JPH1074763A - Copper wiring and manufacturing method - Google Patents

Copper wiring and manufacturing method

Info

Publication number
JPH1074763A
JPH1074763A JP24926896A JP24926896A JPH1074763A JP H1074763 A JPH1074763 A JP H1074763A JP 24926896 A JP24926896 A JP 24926896A JP 24926896 A JP24926896 A JP 24926896A JP H1074763 A JPH1074763 A JP H1074763A
Authority
JP
Japan
Prior art keywords
copper
thin film
cvd
film
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24926896A
Other languages
Japanese (ja)
Other versions
JP3261317B2 (en
Inventor
Seiichi Takahashi
誠一 高橋
Masaaki Murata
真朗 村田
Toshio Kusumoto
淑郎 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP24926896A priority Critical patent/JP3261317B2/en
Publication of JPH1074763A publication Critical patent/JPH1074763A/en
Application granted granted Critical
Publication of JP3261317B2 publication Critical patent/JP3261317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of obtaining a copper wiring of high reliability at a low cost. SOLUTION: When copper material is filled into recessed parts 131 and 132 cut in a substrate 10 for the formation of a copper wiring, a copper CVD thin film 16 is formed on an insulating film 12 through a CVD method and turned fluid by a heat-treatment, and then a copper sputtered thin film 20 is formed. The copper thin film 16 formed in the recessed parts 131 and 132 is turned fluid by a thermal treatment, thereby the copper sputtered thin film 20 can be deposited on the recessed parts 181 and 182 each possessed of a wide opening and a narrow base, so that no overhang is formed, and thus no void is formed inside copper wirings 251 and 252 . As the copper sputtered thin film 20 is not expensive, the copper wirings 251 and 252 can be lessened in cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁膜表面の微細
な凹部に銅材料を充填して銅配線を形成する技術にかか
り、特に、スパッタリング法を用いて銅配線を形成する
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for forming a copper wiring by filling a fine concave portion on a surface of an insulating film with a copper material, and more particularly to a technique for forming a copper wiring by using a sputtering method.

【0002】[0002]

【従来の技術】現在、半導体集積回路では、加工の容易
性等から、主にアルミニウム(Al)を主成分とする電極
配線材料が使用されている。
2. Description of the Related Art At present, an electrode wiring material mainly containing aluminum (Al) is used in a semiconductor integrated circuit because of its easiness in processing.

【0003】しかし、アルミニウムで構成した電極配線
は、エレクトロマイグレーションやストレスマイグレー
ションに対する耐性が弱いため、半導体集積回路の微細
化が進むに連れ、不良が多発して問題となっている。
However, the electrode wiring made of aluminum has a low resistance to electromigration and stress migration, and as the size of the semiconductor integrated circuit advances, the number of defects increases, which is a problem.

【0004】そこで従来より、アルミニウムを主成分と
する電極配線材料に替え、エレクトロマイグレーション
やストレスマイグレーションに対する耐性が高いタング
ステン(W)やモリブデン(Mo)を用いることが提案され
ている。しかし、それらの材料はアルミニウムに比較し
て抵抗値が大きいため、微細な配線パターンに適用した
場合には、大きな電圧降下による信号遅延が新たな問題
として生じている。
Therefore, it has been conventionally proposed to use tungsten (W) or molybdenum (Mo) having high resistance to electromigration and stress migration instead of the electrode wiring material containing aluminum as a main component. However, since these materials have a large resistance value as compared with aluminum, a signal delay due to a large voltage drop has arisen as a new problem when applied to fine wiring patterns.

【0005】その解決のため、抵抗値が小さく、しかも
エレクトロマイグレーション耐性やストレスマイグレー
ション耐性に優れた銅(Cu)を電極配線材料として用い
ることが検討されているが、銅薄膜はドライエッチング
によるパターン加工が行えないことから、現在、CMP
(化学的機械研磨法)を用いた銅配線製造方法が有望視さ
れるに到っている。
In order to solve the problem, the use of copper (Cu) having a small resistance value and excellent electromigration resistance and stress migration resistance as an electrode wiring material has been studied. Can not be done, CMP is currently
Promising is a copper wiring manufacturing method using (chemical mechanical polishing method).

【0006】そのようなCMP法を用いた従来技術の銅
配線製造工程を説明する。図12(a)の符号111は配
線対象物であり、基板110と、該基板110上に形成
された絶縁膜112とを有している。その絶縁膜112
には、ドライエッチング法によって凹部1131、11
2が形成されており、その表面に、拡散防止膜(バリア
メタル)114が全面成膜されている。
A conventional copper wiring manufacturing process using such a CMP method will be described. Reference numeral 111 in FIG. 12A denotes a wiring target, which includes a substrate 110 and an insulating film 112 formed on the substrate 110. The insulating film 112
The recesses 113 1 , 11 1 are formed by dry etching.
3 2 are formed on its surface, the diffusion preventing film (barrier metal) 114 are entirely deposited.

【0007】この配線対象物111上にCVD法によっ
て銅CVD薄膜116を形成した後(同図(b))、CMP
法によって表面を研磨すると、凹部1131、1132
が銅CVD薄膜116を構成していた銅材料で充填さ
れ、銅配線1251、1252が形成される。
After a copper CVD thin film 116 is formed on the wiring object 111 by the CVD method (FIG. 1B),
When the surfaces are polished by the method, the insides of the concave portions 113 1 and 113 2 are filled with the copper material constituting the copper CVD thin film 116, and copper wirings 125 1 and 125 2 are formed.

【0008】そのようなCMP法による銅配線製造方法
の際にCVD法を用いるのは、CVD法によれば銅薄膜
を等方的に成長させられるため、凹部1131、1132
内を(理論的には)完全に銅材料で充填させられるからで
ある。
When the CVD method is used in the method of manufacturing the copper wiring by the CMP method, the concave portions 113 1 and 113 2 are used because the copper thin film can be grown isotropically by the CVD method.
This is because the inside is (theoretically) completely filled with the copper material.

【0009】銅スパッタ薄膜の場合には、図13に示す
ように、基板130上の絶縁物132に形成された凹部
1331、1332の開口端で、銅スパッタ薄膜がオーバ
ーハング1401、1402を生じ、各凹部1331、1
332内が銅材料で充填される前にその部分が閉塞し、
特に、高アスペクト比の凹部1331内には、空洞14
1が発生してしまう。
In the case of a copper sputtered thin film, as shown in FIG. 13, the copper sputtered thin film overhangs 140 1 , 140 at the opening ends of the recesses 133 1 , 133 2 formed in the insulator 132 on the substrate 130. 2 and each recess 133 1 , 1
33 in 2 closed its portion before being filled with copper material,
In particular, the cavity 14 1 is located in the recess 133 1 having a high aspect ratio.
1 occurs.

【0010】このようなオーバーハング1401、14
2や空洞141は、銅スパッタ薄膜だけではなく、ス
パッタリング法によってアルミニウム薄膜を形成する場
合にも生じ得るが、アルミニウムスパッタ薄膜の場合
は、400℃〜450℃という低温で加熱処理を行うこ
とで容易に流動化し、空洞内部をアルミニウム材料で充
填できることが知られている(リフロー技術)。
[0010] Such overhangs 140 1 , 14
0 2 and cavity 141 is not only copper sputtered thin film, but also can occur in the case of forming the aluminum thin film by sputtering, in the case of aluminum sputtered film, heat treatment is performed at a low temperature of 400 ° C. to 450 ° C. It is known that it can be easily fluidized and the interior of the cavity can be filled with an aluminum material (reflow technology).

【0011】ところが、銅スパッタ薄膜の場合には、ア
ルミニウムスパッタ薄膜と異なって、熱処理を行っても
容易には流動化しない。例えば、TiN膜上に形成され
た銅スパッタ薄膜を1.0Torrの水素雰囲気下、450
℃の熱処理を30分間行っても流動化は観察されず、従
って、1.5を超える高アスペクト比の凹部内は銅スパ
ッタ薄膜の銅材料で充填することができなかった。
However, in the case of the copper sputtered thin film, unlike the aluminum sputtered thin film, it does not easily fluidize even if heat treatment is performed. For example, a copper sputtered thin film formed on a TiN film is treated under a hydrogen atmosphere of 1.0 Torr under 450
No fluidization was observed even after a heat treatment of 30 ° C. for 30 minutes, so that the recesses having a high aspect ratio exceeding 1.5 could not be filled with the copper material of the copper sputtered thin film.

【0012】このように、従来技術では高アスペクト比
の凹部内を銅スパッタ薄膜で充填させることができない
ため、微細な細溝等の凹部は、CVD法によって銅CV
D薄膜を形成して充填せざるを得なかった。
As described above, in the prior art, the inside of the concave portion having a high aspect ratio cannot be filled with the copper sputtered thin film.
D thin film had to be formed and filled.

【0013】しかしながら銅CVD薄膜の原料は、熱や
水分に対して不安定であり、分解し易いという問題があ
る。また、成膜条件によっては膜中に不純物が多く、信
頼性が低くなる場合もある。
However, there is a problem that the raw material of the copper CVD thin film is unstable to heat and moisture and is easily decomposed. Further, depending on the film formation conditions, there are many impurities in the film, and the reliability may be low.

【0014】更に、銅CVD薄膜を製造するための原料
ガスは高価であり、しかも、CVD法による銅薄膜の成
長速度はスパッタリング法の約1/10程度と遅いた
め、効率が悪く、銅配線のコスト高を招いていた。
Further, the raw material gas for producing the copper CVD thin film is expensive, and the growth rate of the copper thin film by the CVD method is as slow as about 1/10 of that of the sputtering method. High costs were incurred.

【0015】[0015]

【発明が解決しようとする課題】本発明は、上記従来技
術の不都合を解決するために創作されたもので、その目
的は、スパッタリング法を用いて銅配線を形成できる技
術を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages of the prior art, and has as its object to provide a technique capable of forming a copper wiring by using a sputtering method. .

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明方法は、基板上に形成され、凹
部が設けられた絶縁膜上に銅薄膜を形成し、前記凹部を
銅材料で充填して銅配線を形成する銅配線製造方法にお
いて、CVD法によって銅を成長させて銅CVD薄膜を
形成し、熱処理を行って前記銅CVD薄膜を流動化さ
せ、前記凹部上の銅CVD薄膜に、底面が狭く、開口部
が広い窪みを形成した後、スパッタリング法によって銅
スパッタ薄膜を形成し、前記凹部内を、前記銅CVD薄
膜の銅材料と前記銅スパッタ薄膜の銅材料とで充填する
ことを特徴とする。
According to a first aspect of the present invention, there is provided a method of forming a thin copper film on an insulating film formed on a substrate and provided with a concave portion. In a copper wiring manufacturing method of forming a copper wiring by filling with a copper material, a copper CVD thin film is formed by growing copper by a CVD method, and heat treatment is performed to fluidize the copper CVD thin film, thereby forming copper on the concave portion. After forming a recess having a narrow bottom and a wide opening in the CVD thin film, a copper sputtered thin film is formed by a sputtering method, and the inside of the recess is filled with the copper material of the copper CVD thin film and the copper material of the copper sputtered thin film. It is characterized by filling.

【0017】この場合、請求項2記載の発明方法のよう
に、前記CVD法による銅の成長を、前記凹部内の側面
に形成される銅CVD薄膜同士が接触する前に停止させ
るとよい。
In this case, it is preferable that the growth of copper by the CVD method is stopped before the copper CVD thin films formed on the side surfaces in the concave portion come into contact with each other, as in the method according to the second aspect of the present invention.

【0018】また、請求項1又は請求項2のいずれか1
項記載の銅配線製造方法については、請求項3記載の発
明方法のように、前記銅CVD薄膜の形成と熱処理とを
繰り返し行うとよい。
Further, any one of claims 1 and 2
In the method for producing a copper wiring described in the above item, the formation of the copper CVD thin film and the heat treatment may be repeatedly performed as in the method of the present invention.

【0019】更に、請求項1乃至請求項3のいずれか1
項記載の銅配線製造方法については、請求項4記載の発
明方法のように、前記基板上に拡散防止膜を形成する工
程を設けてもよい。
Further, any one of claims 1 to 3
In the method of manufacturing a copper wiring described in the above item, a step of forming a diffusion prevention film on the substrate may be provided as in the method of the present invention.

【0020】このような請求項1乃至請求項4のいずれ
か1項記載の銅配線製造方法については、請求項5記載
の発明方法のように、前記銅CVD薄膜の厚みよりも前
記銅スパッタ薄膜の厚みの方を厚くさせることができ
る。
In the method of manufacturing a copper wiring according to any one of the first to fourth aspects, the copper sputtered thin film is thinner than the copper CVD thin film as in the method of the fifth invention. Can be made thicker.

【0021】更にまた、請求項1乃至請求項5のいずれ
か1項記載の銅配線製造方法については、請求項6記載
の発明方法のように、前記凹部内に充填された銅材料を
残し、他の部分の銅材料を化学的機械研磨法で除去し、
前記凹部内に充填された銅材料で銅配線を形成すること
ができる。
Further, in the method of manufacturing a copper wiring according to any one of the first to fifth aspects, the copper material filled in the recess is left as in the method of the invention according to the sixth aspect, The other part of the copper material is removed by chemical mechanical polishing,
A copper wiring can be formed with the copper material filled in the concave portion.

【0022】他方、請求項7記載の発明装置は、基板上
の絶縁膜に設けられた凹部内に銅材料が充填されて成る
銅配線であって、前記銅配線は、CVD法によって形成
され、熱処理により流動化された銅CVD薄膜の銅材料
と、その流動化された銅CVD薄膜上にスパッタリング
法によって形成された銅スパッタ薄膜の銅材料とを含む
ことを特徴とする。
On the other hand, the apparatus according to the present invention is a copper wiring in which a copper material is filled in a concave portion provided in an insulating film on a substrate, wherein the copper wiring is formed by a CVD method. It is characterized by including a copper material of a copper CVD thin film fluidized by a heat treatment and a copper material of a copper sputtered thin film formed by a sputtering method on the fluidized copper CVD thin film.

【0023】一般に、銅薄膜の成長状態には、等方的な
成長と非等方的な成長とがあるが、上述したように、微
細な凹部内を銅材料で充填する際には、等方的に成長す
るCVD技術が用いられている。
Generally, the growth state of the copper thin film includes isotropic growth and anisotropic growth. As described above, when the inside of the fine concave portion is filled with the copper material, the growth state is the same. Anisotropically grown CVD techniques have been used.

【0024】他方、金属薄膜の形成に広く用いられてい
るスパッタリング法は、非等方的な成長であり、ターゲ
ットから飛来してきた金属粒子が凹部開口端に付着しや
すく、そのため形成されるオーバーハングによる問題
は、アルミニウムスパッタ薄膜ではリフローによって解
決されている。
On the other hand, a sputtering method widely used for forming a metal thin film is anisotropic growth, and metal particles flying from a target are liable to adhere to the opening end of the concave portion. Is solved by reflow in the aluminum sputtered thin film.

【0025】しかし、銅の融点は、例えばバルク状態で
は1060℃と高温であり、銅スパッタ薄膜はアルミニ
ウムスパッタ薄膜と異なって、加熱しても簡単には流動
化しないため、リフロー技術を適用できないと考えられ
ていた。
However, the melting point of copper is as high as 1060 ° C. in a bulk state, for example, and a copper sputtered thin film, unlike an aluminum sputtered thin film, does not easily flow even when heated. Was thought.

【0026】しかしながら本発明の発明者等は、CVD
法により銅を等方的(コンフォーマル)に成長させて銅C
VD薄膜を形成した場合には、その銅CVD薄膜は、6
00℃以下の低温の熱処理で容易に流動化することを見
出した。
However, the inventors of the present invention have proposed that
Copper isotropically grown (conformal) by the
When a VD thin film is formed, the copper CVD thin film
It has been found that fluidization can be easily achieved by heat treatment at a low temperature of 00 ° C. or lower.

【0027】ところで、絶縁膜上に形成された微細な凹
部の側面は、底面と略垂直になっており、そのため、ス
パッタリング法を用いて金属薄膜を形成すると、オーバ
ーハングによって開口端部が閉塞してしまう。従って、
底面が狭く、開口部が広い窪み上に銅スパッタ薄膜を形
成させれば、窪みの開口部分は閉塞せず、内部に空洞を
形成させずに済むと考えられる。
By the way, the side surface of the fine concave portion formed on the insulating film is substantially perpendicular to the bottom surface. Therefore, when a metal thin film is formed by the sputtering method, the opening end is closed by overhang. Would. Therefore,
It is thought that if a copper sputtered thin film is formed on a dent having a narrow bottom and a wide opening, the opening of the dent will not be closed and a cavity will not be formed inside.

【0028】そこで、基板上の凹部を有する絶縁膜上に
銅薄膜を形成し、その凹部内を銅材料で充填して銅配線
を形成する際、先ず、CVD法によって銅を成長させて
銅CVD薄膜を形成し、熱処理を行って銅CVD薄膜を
流動化させた。流動化後の凹部には、底面が狭く、開口
部が広い窪みが形成された。その上に銅スパッタ薄膜を
形成したところ、その窪み内を銅スパッタ薄膜で充填す
ることができた。この場合、凹部内には、下層に銅CV
D薄膜が位置し、その上に銅スパッタ薄膜が形成されて
おり、凹部内はそれらの銅材料で充填されている。
Therefore, when a copper thin film is formed on an insulating film having a concave portion on a substrate, and the concave portion is filled with a copper material to form a copper wiring, first, copper is grown by a CVD method to form a copper CVD film. A thin film was formed, and heat treatment was performed to fluidize the copper CVD thin film. In the recess after fluidization, a recess having a narrow bottom and a wide opening was formed. When a copper sputtered thin film was formed thereon, the inside of the depression could be filled with the copper sputtered thin film. In this case, copper CV is provided in the lower layer in the recess.
The D thin film is located on which the copper sputtered thin film is formed, and the inside of the concave portion is filled with the copper material.

【0029】但し、CVD法による銅の成長の際に、凹
部内の側面に形成される銅CVD薄膜同士が接触するま
で反応を進めると、接触部分で閉塞し、凹部内に空洞が
できてしまう。この空洞は熱処理によって除去できない
ので、凹部内が閉塞する前に銅の成長を停止させ、銅C
VD薄膜の流動化を行うのが好ましい。
However, during the growth of copper by the CVD method, if the reaction proceeds until the copper CVD thin films formed on the side surfaces in the recess come into contact with each other, the contact portion is closed and a cavity is formed in the recess. . Since this cavity cannot be removed by heat treatment, the growth of copper is stopped before the inside of the recess is closed, and the copper C
It is preferable to fluidize the VD thin film.

【0030】その場合には、絶縁膜に形成された凹部の
うち、最も幅の狭い凹部内が閉塞する前に銅の成長を停
止させる必要がある。従って、幅の広い凹部では銅CV
D薄膜の膜厚が不足し、その結果、銅スパッタ薄膜を形
成しても凹部内が銅材料で充填しきれなかったり、銅ス
パッタ薄膜を厚く形成しすぎることにより、銅スパッタ
薄膜内部に空洞が生じてしまう場合がある。
In this case, it is necessary to stop the growth of copper before the inside of the narrowest recess among the recesses formed in the insulating film is closed. Therefore, copper CV
The thickness of the D thin film is insufficient. As a result, even when the copper sputtered thin film is formed, the inside of the concave portion cannot be completely filled with the copper material or the copper sputtered thin film is formed too thick, so that a cavity is formed inside the copper sputtered thin film. May occur.

【0031】そこで、幅の狭い凹部内と幅の広い凹部内
に同時に銅配線を形成する場合には、銅CVD薄膜の形
成と熱処理とを繰り返し行い、幅の広い凹部内が銅薄膜
の膜厚不足になったり、銅スパッタ薄膜による空洞が生
じたりしない程度に、銅CVD薄膜の銅材料で充填して
おくとよい。
Therefore, when copper wiring is simultaneously formed in the narrow concave portion and the wide concave portion, the formation of the copper CVD thin film and the heat treatment are repeated, and the inside of the wide concave portion becomes the thickness of the copper thin film. The copper CVD thin film is preferably filled with a copper material to such an extent that shortage does not occur or a cavity due to the copper sputtered thin film does not occur.

【0032】そのような銅配線の形成の際、絶縁膜表面
の銅薄膜は、CMP法(化学的機械研磨)等によって除去
することができるが、幅の狭い凹部のうちには、表面の
銅スパッタ薄膜が全部除去されてしまい、銅CVD薄膜
の銅材料だけで銅配線が形成されているものも生じる。
At the time of forming such a copper wiring, the copper thin film on the surface of the insulating film can be removed by a CMP method (chemical mechanical polishing) or the like. All of the sputtered thin film is removed, and there is a case where a copper wiring is formed only by the copper material of the copper CVD thin film.

【0033】なお、銅材料は拡散しやすいので、このよ
うな銅配線を形成する場合には、基板上に拡散防止膜を
形成した後、銅CVD薄膜を形成し、銅が拡散しないよ
うにしておくとよい。
Since the copper material is easily diffused, when such a copper wiring is formed, a copper CVD thin film is formed after forming an anti-diffusion film on a substrate so that copper is not diffused. Good to put.

【0034】[0034]

【発明の実施の形態】本発明の実施の形態を図面を用い
て説明する。図1(a)〜(c)と図2(d)〜(e)は、本発
明の銅配線製造方法の一例を示す工程図であり、符号1
1は配線対象物を示している。
Embodiments of the present invention will be described with reference to the drawings. 1 (a) to 1 (c) and 2 (d) to 2 (e) are process diagrams showing an example of a method for manufacturing a copper wiring according to the present invention.
Reference numeral 1 denotes a wiring object.

【0035】その配線対象物11は、シリコン基板10
と、該シリコン基板10上に形成されたシリコン酸化膜
から成る絶縁膜12とを有している。絶縁膜12は、
1.0μmの膜厚に形成されており、その表面には、幅
0.5μmの細溝形状の凹部131と、それよりも広い
幅の細溝形状の凹部132とが設けられており、凹部1
1が高アスペクト比に、凹部132がそれよりも低アス
ペクト比になるようにされている。
The wiring object 11 is a silicon substrate 10
And an insulating film 12 made of a silicon oxide film formed on the silicon substrate 10. The insulating film 12
Is formed to a thickness of 1.0 .mu.m, and on the surface thereof, the concave portion 13 1 of the narrow groove shape of width 0.5 [mu] m, and the recess 13 and second narrow groove shape having a width are provided than , Recess 1
3 to 1 high aspect ratio, is adapted recess 13 2 becomes low aspect ratio than that.

【0036】先ず、配線対象物11の絶縁膜12上に、
TINターゲットのスパッタリングによって、膜厚70
0ÅのTiN薄膜から成る拡散防止膜14を形成した。
そのスパッタリングは、基板・ターゲット間距離が20
0mmの遠距離スパッタ法によって行い、凹部131
132の側面にも拡散防止膜14が形成されるようにし
た。
First, on the insulating film 12 of the wiring object 11,
By sputtering of a TIN target, a film thickness of 70
An anti-diffusion film 14 made of a 0 ° TiN thin film was formed.
The sputtering is performed when the distance between the substrate and the target is 20.
0 mm long-distance sputtering method, the recess 13 1 ,
To 13 2 sides were so diffusion preventing film 14 is formed.

【0037】次いで、その拡散防止膜14を形成した配
線対象物11を、図11の符号52で示す銅薄膜製造装
置の搬出入室61内に装着した。
Next, the wiring object 11 on which the diffusion preventing film 14 was formed was mounted in the loading / unloading chamber 61 of the copper thin film manufacturing apparatus indicated by reference numeral 52 in FIG.

【0038】この銅薄膜製造装置52は、搬送室60を
中心として、その周囲に、搬出入室61と、CVD室6
2と、アニーリング室63と、スパッタ室64とが配置
されて構成されており、搬出入室61内に上述の配線対
象物11を納め、真空排気した後、搬送室60内に配置
された搬送ロボット71のアーム72によってCVD室
62内へ搬送した。
The copper thin film manufacturing apparatus 52 includes a transfer chamber 60 and a transfer chamber 61 and a CVD chamber 6 around the transfer chamber 60.
2, an annealing chamber 63, and a sputtering chamber 64 are arranged, and the above-mentioned wiring object 11 is placed in the carry-in / out chamber 61, evacuated, and then placed in the transfer chamber 60. The wafer was conveyed into the CVD chamber 62 by the arm 72 of 71.

【0039】このCVD室62内に配線対象物11が搬
入された後、銅・ヘキサフルオロアセチルアセトン・ビ
ニルトリメチルシラン(Hexafluoroacetylacetonate Cu
(I) vinyltrimetylsilane)([Cu(hfac)(vtms)]と略す)を
主成分とする原料ガスを導入し、基板温度170℃、成
膜圧力1.0Torr、水素キャリア流量600sccm、原料
ガス[Cu(hfac)(vtms)]供給量0.5g/分の成膜条件で
銅の成長を行った。高アスペクト比の凹部131が銅C
VD薄膜16で充填されないように、銅CVD薄膜16
の膜厚が1000ÅになったところでCVD反応を停止
させた。
After the wiring object 11 is carried into the CVD chamber 62, copper, hexafluoroacetylacetone and vinyltrimethylsilane (Hexafluoroacetylacetonate Cu) are used.
A raw material gas containing (I) vinyltrimetylsilane) (abbreviated as [Cu (hfac) (vtms)]) is introduced, a substrate temperature is 170 ° C., a film forming pressure is 1.0 Torr, a hydrogen carrier flow rate is 600 sccm, and a raw material gas [Cu (hfac) (vtms)] Copper was grown under film forming conditions of a supply amount of 0.5 g / min. High aspect ratio recess 13 1 is copper C
The copper CVD thin film 16 is not filled with the VD thin film 16.
When the film thickness became 1000 °, the CVD reaction was stopped.

【0040】その膜厚は凹部131、132の幅の半分未
満なので、各凹部131、132の側面に形成された銅C
VD薄膜16は互いに接触しておらず、各凹部131
132には上部が開放された空間171、172が残った
(図1(c))。
[0040] As so thickness of less than half of the recess 13 1, 13 2 of the width, copper is formed on the side surface of each recess 13 1, 13 2 C
The VD thin films 16 are not in contact with each other, and each recess 13 1 ,
13 2 has spaces 17 1 and 17 2 open at the top.
(FIG. 1 (c)).

【0041】一般に、凹部の幅をW、膜厚をDとした場
合、膜厚Dが次式、 D < W/2 を満たせば、凹部の側面に形成された銅CVD薄膜は互
いに接触しない。但し、銅CVD薄膜の表面は滑らかで
ないため、銅CVD薄膜の突起部分が接触し、空洞を形
成してしまわないように、余裕を持って銅の成長を停止
させる必要がある。
In general, when the width of the concave portion is W and the film thickness is D, if the film thickness D satisfies the following expression, D <W / 2, the copper CVD thin films formed on the side surfaces of the concave portion do not contact each other. However, since the surface of the copper CVD thin film is not smooth, it is necessary to stop the growth of copper with a sufficient margin so that the projections of the copper CVD thin film do not come into contact with each other and form a cavity.

【0042】次いで、その銅CVD薄膜16が形成され
た配線対象物11をCVD室62からアニーリング室6
3に搬送し、水素雰囲気下で350℃、10分間のアニ
ーリング処理(熱処理)を行ったところ銅CVD薄膜16
は流動化し、各凹部131、132内に周囲の銅CVD薄
膜16が流れ込み、流動化後の銅CVD薄膜16の表面
には、底面が狭く、開口部が広い窪み181、182が形
成された(図2(d))。
Next, the wiring object 11 having the copper CVD thin film 16 formed thereon is moved from the CVD chamber 62 to the annealing chamber 6.
3 was subjected to an annealing treatment (heat treatment) at 350 ° C. for 10 minutes in a hydrogen atmosphere.
Fluidized, the recesses 13 1, 13 around the copper CVD film 16 flows into the 2, on the surface of the copper CVD film 16 after fluidization bottom narrow recess 18 first opening is wide, 18 2 It was formed (FIG. 2 (d)).

【0043】高アスペクト比の凹部131の状態を、銅
CVD薄膜16の流動化前を図3(a)のSEM写真、流
動化後を図3(b)のSEM写真に示す。また、低アスペ
クト比の凹部132の状態を、銅CVD薄膜16の流動
化前を図5(a)のSEM写真、流動化後を図5(b)のS
EM写真に示す。流動化前後の表面状態の相違から、銅
CVD薄膜16が平坦化されており、凹部131、132
の位置に、底面が狭く、開口部の広い窪み181、182
が形成されていることが観察される。その窪み181
182の断面形状はすり鉢状であり、底面の幅が最も狭
く、上部になるに連れて広くなっている。
[0043] The state of the recess 13 1 a high aspect ratio, SEM photographs of FIGS. 3 (a) a pre-fluidization of the copper CVD film 16, shown in the SEM photograph shown in FIG. 3 (b) the post-fluidized. Further, S of the state of the concave portion 13 2 of low aspect ratio, SEM photographs of FIGS. 5 (a) a pre-fluidization of the copper CVD film 16, a post-fluidized FIG 5 (b)
It is shown in the EM photograph. Due to the difference in the surface state before and after fluidization, the copper CVD thin film 16 is flattened, and the concave portions 13 1 , 13 2
The position, the bottom is narrow, wide recess 18 1 of the opening 18 2
Is formed. The depression 18 1 ,
18 2 cross-sectional shape is bowl-shaped, the most narrow width of the bottom surface is wider him to become the top.

【0044】そのような窪み181、182が形成された
配線対象物11をスパッタ室63に搬入し、銅ターゲッ
トとの距離を300mmにしてスパッタリングを行い、
流動化後の銅CVD薄膜16上に銅を堆積させ、膜厚6
000Åの銅スパッタ薄膜20を形成したところ、窪み
181、182は銅スパッタ薄膜20を構成する銅材料で
充填された(同図(e))。このときの成膜速度約1500
Å/分であった。
The wiring object 11 in which the depressions 18 1 and 18 2 are formed is carried into the sputtering chamber 63, and the distance from the copper target is set to 300 mm, and sputtering is performed.
Copper is deposited on the fluidized copper CVD thin film 16 to a thickness of 6
When the copper sputtered thin film 20 of 000 ° was formed, the depressions 18 1 and 18 2 were filled with the copper material constituting the copper sputtered thin film 20 (FIG. 3E). At this time, the film forming speed is about 1500.
Å / min.

【0045】高アスペクト比の凹部131(幅0.5μ
m)の断面を、銅スパッタ薄膜20の形成前を図4(a)
のSEM写真、形成後を図4(b)のSEM写真で示す。
また、幅0.6μmの低アスペクト比の凹部132の断
面を、銅スパッタ薄膜20の形成前前を図6(a)のSE
M写真、形成後を図6(b)のSEM写真で示す。
The high aspect ratio recess 13 1 (width 0.5 μm)
FIG. 4A shows the cross section of FIG.
FIG. 4B shows the SEM photograph of FIG.
Further, the recess 13 and second section of low aspect ratio of the width of 0.6 .mu.m, a front before the formation of the sputtered copper thin film 20 of FIG. 6 (a) SE
The M photograph and the SEM photograph after formation are shown in FIG. 6 (b).

【0046】これらのSEM写真から分かるように、窪
み181、182内は銅スパッタ膜20で充填されてお
り、銅スパッタ薄膜20の表面には、窪み181、182
の形状が反映され、凹部131、132上には窪み2
1、212が観察される。
As can be seen from these SEM photographs, the depressions 18 1 , 18 2 are filled with the copper sputtered film 20, and the surfaces of the copper sputtered thin film 20 have the depressions 18 1 , 18 2.
It has been shaped reflecting recesses 13 1, 13 2 on the depression 2
11 1 and 21 2 are observed.

【0047】銅スパッタ薄膜20が形成された配線対象
物11の表面をCMP法によって研磨したところ、凹部
131、132内は銅CVD薄膜16と銅スパッタ薄膜2
0を構成する銅材料で充填され、互いに絶縁した銅配線
251、252が得られた(図2(f))。
When the surface of the wiring object 11 on which the copper sputtered thin film 20 was formed was polished by the CMP method, the insides of the concave portions 13 1 and 13 2 were the copper CVD thin film 16 and the copper sputtered thin film 2.
Thus, copper wirings 25 1 and 25 2 filled with a copper material constituting 0 and insulated from each other were obtained (FIG. 2F).

【0048】この例では、図2(f)に示すように、銅配
線251、252の中央部分の表面付近が銅スパッタ薄膜
20の銅材料で構成され、その周囲は銅CVD薄膜16
の銅材料で構成されているが、銅CVD薄膜16の厚み
を適当に選択することにより、高アスペクト比の凹部1
1内の銅配線251を、銅CVD薄膜16の銅材料だけ
で構成させることも可能である。
In this example, as shown in FIG. 2 (f), the vicinity of the surface of the central portion of the copper wirings 25 1 and 25 2 is made of the copper material of the copper sputtered thin film 20 and the periphery thereof is the copper CVD thin film 16
However, by appropriately selecting the thickness of the copper CVD thin film 16, the concave portion 1 having a high aspect ratio can be formed.
Copper wiring 25 1 3 1, it is also possible to configure only copper material of the copper CVD film 16.

【0049】この配線対象物11上に凹部131、132
と共に形成されている幅0.7μmの細溝形状の凹部に
ついて、銅CVD薄膜16の熱処理前を図7(a)のSE
M写真に、熱処理後を図7(b)のSEM写真に示す。流
動化後は、底面が狭く、開口部が広い断面すり鉢形状の
窪みが形成されていることが観察される。但し、銅CV
D薄膜16は、高アスペクト比の凹部131内が閉塞す
る前の膜厚1000Åになったろころで成長を停止させ
られている。
The recesses 13 1 and 13 2 are formed on the wiring object 11.
7 (a) before heat treatment of the copper CVD thin film 16 in the narrow groove-shaped concave portion having a width of 0.7 μm formed together with
FIG. 7 (b) shows an SEM photograph of the M photograph after heat treatment. After fluidization, it is observed that a mortar-shaped recess having a narrow bottom surface and a wide opening portion is formed. However, copper CV
D film 16 is stopped to grow at around braze become thickness before 1000Å to the recess 13 1 a high aspect ratio is closed.

【0050】その1000Åの銅CVD薄膜16の熱処
理を行った後に銅スパッタ薄膜を形成した場合の、0.
4〜0.9μmの細溝凹部の状態を図9に示す。各細溝
の幅は図10に示す。幅0.7μm以上の細溝について
は膜厚不足となっている。
When a copper sputtered thin film is formed after the heat treatment of the copper CVD thin film 16 of 1000 ° C.,
FIG. 9 shows the state of the narrow groove recess of 4 to 0.9 μm. The width of each narrow groove is shown in FIG. The film thickness of the narrow groove having a width of 0.7 μm or more is insufficient.

【0051】このような、低アスペクト比の凹部での銅
CVD薄膜の膜厚不足を解消するためには、銅CVD薄
膜16の形成と熱処理による流動化を複数回行えばよ
い。即ち、アスペクト比が大きく異なる凹部の全てに対
して銅配線を形成する場合には、銅CVD薄膜の流動化
終了後、再度銅CVD薄膜の形成と流動化を行った後、
その表面に銅スパッタ薄膜を形成すればよい。
In order to solve such a shortage of the thickness of the copper CVD thin film in the concave portion having a low aspect ratio, the formation of the copper CVD thin film 16 and fluidization by heat treatment may be performed a plurality of times. That is, when copper wiring is formed for all of the concave portions having greatly different aspect ratios, after the fluidization of the copper CVD thin film is completed, the copper CVD thin film is formed and fluidized again,
What is necessary is just to form a copper sputter thin film on the surface.

【0052】その場合には、銅を成長させるCVD工程
において、凹部や窪みの側面から成長した銅CVD薄膜
が接触して閉塞した空間が形成されないようにしてお
き、流動化によって形成された1層目の銅CVD薄膜の
窪み上に、空洞を作ることなく2層目の銅CVD薄膜が
形成されるようにし、その2層目の銅CVD膜を流動化
させ、形成された窪み上に銅スパッタ薄膜を形成すると
よい。
In this case, in the CVD step of growing copper, a space closed by contact with the copper CVD thin film grown from the side surface of the concave portion or the depression is prevented from being formed, and one layer formed by fluidization is formed. A second-layer copper CVD thin film is formed on the depression of the second copper CVD thin film without forming a cavity, the second-layer copper CVD film is fluidized, and a copper sputter is formed on the formed depression. It is preferable to form a thin film.

【0053】以上説明したように、銅スパッタ薄膜で凹
部内を充填できる程度まで、銅CVD薄膜の形成と熱処
理とを繰り返し行うようにすれば、底面が狭く、開口部
の広い窪み上に銅スパッタ薄膜を形成させることができ
るので、高アスペクト比の凹部と低アスペクト比の凹部
とを銅材料で充填することが可能となる。
As described above, if the formation of the copper CVD thin film and the heat treatment are repeated until the inside of the concave portion can be filled with the copper sputtered thin film, the copper Since a thin film can be formed, the concave portions having a high aspect ratio and the concave portions having a low aspect ratio can be filled with a copper material.

【0054】なお、従来技術のように、銅CVD薄膜を
流動化させずに凹部内を銅材料で充填しようとすると、
図12(b)、(c)の符号127に示すように凹部表面が
閉塞してしまい、銅配線内部に空洞が形成されてしま
う。その空洞が一旦形成されてしまうと流動化させても
除去することは困難である。
When the concave portion is filled with a copper material without fluidizing the copper CVD thin film as in the prior art,
As shown by reference numeral 127 in FIGS. 12B and 12C, the surface of the concave portion is closed, and a cavity is formed inside the copper wiring. Once the cavities are formed, it is difficult to remove them even if they are fluidized.

【0055】以上は絶縁膜中に形成した凹部131、1
2が細溝の場合について説明したが、凹部の形状は細
溝に限定されるものではない。また、拡散防止膜14の
下には絶縁膜12があり、凹部131、132底面の拡散
防止膜14と基板10表面とは接触しておらず、銅配線
251、252と基板とは電気的に絶縁されていたが、凹
部131、132の底面部分の拡散防止膜14が基板10
上に直接形成されているものも本発明に含まれる。即
ち、基板表面が露出するコンタクトホールや、下層の金
属配線表面が露出するヴィアホール上にも必要に応じて
拡散防止膜を形成し、本発明方法を用いることができ
る。
The above is the description of the recesses 13 1 , 1 formed in the insulating film.
3 2 has been described for the case of narrow grooves, but the shape of the recess is not limited to the narrow groove. The insulating film 12 is provided under the diffusion preventing film 14, and the diffusion preventing film 14 on the bottom surfaces of the concave portions 13 1 and 13 2 is not in contact with the surface of the substrate 10, so that the copper wirings 25 1 and 25 2 Was electrically insulated, but the diffusion prevention film 14 on the bottom surface of the recesses 13 1 and 13 2
What is formed directly on it is also included in the present invention. That is, the diffusion prevention film may be formed on the contact holes where the substrate surface is exposed and the via holes where the underlying metal wiring surface is exposed, if necessary, and the method of the present invention can be used.

【0056】上記実施例は、その拡散防止膜にTiNを
用いたが、本発明に用いることができる拡散防止膜はそ
れに限定されるものではない。絶縁膜や酸化膜中への銅
の拡散を防止できる薄膜で、例えば、TiW、Ta、M
o、W等の高融点金属や、それら高融点金属の化合物を
用いることができる。それらの単層膜で拡散防止膜を構
成してもよく、多層膜を形成して拡散防止膜を構成して
もよい。
In the above embodiment, TiN was used for the diffusion prevention film, but the diffusion prevention film that can be used in the present invention is not limited to this. A thin film that can prevent copper from diffusing into an insulating film or an oxide film. For example, TiW, Ta, M
High melting point metals such as o and W, and compounds of these high melting point metals can be used. The single layer film may constitute the diffusion prevention film, or the multilayer film may be formed to constitute the diffusion prevention film.

【0057】また、本発明に言う絶縁膜はシリコン酸化
膜に限定されるものではなく、窒化シリコン膜等の各種
絶縁性薄膜が含まれる。銅CVD薄膜や銅スパッタ薄膜
については、銅を主成分とする金属薄膜や金属材料を広
く含む。例えば、CVD法によって銅を成長させる際
に、他の金属を含有するガスを添加し、特性を改善させ
た銅CVD薄膜が含まれる。また、他の元素が添加され
た銅合金等をスパッタリングすることにより形成される
銅スパッタ薄膜や、添加ガスを導入するスパッタリング
法によって形成された銅スパッタ薄膜も本発明に含まれ
る。基板についてもシリコン基板に限定されるものでは
ない。
The insulating film according to the present invention is not limited to a silicon oxide film, but includes various insulating thin films such as a silicon nitride film. The copper CVD thin film and the copper sputtered thin film widely include a metal thin film and a metal material containing copper as a main component. For example, when a copper is grown by the CVD method, a gas containing another metal is added, and a copper CVD thin film having improved characteristics is included. Further, the present invention includes a copper sputtered thin film formed by sputtering a copper alloy or the like to which another element is added, and a copper sputtered thin film formed by a sputtering method in which an additional gas is introduced. The substrate is not limited to a silicon substrate.

【0058】更にまた、銅を成長させるCVD法につい
ては、基板温度を170℃にする場合に限定されるもの
ではない。但し、本実施例に用いた銅薄膜の原料ガスで
は、高温になると成膜反応が供給律速状態となり、等方
的な銅薄膜の成長を行えなくなるので、180℃以下の
基板温度でCVD法を行うことが望ましい。
Further, the CVD method for growing copper is not limited to the case where the substrate temperature is set to 170 ° C. However, with the raw material gas for the copper thin film used in the present embodiment, the film forming reaction becomes rate-determined at high temperatures, and the isotropic copper thin film cannot be grown. Therefore, the CVD method is performed at a substrate temperature of 180 ° C. or lower. It is desirable to do.

【0059】銅CVD薄膜の熱処理の温度は、上述した
350℃に限定されるものではない。高温で行った場
合、銅CVD薄膜を短時間で流動化させることができる
ので、コスト面からは望ましいが、絶縁膜や基板中に銅
が拡散しない温度で行う必要がある。拡散防止膜として
TiNを用いた場合、600℃を超える温度になるとバ
リア性が低下してしまうので、その温度以下にする必要
がある。また、TiN膜等の拡散防止膜は、膜質によっ
ては600℃以下の温度でバリア性が低下してしまう場
合があるため、温度範囲としては300℃以上450℃
以下が実用的である。
The temperature of the heat treatment of the copper CVD thin film is not limited to 350 ° C. described above. When performed at a high temperature, the copper CVD thin film can be fluidized in a short time, which is desirable from the viewpoint of cost. However, it is necessary to perform the process at a temperature at which copper does not diffuse into the insulating film or the substrate. In the case where TiN is used as the diffusion prevention film, the barrier property deteriorates when the temperature exceeds 600 ° C., and therefore it is necessary to set the temperature to that temperature or lower. In addition, a diffusion prevention film such as a TiN film may have a barrier property lower at a temperature of 600 ° C. or less depending on the film quality.
The following is practical.

【0060】そのようなアニール処理を行う際の雰囲気
については、必ずしも水素ガス雰囲気に限定されるもの
ではない。例えば真空中で加熱するだけでも銅CVD薄
膜を流動化させることができる。
The atmosphere for performing such an annealing process is not necessarily limited to a hydrogen gas atmosphere. For example, a copper CVD thin film can be fluidized only by heating in a vacuum.

【0061】[0061]

【発明の効果】ボイドが無く、信頼性の高い銅配線を得
ることができる。スパッタ法を用いることができるの
で、低コストの銅配線を得ることができる。
According to the present invention, a highly reliable copper wiring having no void can be obtained. Since a sputtering method can be used, a low-cost copper wiring can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c):本発明方法の一例を説明するため
の前半の工程図
FIG. 1 (a) to (c): First half process chart for explaining an example of the method of the present invention.

【図2】(d)〜(f):その後半の工程図FIG. 2 (d) to (f): Process drawings of the latter half

【図3】(a):高アスペクト比の凹部上の銅CVD薄膜
の流動化前の状態を示すSEM写真 (b):その銅CVD薄膜を流動化させた後の状態を示す
SEM写真
FIG. 3 (a): SEM photograph showing a state before fluidization of a copper CVD thin film on a concave portion having a high aspect ratio. (B): SEM photograph showing a state after fluidization of the copper CVD thin film.

【図4】(a):高アスペクト比の凹部部分の銅CVD薄
膜に形成された窪みの状態を示す断面SEM写真 (b):その窪み上に銅スパッタ薄膜を形成した後の状態
を示す断面SEM写真
4A is a cross-sectional SEM photograph showing a state of a dent formed in a copper CVD thin film in a concave portion having a high aspect ratio. FIG. 4B is a cross-section showing a state after a copper sputtered thin film is formed on the dent. SEM photograph

【図5】(a):低アスペクト比の凹部上の銅CVD薄膜
の流動化前の状態を示すSEM写真 (b):その銅CVD薄膜を流動化させた後の状態を示す
SEM写真
FIG. 5 (a): SEM photograph showing a state before fluidization of a copper CVD thin film on a concave portion having a low aspect ratio. (B): SEM photograph showing a state after fluidizing the copper CVD thin film.

【図6】(a):低アスペクト比の凹部部分の銅CVD薄
膜に形成された窪みの状態を示す断面SEM写真 (b):その窪み上に銅スパッタ薄膜を形成した後の状態
を示す断面SEM写真
6A is a cross-sectional SEM photograph showing a state of a recess formed in a copper CVD thin film in a concave portion having a low aspect ratio. FIG. 6B is a cross section showing a state after a copper sputtered thin film is formed on the recess. SEM photograph

【図7】(a):幅0.7μmの細溝形状の凹部部分に形
成した銅CVD薄膜の熱処理前の状態を示すSEM写真 (b):その銅CVD薄膜の熱処理後の状態を示すSEM
写真
FIG. 7 (a): SEM photograph showing a state before heat treatment of a copper CVD thin film formed in a narrow groove-shaped concave portion having a width of 0.7 μm (b): SEM showing a state after heat treatment of the copper CVD thin film
Photo

【図8】図7(b)の状態の断面SEM写真FIG. 8 is a cross-sectional SEM photograph of the state of FIG. 7 (b).

【図9】幅0.4〜0.9μmの細溝凹部部分について
の流動化後の銅CVD薄膜上に形成した銅スパッタ薄膜
の状態を示すSEM写真
FIG. 9 is an SEM photograph showing a state of a copper sputtered thin film formed on a copper CVD thin film after fluidization in a narrow groove concave portion having a width of 0.4 to 0.9 μm.

【図10】図9の溝幅を説明するための図FIG. 10 is a view for explaining a groove width in FIG. 9;

【図11】本発明の製造工程に用いることができる銅薄
膜製造装置の一例
FIG. 11 shows an example of a copper thin film manufacturing apparatus that can be used in the manufacturing process of the present invention.

【図12】(a)〜(c):従来技術の製造工程を説明する
ための図
FIGS. 12A to 12C are diagrams for explaining a manufacturing process according to a conventional technique.

【図13】銅スパッタ薄膜のオーバーハングを説明する
ための図
FIG. 13 is a view for explaining overhang of a copper sputtered thin film.

【符号の説明】[Explanation of symbols]

10……基板 12……絶縁膜 131、132……
凹部 14……拡散防止膜 16……銅CVD薄膜 18
1、182……窪み 20……銅スパッタ薄膜 251、252……銅配線
10 ... substrate 12 ... insulating film 13 1 , 13 2 ...
Concave part 14: Diffusion prevention film 16: Copper CVD thin film 18
1 , 18 2 ... recess 20 ... copper sputtered thin film 25 1 , 25 2 ... copper wiring

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成され、凹部が設けられた絶
縁膜上に銅薄膜を形成し、前記凹部を銅材料で充填して
銅配線を形成する銅配線製造方法において、 CVD法によって銅を成長させて銅CVD薄膜を形成
し、 熱処理を行って前記銅CVD薄膜を流動化させ、前記凹
部上の銅CVD薄膜に、底面が狭く、開口部が広い窪み
を形成した後、スパッタリング法によって銅スパッタ薄
膜を形成し、 前記凹部内を、前記銅CVD薄膜の銅材料と前記銅スパ
ッタ薄膜の銅材料とで充填することを特徴とする銅配線
製造方法。
1. A method for manufacturing a copper wiring, comprising: forming a copper thin film on an insulating film formed on a substrate and provided with a concave portion; filling the concave portion with a copper material to form a copper wiring; Is grown to form a copper CVD thin film, and heat treatment is performed to fluidize the copper CVD thin film. After forming a recess having a narrow bottom and a wide opening in the copper CVD thin film on the concave portion, a sputtering method is used. A method of manufacturing a copper wiring, comprising: forming a copper sputtered thin film; and filling the recess with a copper material of the copper CVD thin film and a copper material of the copper sputtered thin film.
【請求項2】 前記CVD法による銅の成長を、前記凹
部内の側面に形成される銅CVD薄膜同士が接触する前
に停止させることを特徴とする請求項1記載の銅配線製
造方法。
2. The method according to claim 1, wherein the growth of the copper by the CVD method is stopped before the copper CVD thin films formed on the side surfaces in the recess come into contact with each other.
【請求項3】 前記銅CVD薄膜の形成と熱処理とを繰
り返し行うことを特徴とする請求項1又は請求項2のい
ずれか1項記載の銅配線製造方法。
3. The method according to claim 1, wherein the formation of the copper CVD thin film and the heat treatment are repeated.
【請求項4】 前記基板上に拡散防止膜を形成する工程
を有することを特徴とする請求項1乃至請求項3のいず
れか1項記載の銅配線製造方法。
4. The method according to claim 1, further comprising the step of forming a diffusion barrier film on the substrate.
【請求項5】 前記銅CVD薄膜の厚みよりも前記銅ス
パッタ薄膜の厚みの方を厚くすることを特徴とする請求
項1乃至請求項4のいずれか1項記載の銅配線製造方
法。
5. The copper wiring manufacturing method according to claim 1, wherein the thickness of the copper sputtered thin film is larger than the thickness of the copper CVD thin film.
【請求項6】 前記凹部内に充填された銅材料を残し、
他の部分の銅材料を化学的機械研磨法で除去し、前記凹
部内に充填された銅材料で銅配線を形成することを特徴
とする請求項1乃至請求項5のいずれか1項記載の銅配
線製造方法。
6. Retaining a copper material filled in the recess,
6. The copper wiring according to claim 1, wherein the other portion of the copper material is removed by a chemical mechanical polishing method, and the copper wiring is formed of the copper material filled in the concave portion. Copper wiring manufacturing method.
【請求項7】 基板上の絶縁膜に設けられた凹部内に銅
材料が充填されて成る銅配線であって、 前記銅配線は、CVD法によって形成され、熱処理によ
り流動化された銅CVD薄膜の銅材料と、 その流動化された銅CVD薄膜上にスパッタリング法に
よって形成された銅スパッタ薄膜の銅材料とを含むこと
を特徴とする銅配線。
7. A copper wiring in which a copper material is filled in a recess provided in an insulating film on a substrate, wherein the copper wiring is formed by a CVD method and is a copper CVD thin film fluidized by a heat treatment. A copper wiring comprising: a copper material of (1) and a copper material of a copper sputtered thin film formed by a sputtering method on the fluidized copper CVD thin film.
JP24926896A 1996-08-30 1996-08-30 Copper wiring manufacturing method and copper wiring Expired - Lifetime JP3261317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24926896A JP3261317B2 (en) 1996-08-30 1996-08-30 Copper wiring manufacturing method and copper wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24926896A JP3261317B2 (en) 1996-08-30 1996-08-30 Copper wiring manufacturing method and copper wiring

Publications (2)

Publication Number Publication Date
JPH1074763A true JPH1074763A (en) 1998-03-17
JP3261317B2 JP3261317B2 (en) 2002-02-25

Family

ID=17190447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24926896A Expired - Lifetime JP3261317B2 (en) 1996-08-30 1996-08-30 Copper wiring manufacturing method and copper wiring

Country Status (1)

Country Link
JP (1) JP3261317B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516146A (en) * 1997-08-19 2001-09-25 アプライド マテリアルズ インコーポレイテッド Dual damascene metallization method
US6562219B2 (en) 2001-01-22 2003-05-13 Anelva Corporation Method for the formation of copper wiring films
US6569756B1 (en) 1998-07-28 2003-05-27 Nec Electronics Corporation Method for manufacturing a semiconductor device
KR100387256B1 (en) * 2000-06-29 2003-06-12 주식회사 하이닉스반도체 Method of forming copper wiring in a semiconductor device
KR100613283B1 (en) 2004-12-27 2006-08-21 동부일렉트로닉스 주식회사 Method of forming interconnection line for semiconductor device
JP2018056227A (en) * 2016-09-27 2018-04-05 東京エレクトロン株式会社 Method of manufacturing nickel wiring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016110789A (en) * 2014-12-04 2016-06-20 住友電装株式会社 Wire harness and producing method of wire harness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516146A (en) * 1997-08-19 2001-09-25 アプライド マテリアルズ インコーポレイテッド Dual damascene metallization method
US6569756B1 (en) 1998-07-28 2003-05-27 Nec Electronics Corporation Method for manufacturing a semiconductor device
KR100387256B1 (en) * 2000-06-29 2003-06-12 주식회사 하이닉스반도체 Method of forming copper wiring in a semiconductor device
US6562219B2 (en) 2001-01-22 2003-05-13 Anelva Corporation Method for the formation of copper wiring films
KR100613283B1 (en) 2004-12-27 2006-08-21 동부일렉트로닉스 주식회사 Method of forming interconnection line for semiconductor device
JP2018056227A (en) * 2016-09-27 2018-04-05 東京エレクトロン株式会社 Method of manufacturing nickel wiring

Also Published As

Publication number Publication date
JP3261317B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP3729882B2 (en) Aluminum contact formation method
JP2828540B2 (en) Method for forming low resistance and low defect density tungsten contacts for silicon semiconductor wafers
US5391517A (en) Process for forming copper interconnect structure
US5847461A (en) Integrated circuit structure having contact openings and vias filled by self-extrusion of overlying metal layer
US5580823A (en) Process for fabricating a collimated metal layer and contact structure in a semiconductor device
US5429989A (en) Process for fabricating a metallization structure in a semiconductor device
JPH1041391A (en) Single step process for blanket selective cvd al deposition
JPH1174272A (en) Metal wiring formation of semiconductor element
JPH11135504A (en) Manufacture of semiconductor device
JP3261317B2 (en) Copper wiring manufacturing method and copper wiring
US6569756B1 (en) Method for manufacturing a semiconductor device
JP2002305162A (en) Cvd apparatus
JP4799715B2 (en) Low temperature aluminum reflow for multilayer metallization
US6069072A (en) CVD tin barrier layer for reduced electromigration of aluminum plugs
JP3200085B2 (en) Method and apparatus for producing conductive layer or structure for high density integrated circuit
JPH0963992A (en) Formation method of metal layer and formation method of interconnection
JPH08330427A (en) Wiring formation of semiconductor element
JP4005295B2 (en) Manufacturing method of semiconductor device
JPH07115073A (en) Manufacture of semiconductor device
JP3547027B2 (en) Copper wiring manufacturing method
JP3488586B2 (en) Method for manufacturing semiconductor device
JP3281816B2 (en) Copper wiring manufacturing method
JP2001015517A (en) Semiconductor device and its manufacture
JP3263611B2 (en) Copper thin film manufacturing method, copper wiring manufacturing method
KR100250455B1 (en) Method of manufacturing metal line of semiconductor device using copper thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term