JPH1074507A - Manufacture of paste type nickel electrode and manufacture of alkaline storage battery - Google Patents

Manufacture of paste type nickel electrode and manufacture of alkaline storage battery

Info

Publication number
JPH1074507A
JPH1074507A JP9236057A JP23605797A JPH1074507A JP H1074507 A JPH1074507 A JP H1074507A JP 9236057 A JP9236057 A JP 9236057A JP 23605797 A JP23605797 A JP 23605797A JP H1074507 A JPH1074507 A JP H1074507A
Authority
JP
Japan
Prior art keywords
nickel
paste
nickel hydroxide
active material
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9236057A
Other languages
Japanese (ja)
Other versions
JP3112660B2 (en
Inventor
Koji Isawa
浩次 石和
Kunihiko Miyamoto
邦彦 宮本
Hirohito Teraoka
浩仁 寺岡
Katsuyuki Hata
勝幸 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP09236057A priority Critical patent/JP3112660B2/en
Publication of JPH1074507A publication Critical patent/JPH1074507A/en
Application granted granted Critical
Publication of JP3112660B2 publication Critical patent/JP3112660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance utilization factor and lengthen life by using nickel hydroxide whose dehydrating reaction by heating arises at the specified temperature or lower. SOLUTION: In the manufacture of a paste type nickel electrode in which paste containing an active material mainly comprising nickel hydroxide (Ni(OH)2 ) is filled in a metallic porous substrate, temperature causing dehydrating reaction (Ni(OH)2 →NiO+H2 O) by heating is used as an index. The active material mainly comprising nickel hydroxide having a dehydrating reaction temperature of 270 deg.C or less is used to prepare paste containing the active material, and the paste is filled in the metallic porous substrate. The nickel hydroxide contains eutectoid with cadmium or zinc, and the metallic porous substrate having three-dimensional structure such as spongy nickel and felt nickel is used. The utilization factor of the nickel hydroxide is enhanced and life is lengthened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ペースト式ニッケ
ル極の製造方法及びペースト式ニッケル極とカドミウ
ム、亜鉛、水素吸蔵合金等を含む負極とを備えたアルカ
リ蓄電池の製造方法に関するものである。
The present invention relates to a method for producing a paste-type nickel electrode and a method for producing an alkaline storage battery including a paste-type nickel electrode and a negative electrode containing cadmium, zinc, a hydrogen storage alloy or the like.

【0002】[0002]

【従来の技術】従来、アルカリ蓄電池用ニッケル極とし
ては、例えばカーボニルニッケルをパンチドメタル上に
焼結成形した基板に硝酸ニッケル等のニッケル塩を水溶
液の形で充填後、アルカリ液中で水酸化ニッケルに転化
した、いわゆる焼結式が主流であった。焼結式の利点と
して、基板であるカーボニルニッケルの焼結体が孔径数
〜10μmの非常に微細な細孔構造であるため、元来不
導体である水酸化ニッケルの集電能力に優れていること
が挙げられる。反面ニッケル極全体に占める基板体積の
比率が20%程度必要であり、その分活物質の充填量が
制限されてしまい、ニッケル極としての容量密度が45
0mAh/cc程度しか得られないという欠点があっ
た。
2. Description of the Related Art Conventionally, as a nickel electrode for an alkaline storage battery, for example, a nickel salt such as nickel nitrate is filled into a substrate obtained by sintering carbonyl nickel on a punched metal in the form of an aqueous solution, and then the hydroxide is hydrated in an alkaline solution. The so-called sintering method converted to nickel was the mainstream. As an advantage of the sintering method, since the sintered body of carbonyl nickel as the substrate has a very fine pore structure with a pore diameter of 10 to 10 μm, the current collecting ability of nickel hydroxide, which is originally a non-conductor, is excellent. It is mentioned. On the other hand, the ratio of the substrate volume to the entire nickel electrode is required to be about 20%, and the amount of the active material to be charged is limited.
There is a drawback that only about 0 mAh / cc can be obtained.

【0003】これらの欠点を改良する試みとして、ペー
スト式ニッケル極が提案されている。ペースト式ニッケ
ル極は孔径100〜500μmのスポンジ状あるいはフ
ェル卜状金属多孔体を基板とし、この基板の孔に粉末状
水酸化ニッケルを適当な溶媒やバインダーでペースト状
に調製したものを充填し、乾燥、加圧して得られるもの
である。また、ニッケル極全体に占める基板の体積比率
を10%未満に低下させることができるため、活物質の
充填量を増加することが可能となり、同容量密度に換算
すると600mAh/cc程度まで向上することができ
る。このペースト式ニッケル極に使用される前記粉末状
水酸化ニッケルは原理的には焼結式と同様に硝酸ニッケ
ル、硫酸ニッケル等のニッケル塩の水溶液を過剰の苛性
ソーダや苛性カリ等のアルカリ水溶液と、直径1〜数1
0ミクロンの粒子を生成させるように反応させ、沈澱物
を水洗、乾燥して得られるものが一般的である。
[0003] As an attempt to improve these disadvantages, a paste-type nickel electrode has been proposed. The paste-type nickel electrode has a sponge-like or felt-like metal porous body having a pore diameter of 100 to 500 μm as a substrate, and the pores of the substrate are filled with powdered nickel hydroxide prepared in a paste form with an appropriate solvent or binder, It is obtained by drying and pressing. In addition, since the volume ratio of the substrate to the entire nickel electrode can be reduced to less than 10%, the amount of the active material to be filled can be increased, and the equivalent capacity density can be improved to about 600 mAh / cc. Can be. The powdered nickel hydroxide used for this paste-type nickel electrode is, in principle, an aqueous solution of a nickel salt such as nickel nitrate or nickel sulfate and an aqueous solution of an alkali such as caustic soda or caustic potash in the same manner as in the sintering method. 1 to number 1
The reaction is generally carried out so as to form 0-micron particles, and the precipitate is generally washed with water and dried to obtain a precipitate.

【0004】しかしながら、前記方法にて作製したペー
スト式ニッケル極には数々の問題点が存在する。とりわ
け、充放電を行った際の水酸化ニッケルの利用率が小さ
いという問題、充放電サイクルによる活物質の膨潤が著
しく顕著なものである問題が挙げられる。
[0004] However, the paste-type nickel electrode produced by the above-mentioned method has a number of problems. In particular, there is a problem that the utilization rate of nickel hydroxide during charge / discharge is small, and a problem that the swelling of the active material due to the charge / discharge cycle is remarkable.

【0005】このような問題を生ずる原因として基板の
集電性能の差が挙げられる。前記の通り焼結式基板の孔
径が数〜10μmであるのに対し、ペースト式の基板で
あるスポンジ状及びフェルト状金属多孔体は100〜5
00μmと数十倍も大きい。すなわち反応の際の活物質
中の電荷移動距離が長くなってしまい、抵抗による分極
が大きくなる傾向にある。分極の大きい電極における欠
点として放電電圧の低下ならびに充電中に不可逆な充電
生成物を生ずることが挙げられる。この不可逆な充電生
成物は一般にγ−NiOOHとして知られており、正常
なニッケル極の充電生成物であるβ−NiOOHと比較
して放電されにくく、また結晶がC軸方向に伸びた形態
のため活物質の膨潤を生じ易いことが知られている。す
なわち焼結方式とペースト方式を比較すると水酸化ニッ
ケルとして同じものを使用した場合、基板の集電能力の
違いに起因してペースト方式は利用率低下や活物質の膨
潤をおこし易い欠点があり、その原因は不可逆な充電生
成物であるγ−NiOOHの生成が大きく関与している
と言うことができる。
A cause of such a problem is a difference in current collecting performance of the substrate. As described above, the pore diameter of the sintered substrate is several to 10 μm, whereas the sponge-like and felt-like porous metal bodies, which are paste-type substrates, have a pore size of 100 to 5 μm.
00 μm, which is several tens of times larger. That is, the charge transfer distance in the active material at the time of the reaction becomes long, and polarization due to resistance tends to increase. Disadvantages of highly polarized electrodes include reduced discharge voltage and the formation of irreversible charge products during charging. This irreversible charge product is generally known as γ-NiOOH, is less likely to be discharged compared to β-NiOOH which is a normal nickel electrode charge product, and has a form in which the crystal extends in the C-axis direction. It is known that swelling of an active material is likely to occur. That is, comparing the sintering method and the paste method, when the same nickel hydroxide is used, the paste method has a drawback that the utilization rate decreases and the swelling of the active material is liable to occur due to the difference in current collecting ability of the substrate, It can be said that the cause is largely related to the production of γ-NiOOH which is an irreversible charge product.

【0006】この問題に対する対策として、焼結式にお
いても広く知られていたコバルト化合物の添加をペース
ト方式に、例えば特公昭57−5344、特公昭60−
60449に示される様に金属コバルト、特開昭61−
138458に示される様にー酸化コバルトといった導
電性に優れた形態のコバルトを配合することで、分極を
抑制する試みが広く行われている。また特開平1−26
0762、特開平2一30061に示される様に水酸化
ニッケルの結晶中にカドミウムまたは亜鉛等を共晶状態
にして添加する試みも同様に行われている。しかしなが
ら何れの方法も上記問題に対して充分な対策とは言え
ず、例えば利用率に関しても焼結式が95%以上である
のに対しペースト式では90%前後が限界であり、サイ
クル寿命に関しても焼結式が500サイクル以上である
のに対しペースト式が300サイクル前後と劣っている
のが現状で、これらの問題がペースト式ニッケル極の普
及を妨げる大きな障害となっていた。
As a countermeasure against this problem, the addition of a cobalt compound, which is widely known in the sintering method, is applied to the paste method, for example, in Japanese Patent Publication Nos. 57-5344 and 60-160.
No. 60449, metallic cobalt,
As shown in 138458, attempts to suppress polarization by blending cobalt having excellent conductivity, such as cobalt oxide, have been widely made. Also, Japanese Patent Application Laid-Open No. 1-26
0762 and JP-A-2-30061, attempts to add cadmium, zinc, or the like to a crystal of nickel hydroxide in a eutectic state have also been made. However, none of these methods can be said to be a sufficient measure against the above problems. For example, the sintering method has a utilization factor of 95% or more, while the paste method has a limit of about 90%. At present, the sintering method is inferior to about 300 cycles while the sintering method is 500 cycles or more, and these problems have been a major obstacle to the spread of the paste-type nickel electrode.

【0007】一方、特開昭63−152866号公報に
は、主成分が硫酸ニッケル塩あるいは硝酸ニッケル塩の
水溶液を用い、苛性カリあるいは苛性ソーダ等のPH
9.5〜12.5に調整されたアルカリ水溶液中で水酸
化ニッケル粉末を析出させた後、硫酸コバルト塩あるい
は硝酸コバルト塩の水溶液中に浸漬し、次にアルカリ水
溶液で中和させることを特徴とする蓄電池用ニッケル活
物質の製造法が開示されている。また、このような方法
によると、比表面積が60m2 /g以上で、かつ結晶度
が14以下である水酸化ニッケル粒子にβ型水酸化コバ
ルトの薄層が形成されたものが得られると記載されてい
る。
On the other hand, Japanese Patent Application Laid-Open No. 63-152866 discloses an aqueous solution of a nickel sulfate or nickel nitrate as a main component, and the pH of caustic potassium or caustic soda.
After depositing nickel hydroxide powder in an aqueous alkali solution adjusted to 9.5 to 12.5, it is immersed in an aqueous solution of a cobalt sulfate salt or a cobalt nitrate salt, and then neutralized with an aqueous alkali solution. A method for producing a nickel active material for a storage battery is disclosed. Further, according to such a method, it is possible to obtain a nickel hydroxide particle having a specific surface area of 60 m 2 / g or more and a crystallinity of 14 or less, in which a thin layer of β-type cobalt hydroxide is formed. Have been.

【0008】しかしながら、このような製造方法は、ア
ルカリ水溶液のPHのみならず他の製造条件、例えば、
反応系の温度や、使用する水溶液の濃度、攪拌速度等の
影響を受ける。従って、アルカリ水溶液のPHを一定に
維持しても、前述したような他の条件が変われば水酸化
ニッケルの性質が変動するため、目的とするものとは異
なる水酸化ニッケルが製造されることがある。このた
め、このような水酸化ニッケルを用いて製造されたペー
スト式ニッケル極は、利用率及び寿命がばらついて再現
性が低下する恐れがある。
[0008] However, such a manufacturing method is not limited to the pH of the aqueous alkaline solution, but also to other manufacturing conditions, for example,
It is affected by the temperature of the reaction system, the concentration of the aqueous solution used, the stirring speed, and the like. Therefore, even if the pH of the alkaline aqueous solution is kept constant, if the other conditions described above change, the nature of the nickel hydroxide changes, so that a nickel hydroxide different from the intended one may be produced. is there. For this reason, the paste type nickel electrode manufactured using such nickel hydroxide may vary in the utilization factor and the service life, and the reproducibility may be reduced.

【0009】[0009]

【発明が解決しようとする課題】本発明は、前記従来の
問題を改善するためになされたもので、高利用率で、か
つ長寿命なペースト式ニッケル極の製造方法を提供しよ
うとするものである。本発明は、高利用率で、かつ長寿
命なペースト式ニッケル極を備えたアルカリ蓄電池の製
造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has as its object to provide a method for producing a paste-type nickel electrode having a high utilization factor and a long life. is there. An object of the present invention is to provide a method for manufacturing an alkaline storage battery having a paste-type nickel electrode having a high utilization factor and a long life.

【0010】[0010]

【課題を解決するための手段】本発明に係るペースト式
ニッケル極の製造方法は、金属多孔体を有する基板に、
水酸化ニッケル(Ni(OH)2 )を主体とする活物質
を含むペーストを充填するペースト式ニッケル極の製造
方法であって、前記水酸化ニッケルは、加熱することに
よる脱水反応(Ni(OH)2 →NiO+H2 O)が2
70℃以下で起こるものであることを特徴とするもので
ある。
The method for producing a paste-type nickel electrode according to the present invention comprises the steps of:
A method for producing a paste-type nickel electrode in which a paste containing an active material mainly composed of nickel hydroxide (Ni (OH) 2 ) is filled, wherein the nickel hydroxide is subjected to a dehydration reaction (Ni (OH) 2 → NiO + H 2 O) is 2
It occurs at a temperature of 70 ° C. or less.

【0011】本発明に係るアルカリ蓄電池の製造方法
は、金属多孔体を有する基板に、水酸化ニッケル(Ni
(OH)2 )を主体とする活物質を含むペーストを充填
するペースト式ニッケル極を備えたアルカリ蓄電池の製
造方法であって、前記水酸化ニッケルは、加熱すること
による脱水反応(Ni(OH)2 →NiO+H2 O)が
270℃以下で起こるものであることを特徴とするもの
である。
In the method for manufacturing an alkaline storage battery according to the present invention, nickel hydroxide (Ni
A method for manufacturing an alkaline storage battery provided with a paste-type nickel electrode filled with a paste containing an active material mainly composed of (OH) 2 ), wherein the nickel hydroxide is subjected to a dehydration reaction (Ni (OH) 2 → NiO + H 2 O) occurs at 270 ° C. or lower.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係る方法によれば、ペースト式ニッケル極を、
例えば、加熱することによる脱水反応(Ni(OH)2
→NiO+H2 O)の温度を指標とし、この脱水反応温
度が270℃以下の水酸化ニッケルを主体とする活物質
を用意する工程と、用意された活物質を含むペーストを
調製する工程と、前記ペーストを金属多孔体を有する基
板に充填する工程とを具備する方法により作製すること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
According to the method of the present invention, the paste nickel electrode is
For example, a dehydration reaction by heating (Ni (OH) 2
Using the temperature of (NiO + H 2 O) as an index, a step of preparing an active material mainly composed of nickel hydroxide having a dehydration reaction temperature of 270 ° C. or lower; a step of preparing a paste containing the prepared active material; Filling the paste into a substrate having a porous metal body with a paste.

【0013】この方法において、前記水酸化ニッケル
は、カドミウムもしくは亜鉛が共晶されていても良い。
また、前記ペーストに前記水酸化ニッケルと共晶してい
ない金属コバルトもしくはコバルト酸化物が存在してい
ても良い。
In this method, the nickel hydroxide may be eutectic of cadmium or zinc.
In addition, metallic cobalt or cobalt oxide that is not eutectic with the nickel hydroxide may be present in the paste.

【0014】前記金属多孔体としてはスポンジ状ニッケ
ルやフェルト状ニッケルのような三次元構造を有するも
のを挙げることができる。前記水酸化ニッケルの製造方
法としては硝酸ニッケルや硫酸ニッケル等のニッケル塩
の水溶液と苛性ソーダや苛性カリ等のアルカリ水溶液と
の中和反応で得られるが、反応雰囲気のpHを調節する
ことにより、同じ水酸化ニッケルでもNi(OH)2
NiOへの脱水反応をおこす温度の異なる結晶を得るこ
とができる。
Examples of the porous metal include those having a three-dimensional structure such as sponge-like nickel and felt-like nickel. The method for producing the nickel hydroxide is obtained by a neutralization reaction between an aqueous solution of a nickel salt such as nickel nitrate or nickel sulfate and an aqueous alkali solution such as caustic soda or potassium caustic. Ni (OH) 2 → even nickel oxide
Crystals having different temperatures at which a dehydration reaction to NiO occurs can be obtained.

【0015】さらに水酸化ニッケルにカドミウム、亜鉛
から選択された金属元素を共晶状態で添加、および金属
コバルト、コバルト酸化物(例えば、水酸化コバルト、
一般化コバルト)を添加することにより性能が向上す
る。
Further, a metal element selected from cadmium and zinc is added to nickel hydroxide in a eutectic state, and metal cobalt and cobalt oxide (for example, cobalt hydroxide,
The performance is improved by adding generalized cobalt).

【0016】同じ水酸化ニッケルNi(OH)2 であっ
ても結晶性の大小により、γ−NiOOHの生成度合い
が異なる傾向にある。それは充電時の反応でNi(O
H)2結晶は電解液界面のプロトン移動の自由度が結晶
化の大小により異なり、結晶性の小さいものの方がプロ
トン移動の自由度は高い傾向にあり、反面プロトン移動
の不自由なものほどγ−NiOOHを生成しやすい傾向
にあることから、全体的には結晶性の大きなNi(O
H)2 はγ−NiOOHを生成しやすいと言うことがで
きる。
Even with the same nickel hydroxide Ni (OH) 2 , the degree of γ-NiOOH tends to vary depending on the degree of crystallinity. It is Ni (O
H) 2 crystals have a higher degree of freedom of proton transfer at the electrolyte interface depending on the degree of crystallization, and those having low crystallinity tend to have a higher degree of freedom of proton transfer, while those having less proton transfer have a higher γ. -NiOOH tends to be easily generated, so that Ni (O
H) 2 can be said to be easy to generate γ-NiOOH.

【0017】Ni(OH)2 の結晶性を示す尺度として
は数々の方法があるが、発明者は特に熱重量分析を行っ
た際250〜290℃付近に見られるNi(OH)2
NiOへの脱水反応温度と、γ−NiOOHの生成比率
との間に高い相関性を見いだして本発明を作成した。充
電時にβ−NiOOH+γ−NiOOH量に対するγ一
NiOOHの比率が小さいほど、ニッケル極の利用率は
高く、また活物質の膨潤度合いが小さいため、サイクル
寿命が大きい傾向にある。
Although there are various methods for measuring the crystallinity of Ni (OH) 2 , the present inventors have found that Ni (OH) 2, which is found at around 250 to 290 ° C., particularly when thermogravimetric analysis is performed.
The present invention was found by finding a high correlation between the dehydration reaction temperature to NiO and the production ratio of γ-NiOOH. The smaller the ratio of [gamma] -NiOOH to [beta] -NiOOH + [gamma] -NiOOH during charging, the higher the utilization rate of the nickel electrode and the smaller the degree of swelling of the active material, the longer the cycle life.

【0018】[0018]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。まず主活物質である水酸化ニッケルを下記の方法
で調製した。反応雰囲気のpHが一定に管理された環境
下で硫酸ニッケル水溶液と苛性ソーダ水溶液を順次投入
し、結晶成長、水洗、乾燥を経て、粒径1〜30μmの
水酸化ニッケルを作製した。反応雰囲気のpH値を4種
類にさせることにより結晶性の異なるNi(OH)2
4種類得ることができた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. First, nickel hydroxide as a main active material was prepared by the following method. An aqueous solution of nickel sulfate and an aqueous solution of caustic soda were sequentially added under an environment in which the pH of the reaction atmosphere was controlled to be constant, and crystal growth, washing with water, and drying were performed to produce nickel hydroxide having a particle size of 1 to 30 μm. By changing the pH value of the reaction atmosphere to four types, four types of Ni (OH) 2 having different crystallinities could be obtained.

【0019】この水酸化ニッケルを熱重量分析(TG
A)にかけ、Ni(OH)2 →NiOへの脱水温度を測
定したところ、低い順に260、270、280、29
0℃であった。チャートの一例を図1に示す。この水酸
化ニッケル100重量部に対して一酸化コバルト10重
量部、カルボキシメチルセルロース0.3重量部を水3
0重量部と共に混練してペースト状に調製後、このペー
ストを孔径300μmのスポンジ状ニッケル多孔体に充
填し、乾燥、加圧、リード溶接を経て、本発明のペース
ト式ニッケル極を作製した。
The nickel hydroxide was subjected to thermogravimetric analysis (TG
A), and the dehydration temperature of Ni (OH) 2 → NiO was measured.
It was 0 ° C. One example of the chart is shown in FIG. 10 parts by weight of cobalt monoxide and 0.3 parts by weight of carboxymethyl cellulose were added to 100 parts by weight of this nickel hydroxide
After kneading together with 0 parts by weight to prepare a paste, this paste was filled into a sponge-like nickel porous body having a pore diameter of 300 μm, dried, pressed, and lead-welded to produce a paste-type nickel electrode of the present invention.

【0020】このペースト式ニッケル極をペースト式カ
ドミウム極、ナイロン製セパレータと共に捲回して電池
缶に挿入し、AAサイズのニッケルカドミウム蓄電池を
作製し、0.3C充電/1C充電の充放電サイクルを5
00サイクル行った。その時のサイクル数に対するニッ
ケル極理論容量に対する利用率の推移を図2に示す。
This paste-type nickel electrode is wound together with a paste-type cadmium electrode and a nylon separator and inserted into a battery can to produce an AA-size nickel-cadmium storage battery, and a charge / discharge cycle of 0.3 C charge / 1 C charge is performed.
00 cycles were performed. FIG. 2 shows the transition of the utilization rate with respect to the theoretical capacity of the nickel electrode with respect to the number of cycles at that time.

【0021】次に500サイクル終了後の電池を充電状
態で分解し、ニッケル極を取り出し粉砕処理してX線回
折(XRD−Cu,Kα)を測定し、2θで13゜付近
に見られるγ−NiOOHのピーク高さ(P−γ)と、
19゜付近にみられるβ−NiOOHのピーク高さ(P
−β)を測定し、(P−γ)/{(P−γ)+(P−
β)}の値から全体中のγ−NiOOHの比率を算出し
た。上記脱水反応温度に対するγ−NiOOHの比率を
図3に示す。
Next, after 500 cycles, the battery is disassembled in a charged state, and the nickel electrode is taken out and pulverized to measure X-ray diffraction (XRD-Cu, Kα). NiOOH peak height (P-γ);
The peak height of β-NiOOH around 19 ° (P
−β) and (P−γ) / {(P−γ) + (P−
β) The ratio of γ-NiOOH in the whole was calculated from the value of}. FIG. 3 shows the ratio of γ-NiOOH to the dehydration reaction temperature.

【0022】図2によると、脱水反応温度が260℃、
270℃の水酸化ニッケルを使用したニッケル極の場
合、利用率が95%と高く、かつ500サイクルを経て
も利用率の変化がほとんど見られない。図3のγ−Ni
OOH比率も20%未満と小さい傾向にある。これに対
し、280、290℃のものは利用率が最高でも90%
であり、しかもサイクル中の低下が著しく300サイク
ル付近で初期の50%未満に低下している。これに対応
してγ−NiOOH比率は40%〜80%と非常に高い
傾向にあり、活物質膨潤による電解液の偏在を起こして
いた。
According to FIG. 2, the dehydration reaction temperature is 260 ° C.
In the case of a nickel electrode using nickel hydroxide at 270 ° C., the utilization rate is as high as 95%, and there is almost no change in utilization rate even after 500 cycles. Γ-Ni of FIG.
The OOH ratio also tends to be as small as less than 20%. On the other hand, those with 280 and 290 ° C have the highest utilization rate of 90%
In addition, the decrease during the cycle is remarkably reduced to less than 50% of the initial value around 300 cycles. Correspondingly, the γ-NiOOH ratio tended to be very high, from 40% to 80%, and the electrolyte was unevenly distributed due to swelling of the active material.

【0023】本実施例はコバルト系の添加剤として一酸
化コバルトを使用したが、代用として金属コバルトや水
酸化コバルト等のコバルト酸化物を使用しても同様な効
果が得られる。またここでは詳細な結果を示さないが、
水酸化ニッケルにカドミウムまたは亜鉛を3〜7重量%
共晶添加したペースト式ニッケル極においては700サ
イクルの経過後も利用率の変化は見られず、良好な特性
を示した。
In this embodiment, cobalt monoxide is used as a cobalt-based additive. However, similar effects can be obtained by using a cobalt oxide such as metal cobalt or cobalt hydroxide instead. I will not show detailed results here,
3-7% by weight of cadmium or zinc in nickel hydroxide
The eutectic-added paste-type nickel electrode did not show any change in utilization even after 700 cycles, and exhibited good characteristics.

【0024】[0024]

【発明の効果】以上詳述したように本発明によれば、水
酸化ニッケルの利用率が高く、かつ長寿命なペースト式
ニッケル極の製造方法及びかかるペースト式ニッケル極
を備えたアルカリ蓄電池の製造方法を提供することがで
き、その工業的価値は大である。
As described above in detail, according to the present invention, a method for producing a paste-type nickel electrode having a high utilization rate of nickel hydroxide and a long life, and a method for producing an alkaline storage battery having such a paste-type nickel electrode are provided. A method can be provided and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水酸化ニッケルのX線回折分析のチャート図。FIG. 1 is a chart of an X-ray diffraction analysis of nickel hydroxide.

【図2】本発明のニッケル極を使用した電池の充放電サ
イクルとニッケル極の活物質の利用率との関係図。
FIG. 2 is a diagram showing a relationship between a charge / discharge cycle of a battery using a nickel electrode of the present invention and a utilization rate of a nickel electrode active material.

【図3】水酸化ニッケルの脱水反応温度と500サイク
ル後のγ−NiOOHの生成比率を示した図。
FIG. 3 is a diagram showing a dehydration reaction temperature of nickel hydroxide and a production ratio of γ-NiOOH after 500 cycles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秦 勝幸 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Katsuyuki Hata 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属多孔体を有する基板に、水酸化ニッ
ケル(Ni(OH)2 )を主体とする活物質を含むペー
ストを充填するペースト式ニッケル極の製造方法であっ
て、 前記水酸化ニッケルは、加熱することによる脱水反応
(Ni(OH)2 →NiO+H2 O)が270℃以下で
起こるものであることを特徴とするペースト式ニッケル
極の製造方法。
1. A method for producing a paste-type nickel electrode, comprising filling a substrate having a porous metal body with a paste containing an active material mainly composed of nickel hydroxide (Ni (OH) 2 ). Wherein the dehydration reaction (Ni (OH) 2 → NiO + H 2 O) by heating occurs at 270 ° C. or lower.
【請求項2】 前記水酸化ニッケルは、カドミウムもし
くは亜鉛が共晶されていることを特徴とする請求項1記
載のペースト式ニッケル極の製造方法。
2. The method according to claim 1, wherein the nickel hydroxide is eutectic of cadmium or zinc.
【請求項3】 金属多孔体を有する基板に、水酸化ニッ
ケル(Ni(OH)2 )を主体とする活物質を含むペー
ストを充填するペースト式ニッケル極を備えたアルカリ
蓄電池の製造方法であって、 前記水酸化ニッケルは、加熱することによる脱水反応
(Ni(OH)2 →NiO+H2 O)が270℃以下で
起こるものであることを特徴とするアルカリ蓄電池の製
造方法。
3. A method for manufacturing an alkaline storage battery having a paste nickel electrode in which a substrate having a porous metal body is filled with a paste containing an active material mainly composed of nickel hydroxide (Ni (OH) 2 ). A method for producing an alkaline storage battery, wherein the nickel hydroxide undergoes a dehydration reaction (Ni (OH) 2 → NiO + H 2 O) by heating at 270 ° C. or lower.
【請求項4】 前記水酸化ニッケルは、カドミウムもし
くは亜鉛が共晶されていることを特徴とする請求項3記
載のアルカリ蓄電池の製造方法。
4. The method according to claim 3, wherein the nickel hydroxide is eutectic of cadmium or zinc.
JP09236057A 1997-09-01 1997-09-01 Method for producing paste-type nickel electrode and method for producing alkaline storage battery Expired - Lifetime JP3112660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09236057A JP3112660B2 (en) 1997-09-01 1997-09-01 Method for producing paste-type nickel electrode and method for producing alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09236057A JP3112660B2 (en) 1997-09-01 1997-09-01 Method for producing paste-type nickel electrode and method for producing alkaline storage battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3187098A Division JP2731050B2 (en) 1991-04-25 1991-04-25 Paste nickel electrode and alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH1074507A true JPH1074507A (en) 1998-03-17
JP3112660B2 JP3112660B2 (en) 2000-11-27

Family

ID=16995108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09236057A Expired - Lifetime JP3112660B2 (en) 1997-09-01 1997-09-01 Method for producing paste-type nickel electrode and method for producing alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3112660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711419A (en) * 2017-01-05 2017-05-24 山东理工大学 Core-shell NiO/C porous composite lithium ion battery negative electrode material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711419A (en) * 2017-01-05 2017-05-24 山东理工大学 Core-shell NiO/C porous composite lithium ion battery negative electrode material
CN106711419B (en) * 2017-01-05 2019-06-07 山东理工大学 The porous composite lithium ion battery cathode material of the NiO/C of core-shell structure copolymer shape

Also Published As

Publication number Publication date
JP3112660B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
EP0337029B1 (en) Nickel electrode for alkaline battery and battery using said nickel electrode
US5674643A (en) Non-sintered nickel electrode for alkaline storage cell
JPH0559546B2 (en)
US6274270B1 (en) Non-sintered nickel electrode for an alkaline electrolyte secondary electrochemical cell
JP3080441B2 (en) Paste nickel electrode and alkaline storage battery
JP3112660B2 (en) Method for producing paste-type nickel electrode and method for producing alkaline storage battery
JP3324781B2 (en) Alkaline secondary battery
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP3094062B2 (en) Method for producing paste-type nickel electrode and method for producing alkaline storage battery
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JP2731050B2 (en) Paste nickel electrode and alkaline storage battery
JP2576717B2 (en) Nickel electrode active material for alkaline storage batteries
JP2835282B2 (en) Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP2765028B2 (en) Sealed alkaline battery
JPH02234356A (en) Sealed-type alkali battery
JP2001155724A (en) Akaline storage battery
JP2730137B2 (en) Alkaline secondary battery and charging method thereof
JP3518259B2 (en) Nickel-hydrogen storage battery and method for producing positive electrode active material thereof
JP3624508B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery
JPH05254847A (en) Production of nickel hyroxide powder for nickel electrode
JP2938994B2 (en) Nickel electrode for alkaline secondary batteries
JP3073259B2 (en) Nickel electrode for alkaline storage battery
JP3540557B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JP3073260B2 (en) Nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11