JP2001155724A - Akaline storage battery - Google Patents

Akaline storage battery

Info

Publication number
JP2001155724A
JP2001155724A JP33592999A JP33592999A JP2001155724A JP 2001155724 A JP2001155724 A JP 2001155724A JP 33592999 A JP33592999 A JP 33592999A JP 33592999 A JP33592999 A JP 33592999A JP 2001155724 A JP2001155724 A JP 2001155724A
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
storage battery
battery
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33592999A
Other languages
Japanese (ja)
Inventor
Kyoko Mori
恭子 森
Yoshitaka Dansui
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33592999A priority Critical patent/JP2001155724A/en
Publication of JP2001155724A publication Critical patent/JP2001155724A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline storage battery, which has a positive electrode added with a highly conductive material and has improved charge and discharge cycle characteristics. SOLUTION: A positive electrode material is provided by mixing nickel hydroxide solid solution particles with conductive nickel oxide Ni2O3H of 0.15-5.0 parts by weight.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水酸化ニッケル固
溶体粒子を主成分とし、導電性ニッケル酸化物Ni23
H を備える正極を用いたアルカリ蓄電池を提供する。
The present invention relates is mainly composed of nickel hydroxide solid solution particles, conductive nickel oxide Ni 2 O 3
An alkaline storage battery using a positive electrode comprising H 2.

【0002】[0002]

【従来の技術】近年、アルカリ蓄電池は、携帯機器の普
及に伴い高容量化が強く要望されている。特に、ニッケ
ル−水素蓄電池は、水酸化ニッケルを主体とした正極
と、水素吸蔵合金を主体とした負極からなる二次電池で
あり、高容量・高信頼性の二次電池として普及してきて
いる。
2. Description of the Related Art In recent years, there has been a strong demand for alkaline storage batteries to have higher capacities with the spread of portable devices. In particular, a nickel-hydrogen storage battery is a secondary battery including a positive electrode mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy, and has been widely used as a secondary battery having high capacity and high reliability.

【0003】以下、このアルカリ蓄電池用の正極につい
て説明する。
Hereinafter, the positive electrode for an alkaline storage battery will be described.

【0004】アルカリ蓄電池用の正極には、大別して焼
結式と非焼結式がある。前者はパンチングメタル等の芯
材とニッケル粉末とを焼結させて得た多孔度80%程度
のニッケル焼結基板に、硝酸ニッケル水溶液等のニッケ
ル塩溶液を含浸し、次いで、アルカリ水溶液に含浸する
などして多孔質ニッケル焼結基板中に水酸化ニッケルを
生成させて作製するものである。この正極は基板の多孔
度をこれ以上大きくすることが困難である為、水酸化ニ
ッケル量を増加することができず、高容量化には限界が
ある。
[0004] Positive electrodes for alkaline storage batteries are roughly classified into a sintered type and a non-sintered type. In the former method, a nickel sintered substrate having a porosity of about 80% obtained by sintering a core material such as punching metal and nickel powder is impregnated with a nickel salt solution such as a nickel nitrate aqueous solution, and then impregnated with an alkaline aqueous solution. For example, nickel hydroxide is produced in a porous nickel sintered substrate. Since it is difficult for the positive electrode to further increase the porosity of the substrate, the amount of nickel hydroxide cannot be increased, and there is a limit to increasing the capacity.

【0005】後者の非焼結式正極としては、例えば、特
開昭50−36935号公報に開示されたように、三次
元的に連続した多孔度95%程度の発泡ニッケル基板
に、水酸化ニッケル粒子を保持させるものが提案されて
いて、これは現在高容量のアルカリ蓄電池の正極として
広く用いられている。この非焼結式正極では高容量化の
観点から、嵩密度が大きい球状の水酸化ニッケル粒子が
使用される。水酸化ニッケル粒子の粒径や発泡ニッケル
基板の孔の大きさ等は、特開昭62−136761号公
報に開示された如く、適切な値に調整する。また、放電
特性や充電受け入れ性、寿命特性向上のために、上記の
水酸化ニッケル粒子にコバルト、カドミウム、亜鉛等の
金属イオンを一部固溶させて用いるのが一般的である。
[0005] As the latter non-sintered type positive electrode, for example, as disclosed in Japanese Patent Application Laid-Open No. 50-36935, a three-dimensionally continuous foamed nickel substrate having a porosity of about 95% is formed on a nickel hydroxide substrate. One that retains particles has been proposed and is now widely used as the positive electrode of high capacity alkaline storage batteries. In this non-sintered positive electrode, spherical nickel hydroxide particles having a large bulk density are used from the viewpoint of increasing the capacity. The particle size of the nickel hydroxide particles, the size of the pores of the foamed nickel substrate, and the like are adjusted to appropriate values as disclosed in Japanese Patent Application Laid-Open No. 62-136761. In order to improve discharge characteristics, charge acceptability, and life characteristics, it is common to use a metal ion such as cobalt, cadmium, or zinc in a solid solution in the nickel hydroxide particles.

【0006】また、このような水酸化ニッケル粒子とと
もに発泡ニッケル基板に保持させる導電剤としては2価
のコバルト酸化物(例えば特公平7−77129号公
報)等が提案されている。
As a conductive agent to be held on the foamed nickel substrate together with the nickel hydroxide particles, divalent cobalt oxide (for example, Japanese Patent Publication No. 7-77129) has been proposed.

【0007】2価のコバルト酸化物の機能は以下の通り
である。通常、発泡ニッケル基板の孔の大きさは、これ
に充填する水酸化ニッケルの粒径よりも十分大きく設け
られている。従って、集電が保たれた基板骨格近傍の水
酸化ニッケル粒子では、充放電反応が円滑に進行する
が、骨格から離れた水酸化ニッケル粒子の反応は十分に
進まない。そこで多くの場合、水酸化コバルト、一酸化
コバルトのような2価のコバルト酸化物を導電剤として
添加している。これら2価のコバルト酸化物はそれ自身
は導電性を有しないものの、電池内での初期の充電にお
いて導電性を有するβ−オキシ水酸化コバルトへと電気
化学的に酸化され、これが水酸化ニッケル粒子と基板骨
格とをつなぐ導電ネットワークとして機能する。この導
電ネットワークの存在によって、非焼結式正極では高密
度に充填した活物質の利用率を大幅に高めることが可能
になり、焼結式正極に比べて高容量化が図られる。
The function of the divalent cobalt oxide is as follows. Usually, the size of the holes of the foamed nickel substrate is provided sufficiently larger than the particle size of the nickel hydroxide to be filled therein. Accordingly, the charge / discharge reaction proceeds smoothly in the nickel hydroxide particles near the substrate skeleton where the current collection is maintained, but the reaction of the nickel hydroxide particles separated from the skeleton does not sufficiently proceed. Therefore, in many cases, a divalent cobalt oxide such as cobalt hydroxide or cobalt monoxide is added as a conductive agent. Although these divalent cobalt oxides have no conductivity per se, they are electrochemically oxidized into β-cobalt oxyhydroxide having conductivity during initial charging in a battery, and this is converted to nickel hydroxide particles. It functions as a conductive network connecting the substrate and the substrate skeleton. Due to the presence of the conductive network, the non-sintered positive electrode can greatly increase the utilization rate of the active material filled at a high density, and can achieve higher capacity than the sintered positive electrode.

【0008】[0008]

【発明が解決しようとする課題】上記のように正極導電
剤として、コバルト種を用いた場合には、電池として特
性の大幅な改善がはかれる中で、高温下で充放電サイク
ルを繰り返した場合の容量低下が大きい。その一因とし
て、以下に記すような高温下の充放電サイクルに伴うコ
バルト種の変質が挙げられる。
As described above, when a cobalt species is used as the positive electrode conductive agent, the characteristics as a battery are greatly improved. Large drop in capacity. One of the causes is the alteration of the cobalt species accompanying the charge / discharge cycle under high temperature as described below.

【0009】上記正極活物質を使用した電池を、高温下
(例えば40℃)で、電池電圧が0.8V程度となるま
で放電させた場合、放電末期に活物質粒子の被覆層を形
成するコバルト酸化物の一部が放電反応(還元)を起こ
す。これは、高温下では電池の内部抵抗が低くなるため
に正極が放電し易いことと、コバルト酸化物の価数・導
電性が極めて高くなっていることとに起因する。続いて
回復の為に充電を行なうが、その充電初期において、前
記で放電したコバルト酸化物の充電反応(酸化)が起こ
る。しかし、この時コバルト酸化物が充電される容量
は、放電した容量よりも僅かに少なくなる。つまり、高
温下で充放電を行なうと、被覆層を形成するコバルト酸
化物は価数が少し低下する。そして、このような充放電
サイクルを繰り返すと、以上の現象が蓄積されることと
なり被覆層のコバルト酸化物は価数が低下しながら熱力
学的に安定なCoHO2あるいはCo34(いずれも導
電性の乏しい酸化物)の構造に近づいていく。このた
め、正極のコバルト導電ネットワークの機能が低下し、
電池の容量が低下する。
When a battery using the above-mentioned positive electrode active material is discharged at a high temperature (for example, 40 ° C.) until the battery voltage becomes about 0.8 V, cobalt which forms a coating layer of active material particles at the end of discharge is obtained. Part of the oxide causes a discharge reaction (reduction). This is due to the fact that the internal resistance of the battery is low at a high temperature, so that the positive electrode is easily discharged, and the valence and conductivity of the cobalt oxide are extremely high. Subsequently, charging is performed for recovery. At the initial stage of the charging, a charging reaction (oxidation) of the cobalt oxide discharged as described above occurs. However, the capacity at which the cobalt oxide is charged at this time is slightly smaller than the capacity discharged. That is, when charge and discharge are performed at a high temperature, the valence of the cobalt oxide forming the coating layer is slightly reduced. When such a charge / discharge cycle is repeated, the above-mentioned phenomena are accumulated, and the cobalt oxide of the coating layer is reduced in valence while being thermodynamically stable CoHO 2 or Co 3 O 4 (both are used). (Oxide with poor conductivity). For this reason, the function of the cobalt conductive network of the positive electrode is reduced,
Battery capacity decreases.

【0010】本発明は上記問題点を解決するためのもの
で、導電性に優れ、高温下での充放電サイクルを繰り返
した場合でも容量劣化の少ないアルカリ蓄電池を提供す
ることを主たる目的とする。
[0010] The present invention has been made to solve the above problems, and has as its main object to provide an alkaline storage battery having excellent conductivity and having little capacity deterioration even after repeated charge / discharge cycles at high temperatures.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明は、水酸化ニッケル固溶体粒子と、この水酸化
ニッケル固溶体粒子の量に対して0.1〜5.0重量%
の導電性ニッケル酸化物 Ni23H を混合した正極を
使用したアルカリ蓄電池としたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for producing a solid solution of nickel hydroxide, comprising 0.1 to 5.0% by weight based on the amount of the solid solution particles of nickel hydroxide.
This is an alkaline storage battery using a positive electrode mixed with the conductive nickel oxide Ni 2 O 3 H.

【0012】以上の構成によると、導電性ニッケル酸化
物 Ni23H は、構造上非常に安定であり、充放電サ
イクルによる化合物の構造変化が起こらないため、導電
性に優れ、充放電サイクル寿命特性が向上したニッケル
水素蓄電池を得ることができる。
According to the above structure, the conductive nickel oxide Ni 2 O 3 H is very stable in structure and does not undergo structural change of the compound due to charge / discharge cycles. A nickel-metal hydride storage battery with improved life characteristics can be obtained.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、水酸化ニッケル固溶体粒子と導電性ニッケル酸化物
Ni23Hとの混合物を発泡ニッケル多孔体基板に充填
した正極と、負極とセパレータ、アルカリ電解液とから
なるアルカリ蓄電池である。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention provides a positive electrode in which a mixture of nickel hydroxide solid solution particles and a conductive nickel oxide Ni 2 O 3 H is filled in a foamed nickel porous substrate; An alkaline storage battery comprising a negative electrode, a separator, and an alkaline electrolyte.

【0014】請求項2に記載の発明は、導電性ニッケル
酸化物 Ni23H の量を規定するものであり、水酸化
ニッケル固溶体粒子の量に対して0.1〜5.0重量%
混合した正極を用いたアルカリ蓄電池としたものであ
る。
According to a second aspect of the present invention, the amount of the conductive nickel oxide (Ni 2 O 3 H) is defined, and the amount is 0.1 to 5.0% by weight based on the amount of the nickel hydroxide solid solution particles.
This is an alkaline storage battery using the mixed positive electrode.

【0015】この正極において、水酸化ニッケル固溶体
粒子に導電剤として添加している導電性ニッケル酸化物
Ni23Hは、充放電サイクルを繰り返した際にも、
構造変化が起こらないので、正極に添加すると導電性に
優れのはもちろんのこと、サイクル寿命特性が従来より
向上するという作用を有する。
In this positive electrode, the conductive nickel oxide Ni 2 O 3 H added to the nickel hydroxide solid solution particles as a conductive agent can be used even when charge / discharge cycles are repeated.
Since no structural change occurs, when added to the positive electrode, it has the effect of not only having excellent conductivity but also improving cycle life characteristics as compared with the conventional case.

【0016】[0016]

【実施例】以下、本発明における詳細について実施例に
基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on embodiments.

【0017】(電池の作製)正極板は、水酸化ニッケル
固溶体粒子の100重量部に、導電性ニッケル酸化物
Ni23H 粉末の1.0重量部を混合し調整した、ペ
ーストを発泡ニッケル多孔体基板に充填し、プレスによ
って所定の厚みにし、所定の電池サイズに裁断した(以
下これを正極Aとする)。また、比較の為に正極導電剤
に水酸化コバルトを10重量部を添加した従来の正極
を、上記と同様にして作製した(以下これを正極Bとす
る)。
(Preparation of Battery) A positive electrode plate was prepared by adding a conductive nickel oxide to 100 parts by weight of nickel hydroxide solid solution particles.
A paste prepared by mixing and adjusting 1.0 part by weight of Ni 2 O 3 H powder was filled in a porous nickel foam substrate, pressed to a predetermined thickness, and cut into a predetermined battery size (hereinafter referred to as positive electrode A). Do). For comparison, a conventional positive electrode in which 10 parts by weight of cobalt hydroxide was added to the positive electrode conductive agent was prepared in the same manner as described above (hereinafter referred to as positive electrode B).

【0018】負極板は、水素吸蔵合金粉末を主に調整し
たぺーストをパンチングメタル基板の両面に塗着し、所
定の厚みにプレスし、所定の寸法に裁断した。上記で作
製した2種のニッケル正極A,Bと、負極、アルカリ電
解液(KOHの濃度が5.1規定、LiOHの濃度が
1.5規定、NaOHの濃度が0.7規定である、水酸
化カリウムと水酸化リチウムと水酸化ナトリウムの混合
水溶液)、親水化処理を施したポリプロピレンの不織布
製セパレータを用い、公知の方法により、Aサイズで公
称容量2000mAhのニッケル水素蓄電池を作製し
た。この電池をそれぞれA,Bとする。
The negative electrode plate was prepared by applying a paste mainly prepared from a hydrogen storage alloy powder to both surfaces of a punched metal substrate, pressing the paste to a predetermined thickness, and cutting into a predetermined size. The two types of nickel positive electrodes A and B prepared above, a negative electrode, and an alkaline electrolyte (KOH concentration is 5.1 normal, LiOH concentration is 1.5 normal, and NaOH concentration is 0.7 normal, water A nickel-metal hydride storage battery having an A size and a nominal capacity of 2,000 mAh was produced by a known method using a nonwoven fabric separator made of a non-woven fabric of polypropylene and a hydrophilic treatment. The batteries are referred to as A and B, respectively.

【0019】(高温サイクル寿命試験)以上のようにし
て得たニッケル水素蓄電池A,Bについて、40℃、充
電レート1CmA、−ΔV制御(5mVのカットオフ電
圧)の充電と、40℃、放電レート1CmA、カット電
圧0.8Vの放電を繰り返す試験を500サイクル実施
し、電池容量の変化を測定した。電池容量としては、
1.0Vまでの放電容量を読み取るものとした。この結
果について、横軸に充放電のサイクル数、縦軸に電池容
量(最も値の高いAの1サイクル目を100として指数
化した)をとると図1の結果が得られた。同図より以下
のことが解る。
(High Temperature Cycle Life Test) The nickel-metal hydride batteries A and B obtained as described above were charged at 40 ° C. and a charge rate of 1 CmA at −ΔV control (cutoff voltage of 5 mV), and charged at 40 ° C. and a discharge rate. A test in which discharge at 1 CmA and a cut voltage of 0.8 V was repeated 500 times was performed, and a change in battery capacity was measured. For battery capacity,
The discharge capacity up to 1.0 V was read. The results of FIG. 1 were obtained by plotting the number of charge / discharge cycles on the horizontal axis and the battery capacity (indexed with the first cycle of A having the highest value being 100) on the vertical axis. The following can be understood from FIG.

【0020】正極Aを用いたA電池では、正極Bを用い
たB電池に比べ、電池の容量劣化が少ない。この理由
は、正極A中の導電性ニッケル酸化物 Ni23H が非
常に安定な分子構造をとっており、充放電サイクルによ
る導電性の低下が抑制されたためである。
In the A battery using the positive electrode A, the capacity deterioration of the battery is less than that in the B battery using the positive electrode B. The reason for this is that the conductive nickel oxide Ni 2 O 3 H in the positive electrode A has a very stable molecular structure, and a decrease in conductivity due to charge / discharge cycles has been suppressed.

【0021】なお、以上の効果は、上記水酸化ニッケル
固溶体粒子の100重量部に、導電性ニッケル酸化物
Ni23H の1.0重量部を混合させた場合に限られ
るものではなく、0.1〜5.0重量部の導電性ニッケ
ル酸化物 Ni23H 粉末を混合した正極を用いても、
同様な効果が得られる。
The above effect is achieved by adding 100 parts by weight of the nickel hydroxide solid solution particles to a conductive nickel oxide.
Ni 2 O 3 is not limited to the case obtained by mixing 1.0 part by weight of H, using the positive electrode prepared by mixing a conductive nickel oxide Ni 2 O 3 H powder 0.1-5.0 parts by weight Even
Similar effects can be obtained.

【0022】[0022]

【発明の効果】以上のように本発明は、導電性ニッケル
酸化物 Ni23Hを正極に添加することによって、従
来より充放電サイクル寿命特性の向上したアルカリ蓄電
池を提供できる。
As described above, the present invention can provide an alkaline storage battery having improved charge-discharge cycle life characteristics by adding conductive nickel oxide Ni 2 O 3 H to the positive electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における電池の充放電サイクル
数と容量維持率との関係を示す図
FIG. 1 is a diagram showing a relationship between the number of charge / discharge cycles of a battery and a capacity retention ratio in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA02 BB02 BB04 BB14 BD04 5H016 AA02 AA06 BB06 BB09 EE01 EE05 HH01 5H017 AA02 CC28 EE01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA02 BB02 BB04 BB14 BD04 5H016 AA02 AA06 BB06 BB09 EE01 EE05 HH01 5H017 AA02 CC28 EE01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水酸化ニッケル固溶体粒子と、導電性ニッ
ケル酸化物 Ni23Hとの混合物を発泡ニッケル多孔
体基板に充填した正極と、負極とセパレータ、およびア
ルカリ電解液とからなるアルカリ蓄電池。
An alkaline storage battery comprising: a positive electrode in which a mixture of nickel hydroxide solid solution particles and a conductive nickel oxide Ni 2 O 3 H is filled in a foamed nickel porous substrate; a negative electrode; a separator; and an alkaline electrolyte .
【請求項2】導電性ニッケル酸化物 Ni23H は、水
酸化ニッケル固溶体粒子の量に対し、0.1〜5.0重
量%である請求項1記載のアルカリ蓄電池。
2. The alkaline storage battery according to claim 1, wherein the amount of the conductive nickel oxide Ni 2 O 3 H is 0.1 to 5.0% by weight based on the amount of the nickel hydroxide solid solution particles.
JP33592999A 1999-11-26 1999-11-26 Akaline storage battery Pending JP2001155724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33592999A JP2001155724A (en) 1999-11-26 1999-11-26 Akaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33592999A JP2001155724A (en) 1999-11-26 1999-11-26 Akaline storage battery

Publications (1)

Publication Number Publication Date
JP2001155724A true JP2001155724A (en) 2001-06-08

Family

ID=18293938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33592999A Pending JP2001155724A (en) 1999-11-26 1999-11-26 Akaline storage battery

Country Status (1)

Country Link
JP (1) JP2001155724A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006075A (en) * 2016-06-29 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006025A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006024A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006027A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
CN109428134A (en) * 2017-09-01 2019-03-05 丰田自动车株式会社 The reuse method and secondary battery system of secondary cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006025A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006024A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006027A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006075A (en) * 2016-06-29 2018-01-11 トヨタ自動車株式会社 Battery system
CN109428134A (en) * 2017-09-01 2019-03-05 丰田自动车株式会社 The reuse method and secondary battery system of secondary cell
CN109428134B (en) * 2017-09-01 2021-10-08 丰田自动车株式会社 Secondary battery recycling method and secondary battery system

Similar Documents

Publication Publication Date Title
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
JP4710225B2 (en) Method for producing nickel electrode material
JP5119577B2 (en) Nickel metal hydride battery
EP0817291A2 (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JP2001202957A (en) Nonsintered nickel electrode for alkaline secondary battery
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
US6274270B1 (en) Non-sintered nickel electrode for an alkaline electrolyte secondary electrochemical cell
JP2001155724A (en) Akaline storage battery
US6489059B2 (en) Alkaline storage battery and positive electrode used for the alkaline storage battery
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JP3794176B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2001043855A (en) Non-sintered nickel electrode for alkali storage battery
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JPH10289714A (en) Nickel-hydrogen storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
US6849359B1 (en) Non-sintered nickel electrode for alkaline storage battery
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP3162595B2 (en) Method of manufacturing alkaline storage battery, nickel positive electrode for alkaline storage battery, and alkaline storage battery
US6171728B1 (en) Nickel electrode for akaline storage cell and manufacturing method of the same
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628