite or ceramic or the like, and the prepared metal pieces are placed on top of the powder. The metal piece may be embedded in the powder by a method such as covering the body. At this time, depending on the properties of the powder, the packing density of the powder may be increased by squeezing or applying pressure from above.

【0014】金属片の粉体中への配置方法は、溶融後に
金属片同士が接触しない程度の間隔であればよい。平面
的でもよいが、3次元的に配置してもよく、トレー状容
器に平面的に配置したものを数層に重ねてもよい。
The metal pieces may be arranged in the powder as long as the metal pieces do not contact each other after melting. It may be planar, but may be arranged three-dimensionally, or may be arranged in a tray-like container two-dimensionally in several layers.

【0015】このようにして金属片を黒鉛粉を含む粉体
に埋めた状態で金属の融点以上に加熱する。粉体ととも
に金属片をその融点以上に加熱するには、公知の熱処理
炉を用いることができる。大気中などの酸化雰囲気で加
熱しても、黒鉛が燃焼してCO雰囲気を形成し、金属の
酸化は防止されるが、大気中では黒鉛粉が早く消耗する
ので、非酸化性雰囲気で加熱する方が好ましい。
The metal piece is heated to a temperature equal to or higher than the melting point of the metal while the metal piece is buried in the powder containing the graphite powder. In order to heat the metal piece together with the powder to a temperature equal to or higher than its melting point, a known heat treatment furnace can be used. Even when heated in an oxidizing atmosphere such as in the air, graphite burns to form a CO atmosphere and metal oxidation is prevented. However, graphite powder is quickly consumed in the air, so it is heated in a non-oxidizing atmosphere. Is more preferred.

【0016】金属片の融点以上の温度になれば金属片は
溶融し、その表面張力によりひとつの金属片ごとに球状
化する。このとき黒鉛粉は金属の球状化を妨げることが
ないので、良好な形状を有する溶融金属球が形成される
ので、これを冷却すれば所望の径の金属球を得ることが
できる。冷却後は、金属球が粉体中に埋没しているが、
金属球と粉体とは篩分けにより極めて容易に分離するこ
とができる。
When the temperature of the metal piece reaches a temperature equal to or higher than the melting point, the metal piece is melted, and each metal piece becomes spherical due to its surface tension. At this time, the graphite powder does not hinder the spheroidization of the metal, so that a molten metal sphere having a good shape is formed. By cooling this, a metal sphere having a desired diameter can be obtained. After cooling, the metal spheres are buried in the powder,
The metal spheres and the powder can be very easily separated by sieving.

【0017】金属球の大きさは加熱前の金属片の重量で
決まるので、従来の凹部を持つ治具内で金属粉末を加熱
する場合のように、金属球の大きさによって複数の治具
を用意する必要もない。
Since the size of the metal sphere is determined by the weight of the metal piece before heating, a plurality of jigs are required depending on the size of the metal sphere, as in the case of heating metal powder in a conventional jig having a concave portion. There is no need to prepare.

【0018】[0018]

【実施例】以下、本発明による金属球の製造方法を代表
的な実施例により説明する。 実施例1 ・・・ 球径0.5mmの金属球を作るた
め、Au-10%Cu合金の0.3mm線材を、各0.
93mmの長さに500個切り出して金属片とした。次
に、黒鉛製容器中に一次粒径50nmの黒鉛粉を10m
m厚に敷き詰め、この黒鉛粉上に、前記沢山の金属片を
互いが接しないように配置し、さらにその上から大凡1
0mm厚に前記と同じ黒鉛粉をかぶせ、前記金属片を埋
めた。この黒鉛製容器を電気炉内に入れ、窒素ガス雰囲
気内で1100℃、15分保持して金属片を溶融し、表
面張力により溶融した金属を球状化させ、同雰囲気内で
冷却、固化し、金属球を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a metal sphere according to the present invention will be described with reference to typical examples. Example 1 In order to form a metal sphere having a sphere diameter of 0.5 mm, a 0.3 mm wire of Au-10% Cu alloy was used for 0.1 mm each.
500 pieces were cut out to a length of 93 mm to obtain metal pieces. Next, a graphite powder having a primary particle size of 50 nm was placed in a graphite container for 10 m.
m, and a large number of the metal pieces are arranged on the graphite powder so that they do not touch each other.
The same graphite powder as described above was covered with a thickness of 0 mm to fill the metal pieces. This graphite container was placed in an electric furnace, and kept at 1100 ° C. for 15 minutes in a nitrogen gas atmosphere to melt the metal pieces, to make the molten metal spheroidized by surface tension, to cool and solidify in the same atmosphere, A metal ball was obtained.

【0019】得られた金属球500個を篩で分級した結
果、球径0.45〜0.55mmのものが99%、0.
55mmを超えるものが1%あった(個数基準。以下同
様)。
As a result of classifying 500 obtained metal spheres with a sieve, 99% of the spheres having a diameter of 0.45 to 0.55 mm had a diameter of 0.45 to 0.55 mm.
1% exceeded 55 mm (number basis; the same applies hereinafter).

【0020】実施例2 ・・・ 球径0.7mmの金属
球をつくるために、実施例1と同じ線材を2.54mm
の長さに500個切り出して金属片とした他は、実施例
1と同様の方法で金属球を作製した。得られた金属球5
00個を篩で分級した結果、球径0.65〜0.75m
mのものが98%、0.75mmを超えるものが1%、
0.65mm未満のものが1%であった。
Example 2 In order to form a metal ball having a ball diameter of 0.7 mm, the same wire rod as in Example 1 was used for 2.54 mm.
A metal sphere was produced in the same manner as in Example 1 except that 500 pieces were cut out into lengths to obtain metal pieces. The obtained metal sphere 5
As a result of classifying 00 pieces with a sieve, a sphere diameter of 0.65 to 0.75 m
m is 98%, 0.7% more than 1 mm is 1%,
1% was less than 0.65 mm.

【0021】実施例3 ・・・ 球径1.5mmの表1
に示す材料の金属球を作るため、各純金属(いずれも純
度99.99重量%)の1mm線材を、各2.2mmの
長さに500個切り出して金属片とした他は、実施例1
と同様の方法で金属球を作製した。得られた各金属球を
篩で分級した結果、表1のようになった。
Example 3... Table 1 with a sphere diameter of 1.5 mm
Example 1 was repeated except that 500 pieces of 1 mm wire of each pure metal (each having a purity of 99.99% by weight) were cut out to a length of 2.2 mm to make metal spheres of the materials shown in FIG.
A metal sphere was produced in the same manner as in Example 1. As a result of classifying the obtained metal balls with a sieve, the results are as shown in Table 1.

【0022】[0022]

【表1】 球径(単位:mm) 材料 1.0未満 1.0〜2.0 2.0より大 −−−−−−−−−−−−−−−−−−−−−−−−−−− 金 2% 93% 5% 銀 1% 95% 4% 銅 2% 94% 4%[Table 1] Spherical diameter (unit: mm) Material Less than 1.0 1.0 to 2.0 Greater than 2.0----------------- -------- Gold 2% 93% 5% Silver 1% 95% 4% Copper 2% 94% 4%

【0023】実施例4 ・・・ 球径2mmの表2に示
す材料の金属球を作るため、各純金属(純度99.99
重量%)、または、金−10重量%銅合金の厚さ1mm
の板材を、直径0.23mmに打ち抜いて金属片とした
他は、実施例1と同様の方法で金属球を作製した。得ら
れた各金属球を篩で分級した結果、表2のようになっ
た。
Example 4 In order to produce metal spheres of the materials shown in Table 2 having a sphere diameter of 2 mm, each pure metal (purity 99.99) was prepared.
Weight%) or 1-10 mm thick gold-10% copper alloy
A metal ball was produced in the same manner as in Example 1, except that the plate material was punched out to a metal piece of 0.23 mm in diameter. As a result of classifying the obtained metal spheres with a sieve, the results are as shown in Table 2.

【0024】[0024]

【表2】 球径(単位:mm) 材料 1.5未満 1.5〜2.5 2.5より大 −−−−−−−−−−−−−−−−−−−−−−−−−−− 金 2% 92% 6% 銀 4% 90% 6% 銅 3% 91% 6% 金-10wt%銅 2% 90% 8%[Table 2] Sphere diameter (unit: mm) Material Less than 1.5 1.5 to 2.5 Greater than 2.5 ------------------------------------ ------ Gold 2% 92% 6% Silver 4% 90% 6% Copper 3% 91% 6% Gold-10wt% Copper 2% 90% 8%

【0025】実施例5 ・・・ 黒鉛粉とアルミナ粉を
体積にして40%/60%に配合した粉体中に、実施例
1と同じ0.93mm長さの金属片を埋め、大気中で加
熱し金属球を作製した。得られた金属球各500個を篩
で分級した結果、0.45〜0.55mmのものが92
%、0.55mmを超えるものが8%であった。
Example 5 A metal piece of 0.93 mm length as in Example 1 was buried in a powder obtained by mixing graphite powder and alumina powder in a volume ratio of 40% / 60%. Heated to produce a metal sphere. As a result of classifying each of the obtained 500 metal spheres with a sieve, 92 to 0.45 to 0.55 mm were obtained.
%, Those exceeding 0.55 mm were 8%.

【0026】比較例1 ・・・ 黒鉛粉とアルミナ粉を
体積にして20%/80%に配合した以外は実施例5と
同様の方法で金属球を作製した。得られた金属球各50
0個を篩で分級した結果、0.45〜0.55mmのも
のが34%、0.45mm未満のものが23%、0.5
5mmを超えるものが43%と、歩留まりが著しく低下
した。また、実施例5と比較して黒鉛粉量が少ないため
加熱処理中に黒鉛粉が燃焼して大部分が消耗し、得られ
た金属球の表面には酸化物が生じ、形状がいびつになっ
た。
Comparative Example 1 A metal sphere was prepared in the same manner as in Example 5 except that graphite powder and alumina powder were mixed in a volume ratio of 20% / 80%. 50 obtained metal spheres
As a result of classifying 0 pieces with a sieve, 34% of the pieces having a size of 0.45 to 0.55 mm, 23% of those having a size of less than 0.45 mm, 0.5%
The yield was remarkably reduced to 43% of those exceeding 5 mm. Further, since the amount of graphite powder was smaller than that of Example 5, the graphite powder burned during the heat treatment and was largely consumed, and an oxide was generated on the surface of the obtained metal sphere, resulting in an irregular shape. Was.

【0027】[0027]

【発明の効果】本発明の金属球の製造方法によれば、簡
易な方法により、所望の径の真球に近い金属球を、寸法
精度よくかつ効率よく製造することができる。
According to the method for producing metal spheres of the present invention, metal spheres close to true spheres having a desired diameter can be produced with good dimensional accuracy and efficiency by a simple method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属材料を秤量して所定重量の金属片と
し、該金属片を黒鉛粉を30体積%以上含む粉体中に埋
め、該粉体とともに該金属片をその融点以上に加熱して
該金属片を溶融し、該溶融金属がその表面張力により球
状化した後に冷却し、所望の径の金属球とすることを特
徴とする金属球の製造方法。
1. A metal material is weighed to obtain a metal piece having a predetermined weight, the metal piece is buried in a powder containing 30% by volume or more of graphite powder, and the metal piece is heated together with the powder to a melting point or more. And melting the metal piece by spheroidizing the molten metal by surface tension thereof, followed by cooling to obtain a metal sphere having a desired diameter.
【請求項2】 金属材料が貴金属またはその合金である
ことを特徴とする請求項1に記載の金属球の製造方法。
2. The method according to claim 1, wherein the metal material is a noble metal or an alloy thereof.
【請求項3】 金属材料が金または金合金であることを
特徴とする請求項1に記載の金属球の製造方法。
3. The method according to claim 1, wherein the metal material is gold or a gold alloy.
JP16164996A 1996-06-21 1996-06-21 Production of metallic ball Pending JPH108113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16164996A JPH108113A (en) 1996-06-21 1996-06-21 Production of metallic ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16164996A JPH108113A (en) 1996-06-21 1996-06-21 Production of metallic ball

Publications (1)

Publication Number Publication Date
JPH108113A true JPH108113A (en) 1998-01-13

Family

ID=15739209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16164996A Pending JPH108113A (en) 1996-06-21 1996-06-21 Production of metallic ball

Country Status (1)

Country Link
JP (1) JPH108113A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290746B1 (en) 1998-11-26 2001-09-18 Sumitomo Special Metals Co., Ltd. Method of producing metal ball and semiconductor package
KR101338699B1 (en) * 2007-02-08 2013-12-06 서울시립대학교 산학협력단 Method for manufacturing metal ball
CN108788169A (en) * 2018-07-02 2018-11-13 王尚木 A kind of device and method of the high-volume low cost production small ball of noble metal standard

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290746B1 (en) 1998-11-26 2001-09-18 Sumitomo Special Metals Co., Ltd. Method of producing metal ball and semiconductor package
KR101338699B1 (en) * 2007-02-08 2013-12-06 서울시립대학교 산학협력단 Method for manufacturing metal ball
CN108788169A (en) * 2018-07-02 2018-11-13 王尚木 A kind of device and method of the high-volume low cost production small ball of noble metal standard

Similar Documents

Publication Publication Date Title
JP2008537763A (en) Metal composite material and method of forming the same
JPH06244330A (en) Heat-controlling composite material used in electronic circuit device, and manufacture thereof
JP3763006B2 (en) Copper tungsten alloy and method for producing the same
US4452652A (en) Electrical contact materials and their production method
JPH108113A (en) Production of metallic ball
CN100387378C (en) Electric contactor and alloy for electrode, preparing method thereof
JP2004232084A (en) Method of producing micro metallic ball
JPH0237402B2 (en)
JPH06192772A (en) Use of copper material containing pore as semiprocessed goods to be cut
US5878322A (en) Heat-dissipating substrate for micro-electronic devices and fabrication method
JPS605804A (en) Production of fine metallic ball
Yasuda et al. Fabrication of metallic porous media by semisolid processing using laser irradiation
US6290746B1 (en) Method of producing metal ball and semiconductor package
JP2021086937A (en) Heat sink material and method for manufacturing the same
JPH0791561B2 (en) Method of manufacturing metal balls
JPH108164A (en) Production of aluminum composite with low thermal expansion and high thermal conductivity, and its composite
JPH0525563A (en) Production of sintered zn-mn alloy
JPH1025502A (en) Production of fine metal ball
JP2004124259A (en) METHOD FOR PRODUCING W-Cu COMPOSITE MATERIAL THIN SHEET
JPS605801A (en) Production of fine metallic ball
JP2608926B2 (en) Method for producing Au-Sn brazing filler metal
JPS59190304A (en) Manufacture of fine sphere of amorphous metal
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JP5688715B2 (en) Metal sphere forming jig, metal sphere forming method using the same, and metal sphere obtained by this forming method
JPH09324229A (en) Production of titanium carbide particle dispersion type metal-matrix composite material